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Non-Gaussian primordial fluctuations for structure formation may be generated during the
inflationary epoch from the nonlinear interaction of two scalar fields with gravity. Semianalytical sto-
chastic inflation calculations are described for nonlinear long-wavelength evolution in 3+1 dimensions.

Long-wavelength fields are governed by a single equation, the separated Hamilton-Jacobi equation. Typ-
ically, non-Gaussian fluctuations arise when the scalar fields pass over a sharp feature in their potential
surface. The subsequent evolution of these primordial fluctuations are calculated as scales reenter the
horizon during the radiation-dominated and matter-dominated eras of the cold-dark-matter scenario.
Contour maps for the linear density perturbation as well as the gravitational potential are displayed at
the present epoch. In qualitative agreement with observations, one can construct models with enhanced

sheetlike structures on the scale of -25h Mpc. The cleanest test of non-Gaussian fluctuations will

hopefully occur in the near future from large-angle microwave-background anisotropy experiments.

PACS number(s): 98.80.Cq, 98.80.Bp, 98.80.Dr

I. INTRODUCTION

With the decline of the simplest cold-dark-matter
(CDM) scenario [1], it is imperative that theorists pro-
pose alternative models which can be compared with
cosmological observations [2—6]. Here, I describe a vari-
ation of the inflation model which yields non-Gaussian
primordial fluctuations. This model may be tested in the
near future if the Cosmic Background Explorer (COBE)
satellite [7] measures the microwave-background temper-
ature anisotropy.

Even with the difficulties in accounting for large-scale
structure in the Universe, it is still reasonable to retain
the inflationary scenario. Redshifts of Infrared Astrono-
my Satellite (IRAS) galaxies [8] and their inferred pecu-
liar velocities indicate that the Universe is at critical den-
sity [9,10] 0=pip, „;,=0.8+0.3. This result gives sup-

port to inflation whose most outstanding prediction was
that 0=1. However, one must attempt to modify or im-
prove the scenario. For example, one may conjecture a
set of primordial fluctuations that are richer than scale-
invariant Gaussian fluctuations. I will describe a chaotic
inflation model that gives non-Gaussian fluctuations
which are basically scale invariant [11,12].

Non-Gaussian fluctuations for structure formation
have been advocated by numerous researchers. Peebles
[13,14] has suggested that the distribution of galaxies is
not adequately described by a Gaussian process.
Cosmic-string models [15] were among the first cosmo-
logical scenarios requiring non-Gaussian statistics. It has
been shown recently that their signature is obscured by
evolution of the string network [16],although it is possi-
ble that the initial conditions for cosmic strings are more
complicated than originally anticipated [17]. Late-time
phase transitions [18], extended inflation [19], and tex-
tures [20] are additional models whose statistics may not
be described by a Gaussian distribution. In the context

of inflationary models, Allen, Grinstein, and Wise [21]
were the first to construct axion models with non-
Gaussian fluctuations [22]. Bardeen used two scalar
fields to produce a "Gaussian-squared" model that had
interesting cosmological consequences [23].

There are three essential ingredients to the inflationary
scenario. Firstly, a scalar field with potential V(P) mod-
els the decay of the cosmological constant. Secondly,
gravity is crucial in order to account for the expansion of
the Universe. Finally, scalar-field quantum fluctuations
are necessary to produce inhomogeneities that will even-
tually produce structure in our Universe. One should
view the inflation model as a microscope that magnifies
quantum fluctuations at the smallest imaginable distance
scales (less than the Planck length) to scales that are
cosmologically observable. One of the problems with
linear perturbation theory was that there was no short-
distance cutoff. This gave the illusion that one could ex-
trapolate to arbitrarily small distances. However, non-
linearities must be important at some scale.

Non-Gaussian fluctuations would be the signature of
nonlinearities in the inflationary scenario. Their calcula-
tion is problematic because one requires a formalism that
governs the evolution of quantum noise with gravity.
Ideally, one needs a quantum theory of the gravitational
field [24,25]. In order to bypass this very severe
difficulty, I will use three tricks.

(1) Long-wavelength quantum noise behaves essentially
classically, and it may be described using classical ran-
dom fields in a process termed stochastic inflation
[26—33]. Using the Wheeler-DeWitt equation, one may
show that quantum gravity corrections are typically
small [31].

(2) The classical nonlinear evolution of long-
wavelength scalar fields and gravity is tractable [31,34].
When the wavelength of a fluctuation exceeds the Hubble
radius, different spatial points are no longer in causal
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contact, and they evolve as independent homogeneous
universes. One may safely neglect second-order spatial
gradients in the action for scalar fields and gravity.
Nonetheless, one must carefully join the independent spa-
tial points to make one Universe.

(3) The long-wavelength equations may be solved
analytically when the logarithm of the scalar-field poten-
tial is linear [34]: lnV(PJ)=gkak(tk, where the ak are
constants. More complicated potentials may be approxi-
mated by joining various linear ln V potentials together.
In this way, one may produce models that yield non-
Gaussian fluctuations that are consistent with current
microwave-background anisotropy limits.

Originally, Ortolan, Lucchin, and Matarrese [35,36]
had suggested that. non-Gaussian fluctuations could arise
from stochastic inflation if a single scalar field interacted
through an exponential potential. However, using exact
solutions of the improved Fokker-Planck equation, Salo-
pek and Bond [32] showed that such scalar-field fluctua-
tions were non-Gaussian only on scales much larger than
our observable Universe (see also Refs. [37] and [38]). In
addition, Bardeen and Bublik [29] and others [39,40]
showed that Gaussian fluctuations were generic in our
observable Universe if a single scalar field interacted
through a quartic potential.

In Sec. II, I present the long-wavelength equations for
Einstein gravity interacting with scalar fields. In an
elegant application of Hamilton-Jacobi theory to general
relativity, one may solve this system exactly. Quite re-
markably, the full nonlinear dynamics of long-wavelength
fields is contained in a single equation, the separated
Hamilton-Jacobi equation (SHJE). It is useful for several
reasons. The equation is truly covariant in that it makes
no reference to either the time parameter nor to the spa-
tial coordinates. When one performs calculations, it is
not necessary to make any gauge choice. Exact solutions
of the SHJE are given for the case when the scalar fields
interact through an exponential potential.

In Sec. III, I describe the initial conditions for the
long-wavelength problem. They are determined by
short-wavelength quantum fluctuations that began in the
Bunch-Davies vacuum [41]. They will be assumed to be
Gaussian. In Sec. IV, I consider several models where
non-Gaussian fluctuations arise when the scalar fields
pass over a strong feature in the potential surface. For
multiple scalar fields, the method of calculation is based
on some analytic tricks rather than brute-force numerics.
Rather than solve the evolution equations through
Runge-Kutta integration schemes, I employ Hamilton-
Jacobi methods where one introduces new canonical vari-
ables.

In Sec. V, I consider the evolution of these fluctuations
as they reenter the horizon during the radiation- and
matter-dominated eras. In CDM cosmology, non-
Gaussian fiuctuations may be readily evolved using the
transfer function together with a fast-Fourier transform.
Contour maps of the density field and the gravitational
potential are given at the present epoch.

A summary and a set of conclusions are given in Sec.
VI. The models presented may shed some light on the
problems of large scale structure in the Universe. Hope-

fully, large angle cosmic microwave-background (CMB)
anisotropy experiments will provide the most definitive
tests of these scenarios.

II. LONG-WAVELENGTH EQUATIQNS FOR
SCALAR AND GRAVITATIONAL FIELDS

The inhomogeneous Hubble parameter H (t,x) =a/N d—e-
scribes the expansion rate at each point in the Universe.
In the long-wavelength approximation, one assumes that
the physical wavelengths of all inhomogeneities are larger
than the Hubble radius H '. One can then safely neglect
all second-order spatial gradients in Einstein s equations,
but it is necessary to retain first-order spatial gradients;
otherwise the models are homogeneous, and of limited
applicability.

Because I wish to employ Hamilton-Jacobi methods, it

is useful to define momenta rt, m ', conjugate to a(t, x)
and the scalar fields (Ref. [31],Sec. IV),

4m.
e 3

2 )
3mp

P~/N=e m
' .

c'z/N =—

For each spatial point, the evolution equations [34],

(2.2a)

(2.2b)

(2.2c)

/N= —
2

e (m ) + +3e (m. "), (2.2d)
mp k

and the energy constraint

0=&(x)=— e ' (n. ) + g —,'e (n").
3mp k

+e V(pk ), (2.2e)

for long-wavelength fields are identical to those of a Bat,
homogeneous Universe. The new ingredient is the
momentum constraint

0=&,(x)= —,'e (e m. —),+ gm. "Pk;,
k

(2.2f)

which connects difFerent spatial points through a first or-
der gradient. (In the above equations, Newton's con-
stant, G =m &, is expressed in terms of the Planck scale,
mt, = 1.221 X 10' GeV. )

A. Hamilton- Jacobi theory for general relativity

In a novel approach to numerical relativity, one may
successfully apply Hamilton-Jacobi theory to the solution

The inflation scenario will be modeled using Einstein
gravity together with n scalar fields P~ which self-interact
through a potential V(P ). In most models, gravitational
radiation is not dynamically important, and I will there-
fore assume an isotropic metric with inhomogeneous
lapse function N ( t, x ) and scale factor e ""':

d&2 — ~2(t x)dt2+ 2a(t x)[(d 1)2+(d 2)2+ (d 3)2]

(2.1)
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5$ yj M
m. (t,x)=, n'(t, x. )=

M
n '(t,x)=-

5tt) (t,x)

(2.3)

There are 2n new canonical variables, which is 2 less than

of long-wavelength fields [11,12]. I will describe how to
solve the long-wavelength cosmological system when the
logarithm of the potential is linear. By itself, this system
is not sufficient for constructing non-Gaussian models.
However, one can construct more complicated potentials
by joining several linear ln V regions together (Secs. III
and IV).

I will now give a short review of Hamilton-Jacobi
theory for long-wavelength fields. The form of
Hamilton's equations is preserved if one employs a gen-
erating functional 1 to transform the variables

(a(t, x),n. (t,x),Pj(t, x), n. '(t, x)) to new canonical vari-

ables (Pj(t, x),m'(t, x.)):

the initial number. For general relativity, explicit time
dependence of 4 is not assumed because one of the field
variables becomes the time variable. In this paper, the
generating functional 4 will depend explicitly on half of
the old variables and half of the new ones:

S(—a(t, x), ttt (t,x.);ttjj.(t,x)).
Dirac [42] found it useful to introduce the notion of

strong and weak constraints. To illustrate the meaning of
these expressions, I will consider a trivial example. The
function f(x,y, z)=x +y +z 1 van—ishes weakly only
if the variables x,y, z are constrained to lie on the unit
sphere, x=sin8cosg, y=sin8sing, and z=cos8, where
8,$ are spherical angles. However, the constraint van-
ishes strongly when expressed in terms of the spherical
angles because it yields zero f(8,$)=0 for —all values of 8
and P. Of course, one has lost one degree of freedom in
going from the weak to the strong condition.

In the Hamilton-Jacobi theory for gravity, one insists
that the Hamiltonian density, Eq. (2.2e), vanishes strong-
ly when expressed in terms of the new canonical vari-
ables:

—3a(t, x}
2

e
3m@

2

+ y & e 3a(t, x)—
5a(t, x)

M
5tt)k (t,x)

+e ""'V(ttt(t, x))=0. — (2.4)

As a result, the new variables are independent of time be-
cause the Hamiltonian H = Jd x N&(x) generates
time evolution through Poisson brackets: i.e.,

2

j(X ) e 3a(tx),m~ aa
4m.

(2.6d)

t)It =Ittj, H, ]=0, m. '=[m ',H, (2.5)

over the independent evolving spatial points; the Hubble
function H:H(P;tt) )has n—o explici.t time or spatial
dependence, except through the fields Pj(t, x), Pj(x)

The long-wavelength equations reduce to

(2.6a)
12m. „(1$„3mz2

g m. "Pk; =0,where ttjk
=

Pk (x), n "=n. "(—x),
k

(2.6b)

2

~ J(t,x)= m&
4~' ay,.

' (2.6c)

However, the new variables may be spatially dependent:

tttj
= tttj(x), m j=—m. '(x).
Solving the full Hamilton-Jacobi equation, Eq. (2.4)

plus second-order spatial gradients, is extremely difficult,
and hence one must resort to approximation techniques.
The long-wavelength approximation is an elegant exten-
sion to inhomogeneous fields of homogeneous minisuper-
space. Because there is no causal contact between spatial
points, one may write the generating functional as a sum,

m&
2

fd x e ""'H(tttj(t, x);tttj(x)),

The first equation, the separated Hamilton-Jacobi equa-
tion (SHJE), is just the energy constraint, whereas the
second is the momentum constraint [34]. The last two
equations describe how the original variables evolve in a
time which can be taken to be u for simplicity.

In essence, a single equation, the SHJE, governs the
nonlinear dynamics of the long-wavelength gravitational
system. It is remarkable in that it does not refer explicit-
ly either to the time hypersurface nor to the spatial coor-
dinates although it describes both of them. By consider-
ing Eqs. (2.2b), (2.2c), and (2.2e), the n evolution equa-
tions and the energy constraint for homogeneous minisu-
perspace are typically written as

I a I ayj I ayj av+3H— + =0,eat x at x at ay,
2

+V(P )
3m' k 2 N

H =

(2.7a)

(2.7b)

As written, they are difficult to solve because one must
make an arbitrary choice of lapse function, and in many
cases, one is content to choose a synchronous gauge,
N = 1. However, the beauty of the Hamilton-Jacobi
theory is that one need not make a choice of lapse func-
tion. One solves only a single equations rather than n
simultaneous ones. In addition, the momentum con-
straint (2.6b) is easy to solve.

In summary, the long-wavelength problem may be
solved by finding a single solution H= H(tttj;Pj) of the—
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SHJE, Eq. (2.6a), which depends on n independent pa-
rameters (t, . These parameters are generally spatially
dependent, although they are independent of time.
Moreover, n additional constants of integration,

vr ' —=m '(x), may be found by differentiation of the Hub-
ble function through Eq. (2.6d). The set of parameters

{P~(x),rr '(x)), which are interpreted as new canonical
variables, are constrained by the momentum constraint,
Eq. (2.6b), which is readily solved. Taking a as time, the

evolution of the system P:$—(a,gj(x), rr '(x)) is found

by inversion of the algebraic equation (2.6d).

B. Exact solution of the separated Hamilton-Jacobi equation

If the scalar fields interact through a potential whose
logarithm is linear [43], one may write down a complete
solution of the SHJE [34]. As a result, one may give ana-

= Voexp

1/2
( —P,sin8+ Pzcos8)

(2.8)

The parameter p controls the steepness of the potential, 8
is the angle between the P, axis and a line of uniform po-
tential, and Vo is the value of the potential at the origin
P&=hz=0. If p ) 1, then the potential (2.8) can be used
to describe an inflationary epoch. A complete solution of
(2.6a) which depends on two arbitrary parameters b and
Pl 1S

lytic expressions for the evolution of the fields (P&, Pz) as
a function of time a. I will be content only to state the
results. More details may be found in Ref. [34].

For two scalar fields, consider a potential of the form

I'(0& 0z'S' 8}

H(g„gz, p, 8;b, m )=
' 1/28m. Vo

3mp

' 1/2
(3p)(m +1)

exp
m (3p —1)+3p

1/2
4~ ( —P,sin8+ Pzcos8)

cosh(u) (2.9a)

3p

3p —1
[&+m (3Jz —1)+3p +in~cosh(u)

—sinh(u)+mz(3p —1)+3@~] .

where u is a function of b, m, (t „and pz, which is defined implicitly through

&12~
[(cos8 ms—in8)pz —(m cos8+sin8)p, b] = ——

m&

(2.9b)

PI =P,cos8+ Pzsin8,

pz = —p, sin8+ pzcos8, pz =Ksm8+ 6
(2.10a)

(2.10b}

(In the notation of Sec. II A, b =P„m =Pz. ) By rotation
of fields

(

-COMPLETE, ' SOLUTtON
v(y, ,y,) '= v, ekp(

QFIsHJE: 2 scAI~&s
—()sn/p)', '

p,/~mp

this solution is easily derived from that given by Salopek
[34] for scalar fields (P'„Pz) whose potential was a func-
tion only of the second field Pz..

V(01 W2 p }= ~oexp

' 1/2
~g

2
(2.11)

—10
—10 5

(i2m)'" y, / m,
10

FICs. 1. The complete solution H (P;b, m;p, B} of the
separated Hamilton-Jacobi equation is shown for two scalar
fields interacting through an exponential potential, Eq. (2.8),
with p =3. The broken lines are trajectories of the fields, which
are orthogonal to the surfaces of constant Hubble parameter
(solid lines). Here, the mixing angle 0 vanishes, and hence sur-

faces of uniform potential are just horizontal lines. The new

canonical variables were chosen to be b =0 and m = 1. One can
ask what happened to space and time coordinates in the SHJE
(2.6a)? Loosely speaking, a, the natural log of the scale factor,
is the most natural time parametrization of the trajectories. The
trajectories themselves represent different spatial points.

These complicated analytic expressions are explicitly
given in Appendix A [(Al) —{A5)] and they will play a
crucial role in what follows.

All solutions of the SHJE with potential (2.8) may be
derived from Eq. (2.9). Surfaces of constant Hubble pa-
rarneter are plotted as solid curves in Fig. (1) for the case
m =1, 0=0. The family of orthogonal lines (broken
curves} are the physical trajectories. This solution may
be verified by differentiation; it is actually derived by
looking for symmetries in the SHJE.

Once may invert (2.6c) and (2.6d) to determine the four
constants of integration as a function of the original vari-

ables a, P, , vr ':
b =b(a, P, m ',p, 8), and similarly for m, rr",m.
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1. Equation for trajectories in field space

4m
u —u~+

pm

m&
P~=mP', +b+ v(u) .

12m.

The function v ( u ) is defined by

v(u)—:— [u+m (3p —1)+3p +in~cosh(u)3p

3p —1

(2.12a)

(2.12b)

—sinh(u)+m (3p —1)+3p ~], (2.12c)

and the constants p', „and u „are values of $1 and u at
+= 00:

1/2
m m2p r
b 4~ m (3p —1)+3p

The equation for the trajectories in field space may be
explicitly written. It is useful to work in terms of the ro-
tated fields (P'„P2), Eq. (2.10), which are parallel and per-
pendicular, respectively, to the lines of uniform potential.
Given tI)', , one defines u from which one determines Pz..

1/2

+m (3p —1)+3pm '(t)(t', —tt'1', „},

cording to the attractor solution [34].
P~(t, x)

ln[&y(t, x)]=3a(t,x)=3&4np +g(x),
m&

where g(x) is a constant in time along the trajectory. As
a result, g is a function of the new canonical variables:

g(x)—:in~ir ~+ —,'ln[(m +1)[m (3p —1)+3p]]

(2.13)

1 — (mP', „+b)
m~ 3p

++m (3p —1)+3pu„—in+2Vp . (2.14)

g(x) gives the variation of the volume element on a time
hypersurface of uniform potential, t =Pz.

»[&y(tIIt,', x )/&y(t)t,',x, )]=/(x) —g(xp); (2.15)

here, x and xp are two arbitrary spatial points. $(x), first
introduced by Bardeen, Steinhardt, and Turner [44] in
linear perturbation theory, is the quantity of primary in-
terest for adiabatic models of structure formation. Please
note that the definition (2.13) is 3 times their original
definition, (=3(Bsr. For examPle, in the CDM model,
cosmic microwave-background (CMB) anisotropies at an-
gular scales greater than -3' are proportional to g:

6TCMB/TCMB=[TCMB(X) TCMB(Xp)]/TCMB(xp)

+ m

+m (3p —1)+3p
= —[g(x)—g(xp )]/15, (2.16)

(2.12d
through the Sachs-Wolfe effect (see Sec. V).

III. INITIAL CONDITIONS
(2.12e)

1
u „=arctanh

+m (3p —1)+3p

2. Late time evolution -offtelds

The late-time evolution of the fields during the
inflationary epoch determines the initial conditions for
structure formation as well as microwave-background
fluctuations. As a~ 00, the decaying modes are no
longer dynamically important. As can be seen from Fig.
(1), t)It', approaches ((t', „, Eq. (2.12d), and Pz evolves ac-

In Sec. IV, models are constructed by joining several
linear ln V potentials together. It will be assumed that
Gaussian fluctuations arising from short-wavelength
quantum noise are generated in region 1 of the potential
which is characterized by parameters p &

and 8& ~ A patch
of our observable Universe will be described using a finite
lattice of spatial points. Non-Gaussian fluctuations in the
lattice are produced when one passes over other regions
of the potential ~

The Hubble function in region 1 of the potential is tak-
en to be the attractor solution

1/2
S~ ~p

att Pj,P1~ 1 2 1 1/(3 )3mp p)
4~

'
( —P 1sin81+ $2cos81 )

exp
pi

(3.1)

corresponding to the parameters b = —00 and m =0 in
(2.9) having homogeneous values. Given arbitrary initial
conditions in region 1, the Hubble parameter will typical-
ly relax to such a solution within one expansion time.

In region 1, the fields on the lattice evolve in time a ac-
cording to Eq. (2.6d):

where t)),.p(x } are the initial values of the scalar fields on a
surface where the metric is uniform, a =0. Since I am as-
suming the attractor solution, the momentum variables
are not independent degrees of freedom but are given by
partial differentiation of H,« through Eq. (2.6c):

a sin8, +P,p(x),

a cos8, +Pzp(x),

m~
P,(a,x)=-

+4np1
m&

P~(a, x }=
~4~pi

(3.2a) m&
vr '(a, x)=

+4rrp,
e H «(Pj;p„8, )cos8, .

m~
n. '(a, x)=- e H„t(tt) .;p „8,)sin8, ,

+41rp,
(3.2b)
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where P~~(x) and (t i(x) are taken to be independent classi
cal random fields with a power spectrum:

(3.4a)

2 .
Ko
277 K 0

—2/(p )
—1 )

. (3.4b)

The power spectrum gives the dispersion in the complex
ik.x~

amplitude,
P~~ i(k), of a Fourier mode e ' with a

comoving wave number k. It will be assumed that these
amplitudes are independent and Gaussian distributed.

Ho and e ' are the Hubble parameter and the scale fac-
tor, respectively, when the longest mode in the lattice

having a physical length 2~ko 'e ' left the horizon,—
aO

koe '=Ho. The power spectrum measures the disper-
sion of the scalar field per 1n k interval. For example, if
the discrete Fourier modes in the lattice are approximat-
ed by a continuum, then the expectation value for the
square of the field in the lattice is

(P~~( ))=(P',( ))=f 'Pp~~(k) „=dk

0

(3.5}

The new momentum constraint (2.6b} is then satisfied at
early times, and the evolution equations guarantee that it
will be satisfied at late times.

It is useful to project the initial values of the fields into
components parallel and perpendicular to the trajectory:

to= Picos8i —P~~sinOi, $2o
=Pisin8& +P~~coso&,

(3.3)

tuation is small when short-wavelength scalar-field fluc-
tuations leave the horizon [32]. Actually, a better choice
of time parameter [32] is ln(He ), although for models
presented here the improvement is small.

Several conditions must be satisfied in order to justify
the initial Gaussian random fields P;0(x). Firstly, Ho
must be much smaller than the Planck scale m p (see Ref.
[32]). The potential must also change slowly when the
short-wavelength quantum fluctuations on the lattice
leave the horizon, i.e., p;))1. Both of these conditions
are well met in the models of this paper. Lastly, a linear
perturbation analysis should be valid for quantum fluc-
tuations with wavelengths smaller than the Hubble ra-
dius. This last assumption is questionable since in all
inflation models quantum fluctuations start with wave-
lengths shorter than the Planck length.

In this paper, I have assumed that the energy density
of the Universe was once dominated by scalar fields
which led to an inflationary epoch. Eventually, the scalar
field energy must be transformed into matter and radia-
tion. Because this transition time is not known, the
present length scale of the lattice is arbitrary, and it will
be assumed to be comparable to that of our observable
Universe. The amplitudes of the homogeneous k=o
modes are also arbitrary since their dispersion, Eq. (3.4a),
is infinite. Finally, Ko is a free parameter whose value is
chosen so the resulting fluctuations are large enough to
produce structure in our Universe. As a result, the value
of the potential at the origin, Vo, is irrelevant to the
dynamical equations provided that Ho ))[Sir Vo
/3m~@]'r . For example, Vo does not enter explicitly in
the trajectory equation (2.13).

IV. MODEL CALCULATIONS

Finite lattice effects alter this formula by factors of order
unity. In the actual calculations, the initial conditions
are implemented through a fast-Fourier transform. (See
Ref. [32] for a more extensive discussion of initial condi-
tions. )

Formula (3.4) assumes that the short-wavelength quan-
tum fluctuations began in the Bunch-Davies vacuum
[41,45]. However, as the Universe infiates the wave-

length of the Auctuations eventually exceeds the Hubble
radius. It is then an excellent approximation to treat the
fluctuations using classical random fields in a process
termed stochastic infiation [26—33]. In this way, a quan-
tum treatment of the gravitational field is avoided.

The power spectrum Eq. ( 3.4b) decreases with increas-
ing k because the Hubble parameter decreases as the sca-
lar fields roll down the potential in region 1. As a result,
quantum noise is no longer significant when H is much
smaller than its initial value Ko; the subsequent evolution
is then governed by the classical long-wavelength equa-
tions of Sec. II. In the limit p, ~ ~ one recovers the flat
Zeldovich spectrum. However, in practice, one assumes
a finite value for p&, which introduces a short-distance
cutoff; otherwise Eq. (3.5) would diverge.

The time hypersurface has been chosen to be one of
uniform o. because in longitudinal gauge the metric fluc-

Given an arbitrary scalar field potential V(pk), one
could in principle use the evolution equations for homo-
geneous minisuperspace, Eqs. (2.7a) and (2.7b), to solve
the long-wavelength system. In fact, the momentum con-
straint is satisfied by the initial data of Sec. III, and it is
preserved in evolution. However, for the models that
produce significant non-Gaussian fluctuations, numerical
problems hamper this approach. Typically, two time
scales enter, the Hubble time, and another time scale
much smaller than it. Hamilton-Jacobi methods thus
prove invaluable.

I will consider potentials that are created by joining
several linear lnV potentials together. The interfaces are
then straight lines in field space (see Figs. 2 and 3). For-
tunately, it is not necessary to perform any numerical in-

tegrations. The trajectories in any linear ln V region have
analytic expressions and are characterized by the con-
stants of integration (b, m, vr, vr ) By ensuring that . the

physical fields (a,P, vr ') are continuous at the interfaces,
one can smoothly match the trajectories from one region
to the next. For the models considered, all the field tra-
jectories eventually enter the same linear lnV region. At
late times in the inflationary epoch, one can determine
the adiabatic primordial fluctuations for structure forma-
tion by calculating the time lag b,g/3=ha for different
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A. Potential with a single interface

In the first instance, consider model A where the po-
tential is obtained by joining two linear lnV potentials
continuously along the line Pz=(t}ital, z [see Fig. 2(a)].
The continuity of the potential, Eq. (2.8},at the boundary
implies that the potential parameters pz and 8z in the
upper half-plane (region 2) are related to those in the
lower half (region 1) through

1/2
p, sin(y» —8, )

p i sin(y, z
—8, )

(4.1)

For a given spatial point in the lattice, the value of the
fields at the interface follow from the initial conditions in
region 1, Eq. (3.2):

ar= +4~p,
[(t'itan(X12 81 ) ((}i] (4.2a)

trajectories to reach the same line of uniform potential.
Three sets of calculations will be given. For illustra-

tion purposes, I will first describe a potential consisting of
two linear lnV regions joined at a single interface al-
though it generically produces Gaussian fluctuations.
When there are three linear ln V regions in the potential,
then one can indeed generate non-Gaussian fluctuations.
When the evolution of the system is viewed in field space,
the analysis closely resembles that of geometric optics
where one routinely considers a wave front passing over
an interface.

c0sg i 2 sing i 2
(t'ir =Pi

cos(y, z
—8, )

'
cos(y, z

—8, )

m~ 3aI
STD H,«(P Iy i. , 8, )e 'sinO, ,

+4np,

(4.2b)

(4.2c)
2=

STD

mp 3aI
H,«(P I,p„8,)e 'cos8, .

+4~p,
Using these values, and assuming that p =pz and 8=8z,
one can determine the constants of integration
(b, m, n, ir . ), Eqs. (Al) —(A5) in region 2, and then cal-
culate g in region 2 through Eq. (2.14). All the equations
are algebraic.

In Fig. 2(a), I display the scalar-field potential as well
as some typical trajectories. In Fig. 2(b), I show the dis-
tribution of g on a two-dimensional (2D) slice from a
64 -lattice calculation. For plotting purposes, the initial
value of the Hubble parameter was chosen to be
HO=10 m&, although microwave-background anisotro-
py limits would require Ho &10 m&. Here, the poten-
tial parameters in the lower half-plane are p &

=20,
8, = —60'; in the upper half-plane, pz=2. 7, 8z= —30'.
The interface is inclined at an angle of y, 2=165' to the P,
axis. Surprisingly, one still obtains Gaussian statistics
Fig. 2(b) although the fields mix at the interface.

In fact, the analytic calculation of g in region 2 is quite
straightforward if one neglects homogeneous field (HF)
contributions which are uniform over the entire lattice.
[Only differences in g are of physical interest; see, for ex-
ample, Eq. (2.16)]. The new canonical variables in region
2 are [Eqs. (Al) —(A5)]

sin(8, —8z)
m(x)= =HF,

cos(8i —82)—+pi /pz
(4.3a)

b(x) =(cos8z —m sin82)gzr(x) —(m cos8z+sin8z)((}ir(x)+HF, (4.3b)

lnI ~'(x)
I

=3~I(x)—
1/2

4m.

Pz
[Pzr(x )cos82 41r(x )»n82] / p+ (4.3c}

~ ( )/x/7 ( )x=y (ir)xcos8+2y (zr) xi sn82H+F . (4.3d)

Applying Eq. (2.14), g in region 2 admits the simple expression

Px) 3[ar(x) 1/ 4rrpz(dzr(x)cos82 Air(x)sin82)/mr ]+HF

(j}
jj
(x } Ijk J (x ) p 2=3+4~p, — + tan(y, z

—8, ) 1—
m& m~ Pi

+HF . (4.4)

g(x) is a Gaussian random field because it is a linear combination of Gaussian-independent fields Pj~(x) and Pi(x). In
the continuum limit [see Eq. (3.5)], the standard deviation in g at a single point is readily calculated:

' 1/2 2 1/2

o&=—(g (x))'I =3+4nP, 1+tan (y, z
—8, ) 1—

8~z m~
(4.5)
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which agrees with the numerical results of Fig. 2 if one
considers Anite lattice corrections. Apparently, each tra-
jectory evolves in a self-similar way. In passing over the
interface, g always increases. A simple intuitive deriva-
tion of this result based on the attractor approximation
will be given in Sec. IV C.

B. Fotential with three interfaces

One can obtain non-Gaussian fluctuations on cosmo-
logically observable scales from a potential created by
joining three linear lnv regions. In order to demonstrate
the variety that is possible, I will consider two examples,
models B and C, which are illustrated in Figs. 3(a) and
3(b)

Continuity at the various interfaces imply relationships
of the potential parameters in addition to Eq. (4.1):

P2

I /2
sin(yz3 —83 )

S]n(+23 82 )
(4.6a)

' I/2
PI sin(y3] —8, )

sin(y» —83)
(4.6b)

sin(p]2 —82) sin(y23 —83) sin(y3] —8, )1=
sin(y]z —8, ) sin(y2, —82) sin(y3] 83)

(4.7)

The angles between the interfaces, y, 2, y23, y», are not
all independent, and one must ensure that

( p ) MODEL A: POTENTIAL O'ITH ONE INTERFACE
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(b) MODEL C: POTENTIAL WITH 3 INTERFACES
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FIG. 2. (a) Some trajectories in field space are shown for a
scalar field potential with a single interface between two regions
with linear lnV($„$2) (model A). The light solid curves are
lines of uniform potential, whereas the very heavy line is the in-
terface. The trajectories (dashed lines) begin in the lower half-
plane with Gaussian initial conditions generated from short-
wavelength quantum noise. Even when they pass over the inter-
face, the nonlinear metric fluctuation g still remains Gaussian
distributed, as shown in the histogram (solid curve) of (b), which
compares the results of a 64 -lattice simulation with a best-fit
Gaussian (dashed curve).

-iO '
—10 -5x10 0

y, /my
Sx10

l
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FIG. 3. Non-Gaussian fluctuations consistent with CMB lim-
its may be generated if the scalar fields pass over three inter-
faces in the potential. Two scalar field potential surfaces, mod-
els B and C, displayed in (a) and (b) respectively, are considered
in order to illustrate the different geometries that may arise.
The light solid curves are lines of uniform potential, whereas
the heavy lines are the interfaces. If the scalar field trajectories
{dashed lines) pass su%ciently near the origin, nonlinear effects
at long wavelengths are important.
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which is found by multiplying (4.1) by (4.6a) and (4.6b).
In model B, trajectories begin in the lower half-plane,

region 1 (p t =20, 8& = —50'), with initial Hubble parame-

ter, HO=10 m&, consistent with CMB limits. If a tra-
jectory enters region 3 (upper left-hand region where
03= —30'), then calculation of g is virtually the same as
in Sec. IVA.

However, if the trajectories pass into the upper right-
hand area, region 2 (Hz=0'), they receive an upward kick
from the potential, which eventually forces them into re-
gion 3. (If this diagram were extended, one would find
that all trajectories actually cross in region 3.) The angles
of the interfaces starting with the lower right and
proceeding counterclockwise are y, 2= 10', y23=39', and

g3, = 158'. The calculations here are more complicated
than those of Sec. IVA because one must determine
where a trajectory strikes region 3 after it has passed
through region 2. The solution of the intersection point
requires the solution of a transcendental equation which
may be readily solved if one employs Newton's method.
The details are given in Appendix B. Once the fields

(a, P~, m ') are known at the 2-3 interface, the calculation
of g in region 3 proceeds along lines similar to Sec. IV A.

g is not constant in passing through region 2. The evo-
lution of the fluctuations is not adiabatic. In Fig. 4(a),
contour maps for g are given for a 2D slice in a 64-
lattice calculation of model B. The corresponding distri-
bution of g in region 3 is plotted in Fig. 4(b). For the pa-
rameters shown, it was found that non-Gaussian fluctua-
tions can arise if the fields passed sufficiently near the ori-
gin, which can be arranged through the choice of the
homogeneous mode amplitudes in Eq. (3.3); in fact, the
amplitude for the k=O mode of (()t was taken to be
3.9X10 m&. In model B, fluctuations greater than 2o.
have been suppressed, leading to a double peak in the dis-
tribution.

The power spectrum for the non-Gaussian field g is
shown in Fig. (5). It is found by calculating numerically
the dispersion in the Fourier mode amplitudes through
Eq. (3.4a). Nonlinear effects do not change the shape of
the spectrum which has remained essentially flat. The
free parameter Ho sets the amplitude of the fluctuations,
which is determined by the galaxy-galaxy correlation
function [45].

The length scale associated with the lattice calculation
is arbitrary because the fluctuation spectrum is described
by a power law. However, if the distance between two
adjacent lattice points corresponds to the length subtend-
ed by 3 on the surface of last scattering, then Fig. 4(a)
may be roughly interpreted as a large-angle microwave-
background map. The amplitude of ((b,TCMB/TcMB) )
is virtually the same as in the CDM case with Gaussian
primordial fluctuations. Please note that a large-angle
microwave-background map would actually correspond
to a spherical shell in the 3D simulation as opposed to a
planar slice. In fact, according to Scaramella and Vit-
torio [46), the histogram Fig. 4(b) will change slightly in
going from a planar map to that of a spherical shell. A
more careful treatment of microwave-background fluc-
tuations will be considered in the future.

By varying the geometry of the potential surface, one
may produce alternative distribution functions. For ex-
ample, in model C depicted in Fig. 3(b), the potential pa-
rameters are chosen so that the scalar fields move more
slowly when they cross into region 2 (where 02=0):

(g) MODEL B: CONTOUR PLOTS FOR g

0 20 40 60

600 —Non —Gaussian

400—

Temperature
Fluctuations
From Inflation

Number

of Points

Lattice
Calculation

Best-Fit
Gaussian—

200—

FIG. 4. (a) Contour maps for primordial metric fluctuations
g(x) are shown for a 2D slice in a 643-lattice calculation describ-
ing model B [Fig. 3(a)]. The dashed lines correspond to —lo
and Ocr fluctuations from the mean of the 2D slice, whereas the
solid curve represents a lcr deviation. The shaded areas denote
regions with fluctuations less than —2'. There are no fluctua-
tions from the mean greater than or equal to 2cr. The length
scale of the lattice is arbitrary. For example, if the smallest
resolvable length scale in the figure, ~ of the lattice size, is

chosen to coincide with the angular scale 3', then this figure is
essentially a large-angle microwave-background map, where the
temperature anisotropy b, TcMB/TcMs= —hg/15 is given by
the Sachs-Wolfe relation. In (b), the non-Gaussian distribution
of g is shown in the 2D slice. For comparison, a Gaussian dis-
tribution (dashed curve) with the same mean and dispersion as
the histogram is also shown. The most significant feature of
these figures is that cold spots in the temperature anisotropy are
suppressed over the usual cold-dark-matter (CDM) model with
Gaussian primordial fluctuations. The resulting galaxy-
formation scenario is interesting because of the presence of
sheetlike structures in the evolved density field [see Fig. 9(a)].
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I I I I ject near the surface of the Earth to fall is also propor-
tional to the square root of its distance if it starts with a
negligible vertical velocity. The dominant contribution
to g is actually from f(Pi). The reason that the histo-
gram for g in Fig. 4(b) possesses no 2o. fluctuations is that
the function f(Pi) reaches its maximum at pi=0. By
suitable choice of the initial homogeneous values of Pi,
one may effectively clip the high cr fluctuations. The ad-
dition of the term ~(ti in the expression for g serves to
convolve the distribution f(Pi) with a Gaussian random
field @I.

In model C, f(tI)i) is essentially a linear function for
positive values of Pi although its slope is steeper than
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0
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FIG. 5. For both models 8 and C, the power spectra
Pt(k)—:k'( ~g(k)

~
) /(2m ), for the primordial variable g are cal-

culated by taking the Fourier transform of the 64 -lattice simu-
lations described in Figs. 3, 4, and 6. The dashed lines are the
best-fit power laws. Nonlinear e6'ects do not change the shape
of the flat spectrum whose amplitude is chosen to be approxi-
mately P&I,'k) -10 ' . The comoving wave number k =1 is the
largest mode that can fit in the lattice. The slow monotonic de-
crease for increasing values of k is a consequence of the Hubble
parameter decreasing in region 1 of the scalar-field potential.
The larger the potential parameter p, of region 1 is chosen, the
flatter is the fluctuation spectrum. The deviations from a power
law seen in the last few bins are not significant because the num-
ber of modes within these bins is decreasing, leading to large
shot noise.
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p, =20, p~=100.3, p, =52.9. The amplitude for the
k =0 mode of Pi [Eq. (3.3)j was taken to be zero whereas
the initial value of the Hubble parameter was
H0=2X10 m~. Contour plots and the associated dis-
tribution for g are shown in Figs. 6(a) and 6(b). Model C
differs from B in that —2' fluctuations have been clipped
from the distribution which exhibits a single sharp peak
at —la.

Although the evolution of the fields over the interfaces
appears quite complicated, one may find a relatively sim-
ple expression for g in terms of pl and pi. Holding pi
fixed, one can see that the time lag is simply proportional
to t)II. In fact, one may write g as a sum of the Gaussian
random field pl and a function of the independent Gauss-
ian random field
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g(x)= —3+4mp, +f(Pi(x)) .
P7l p

(4.g)

The function f(Pi) can be computed numerically, and it
is plotted in Fig. 7. For both models B and C, f(Pi) is a
linear function for Pi &0 because the corresponding tra-
jectories only pass through two regions; g is then given by
a result similar to Eq. (4.4).

However, in model B, f(Pi) reaches its maximum at
the origin, where it has a cusp. In fact, for small positive
Pi, f(Pi) ~ —+Pi. This behavior may be understood
qualitatively using a crude analogy. The time for an ob-

FIG. 6. Same as Fig. 4 except describing model C [Fig. 3(b)].
The broken lines are —lo. and Oo. deviations from the mean of
the 2D slice, whereas the solid contours represent 1o. and 2o. de-
viations. However, because of the choice of the scalar field po-
tential, —2o fluctuations in g(x) are absent in this model. Once
again, if one identifies the length scales with that of a large-
angle microwave-background map, then hot spots in
4T«&/TcMB would be suppressed. In the context of galaxy
formation, this model is not appealing because it does not pro-
duce more walls or voids than CDM with Gaussian fluctuations
[see Fig. 12(a)]. Part (b) gives the distribution of g for the same
2D slice.
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transients have died away, the fields evolve relatively
slowly, and the attractor solution for the Hubble function
is an excellent approximation:
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FIG. 7. For scalar field potentials with three interfaces see

Pig. 3, g may be written as a Gaussian random field plus f (P~),
a function of the independent Gaussian random field P~, Eq.
(4.8). Nonlinearities in f(P~) are the source of non-Gaussian

fluctuations. In model B (solid curve), f(Pj) reaches its max-

imum at /~=0, where there is a cusp. In model C (dashed

curve), f(Pj ) is always increasing although there is a kink at the

origin. In both cases, f (Pz) is strongly nonlinear.

that for negative values of Pj. However, there is a kink at
the origin which produces non-Gaussian fluctuations.

C. Analytic calculations based on the attractor solution

Some of the features in the above models may be un-
derstood using a simple analytic approximation. After

I

This solution was applied in region l of the potential, but
now I will consider using it in regions 2 and 3 as well.

In Eq. (4.9), surfaces of uniform potential coincide with
uniform Hubble surfaces. The fields move along straight
lines orthogonal to these surfaces with uniform speed:

'2 I/2

V +
da dQ

m&

+4~p,
(4.10)

If the time scale of a variation in the potential is longer
than the Hubble time, then the attractor approximation
is justified. When the potential changes rapidly, as in the
models presented in Secs. IVA and IVB, then one, of
course, would expect that the approximation breaks
down. However, it still gives surprisingly accurate re-
sults in many cases.

For the model A discussed in Sec. IV A, one can apply
an analysis similar to that of geometric optics where one
calculates phase diS'erences that lead to interference
effects. b,g/3 is just the time lag between two trajectories
to reach the same surface of uniform potential (see Fig.
8):

6(=3ha= d2

VI V2

+4m p, +4m.p, +4npz sin(g&z —Oz)
b ((}~~+ b ((}jtan(y, z

—8, )—
mp II mp 7llp cos g(p 8)

(4.11)

Once again, P~ and
P~~

are the transverse and parallel
values of the fields in region 1 (lower half-plane). The dis-
tances in the potential surface, d, and d2, depicted in
Fig. 8 result in additional time delays. Applying (4.1),
one recovers the previously derived result for g, Eq. (4.4),
governing a potential with two interfaces. In fact, one
could have deduced that transient phenomena would not
change the formula for g if one considered the first line of
Eq. (4.4).

For potentials obtained by joining three linear ln V po-
tentials together, the attractor approximation is not as
useful, although it does give accurate results when the
trajectories are far from the vertex. Geometrically, it
should be clear in this instance that for trajectories that
enter region 2 and then pass into region 3, the time lag
increases linearly with P~ although the sign may be posi-
tive or negative depending on the model considered.
Hence, if one considers trajectories that enter and leave
the same regions, then the time lag will not introduce
non-Gaussian fluctuations from initially Gaussian sto-
chastic noise. Within the context of long-wavelength

fields, it is essential that transient behavior appear, or else
some trajectories must pass into difFerent ln V parts of the
potential such as in models B and C.

D. Length scales with non4 aussian fluctuations

By definition, for a pure Gaussian random field charac-
terized by a power spectrum, the statistics of the field
remain Gaussian no rnatter what the resolution scale.
However, the situation is much more complicated for a
non-Gaussian random field. Given the lattice calculation
described in Sec. IV B and depicted in Figs. 3—7, I would
like to address the question whether a subsample demon-
strates non-Gaussian Auctuations. My description will be
intuitive.

In this subsection, a probability distribution Q(g) will
be considered to be non-Gaussian if for some value of g
within two standard deviations of the mean the corre-
sponding value of Q exceeds twice that of a Gaussian dis-
tribution: (2vra&) '~ exp[ —(g—(g}) /(2o &)]. This
definition is quite arbitrary, but it is sufficient to illustrate
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FIG. 8. In the attractor approximation, trajectories (dashed
lines) in field space move perpendicular to the lines of uniform
potential (light solid lines) with constant speed,
v, =dP/d—a=mr /+4np, , where p, describes the steepness of
the potential Eq. (2.8) in the jth region. The analysis of the re-
sulting metric fluctuations is similar to the calculation of phase
differences in geometric optics. b,g/3=ha is just the time lag
to reach the same surface of uniform potential. For a potential
with a single interface (very heavy line), b,g/3=d, /v, —d2/u2,
where d, =hP, tan(y» —8, ) and d, =A/, sin(y» —8, )/cos
(y&2

—
8& ), where g», 8„02 are the angles associated with the

interface, and the lines of uniform potential in the lower and
upper half-planes. For simplicity, I have assumed bP~~ =0. This
result agrees with the exact calculation of model A depicted in
Fig. 2.

the basic idea.
I will first consider model C. The probability that a

subsample, a cube with side l, displays non-Gaussian
statistics is given approximately by

I'= — e ' dt, x =21 x z

V2n. —x l,„

12/(p —
& )

(4.12)

Here, l ax is the length scale associated with the lattice
calculations depicted in Figs. 3(b) and Fig. 6(a). As the
subsample size decreases to zero, most distributions will
be Gaussian. However, fluctuations change from being
non-Gaussian to Gaussian when x-0.2, and the corre-
sponding length scale is quite small for p I =20:

lmax
(4.13)

In model C, if l,„corresponds to the size of our observ-
able Universe, the fluctuations in g will be non-Gaussian
for almost all length scales of interest to astrophysics. As

p& increases, the power spectrum more closely approxi-
mates a flat Zeldovich spectrum, and the transition
length scale decreases even further.

The formula is based on some simple considerations of
the initially Gaussian field P~. If the average value of Pj
in a particular cell is denoted by P~, then non-Gaussian
fluctuations will typically arise in that cell if the origin
/~=0 is contained in the 2o interval

217 0

lx =2
lmax

2/(p
&

—I ) (4.15)

xo =Pt(k =0)
1/2

pI —1
Ho

8m

Once again, if l,„ is comparable to the size of our ob-
servable Universe, the fluctuations are non-Gaussian for
those scales of interest for astrophysics.

V. EVOLUTION OF NON-GAUSSIAN FLUCTUATIONS
DURING RADIATION- AND

MATTER-DOMINATED ERAS

Although the evolution of the Universe was nonlinear
during the inflationary era, the subsequent evolution dur-
ing the radiation- and matter-dominated epochs may be
analyzed using linear perturbation theory, at least until
the first formation of stars and galaxies. The evolution is
most simply described in Fourier space where the
transfer function of each mode has already been comput-
ed for adiabatic fluctuations in the CDM model [I]. Cal-
culations evolving non-Gaussian primordial fluctuations
are no more difficult than the Gaussian case. For the
models considered in Sec. IV, contour plots are given at
late times for both the gravitational potential and the
density contrast. The prospects of observing non-
Gaussian microwave-background fluctuations are dis-
cussed. In what follows, I will assume that the present
value of the Hubble parameter is H =50 km s '/Mpc.

A. Cold-dark-matter transfer function

In linear perturbation theory about an Einstein —de Sit-
ter universe, it is still convenient to employ the longitudi-
nal gauge Eq. (2.1) because one may generalize the notion
of the Newtonian potential. When the stress perturba-

In this way, as trajectories associated with the cell roll
down the potential, they will straddle the origin where
there are strong nonlinearities. Since P~ itself is Gaussian
distributed with dispersion given by Eq. (3.5), the frac-
tion of cells in the full lattice which would yield non-
Gaussian fluctuations is just the formula (4.12).

In the lattice calculations of model B, the Gaussian dis-
tribution for Pl is not centered about zero, since the am-
plitude of Pt(k =0) was initially taken to be
3.9X 10 m~. As a result, Eq. (4.12) for the probability
of observing non-Gaussian fluctuations is modified, and it
is given approximately by
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and

e ~'"~=a(r)[1+OH(r, x)], (5.1}

in terms of the gravitational potential 4H(r, x); r is con-
formal time and a(r) is the background scale factor.
—40 may be interpreted as the Newtonian potential be-
cause it satisfies the Newton-Poisson relation

V 4H(r, x) = 4m 6—a 5p(r, x ); (5.2)

5p(r, x) is actually the comoving density perturbation,
p(r, x)—po(r), where po(1) is the background density. In
Fourier space, this equation is particularly simple:

4~(r, k) =— (~,k), (5.3}

where the background Hubble parameter is K=a/a
with a being the derivative of the scale factor with
respect to conformal time. Consistent with current con-
ventions, I use @H(r,x) to denote the gravitational poten-
tial in position space, while 4z(r, k) will refer to its rep-
resentation in Fourier space. (For an excellent review of
linear perturbation theory, consult Mukhanov et al.
[48]}.

When the wavelength of fluctuations is larger than the
Hubble radius, k/(Ka) «1, the evolution of 4&(r, k) is
governed by a constant of integration g(k) [44,45]

g(k) = [4H(r, k)+K '4H(r, k)/a]
I+to/Po

+34H(r, k), (5.4}

which measures the metric perturbation on a surface of
uniform Hubble parameter. Equation (5.4) relates the
Fourier transform of g(x) as defined in Sec. IV [Eq.
(2.13)] to the gravitational potential 4»(r, k) At all.
wavelengths, @H(r,k) approaches a constant after the
matter-dominated era. Moreover, for those comoving
scales that reenter the horizon during that era, the value
of 4H at the current epoch rf is given by Eq. (5.4) with
p0=0 and 4H=O:

4~( Tfyk)=g(k')/5 [k/a(rf ) & 0.01 Mpc] . (5.5)

Microwave-background fluctuations smoothed on angu-
lar scales larger than 3 are then given by the Sachs-Wolfe
formula

ETcMa/TcMB= DC H(rf, x)/3—= —il g(x)/15, (5.6)

where the functions @H and g are evaluated on the sur-
face of last scattering. Intuitively, the Sachs-Wolfe result
gives the redshift of thermal radiation as it leaves the
gravitational potential well; the sign of (5.6) agrees with
what one would have naively expected [49].

As defined by Bardeen et al. [50], the transfer function
T(k) measures the evolution of metric fluctuations after
the inflationary epoch. It gives the present value of the

tions are isotropic, one follows Bardeen [47] in writing
the lapse function and the scale factor,

N(r, x)=a(~)[1—@H(r,x )]

gravitational potential if one knows g(k) from inflation:

@H(k,rf ) =T(k)g(k}/5 . (5.7)

As k ~0, T(k)~1, and the result agrees with Eq. (5.5).
The transfer function T(k) is real: T(k) = T (k). No
additional phase factors enter. Given the lattice calcula-
tions of Sec. IV, the evolution of @H(r,x) through the
linear regime is trivial. One simply Fourier transforms
g(x), multiplies each mode by the transfer function
T(k)/5, and, finally, inverse Fourier transforms the re-
sults. In order to obtain 5p(rf, x)/p one multiplies
4H(rf, k) by k before inverse Fourier transforming [see
Eq. (5.3)].

B. Model distributions at present epoch

Using the non-Gaussian primordial fluctuations of
model B described in Fig. 4, contour plots of 5p(rf, x)/p
are displayed in Fig. 9(a) at the present epoch for a box
128 Mpc to a side. Only 10 and 2o. contours are shown.
On the right half of the figure, 2u fluctuations are scarce.
As a result, the density field is not just a collection of
tight sets of islands as one expects for a Gaussian random
field. Instead, it appears to be distributed along sheetlike
structures. Furthermore, the incorporation of nonlinear
evolution would enhance the smooth wall-like features
through the Zeldovich pancake mechanism. The corre-
sponding histogram of density fluctuations is plotted in
Fig. 9(b). It is mildly non-Gaussian with a peak at 0.8o.
Non-Gaussian fluctuations are more apparent in the
gravitational potential given in Figs. 10(a) and 10(b). The
broken curves correspond to —10. and 00 variations
from the mean, whereas the solid curve is a 1' variation.
There are no +20 fluctuations as shown in Fig. 10(b).
Particles typically move to the wells of the Newtonian
potential, —4H. The resulting pancake structures will
not be as lumpy as the case for Gaussian statistics, where
the pancakes quickly fragment into clusters. As a result,
sheetlike structures are enhanced for the non-Gaussian
primordial fluctuations of model B. For the benefit of the
reader, the power spectra for 4H and 5p/p are displayed
in Fig. 11.

Analogously, one may evolve the primordial fluctua-
tions associated with model C. Once again, the 10. and
2o contours for 5p(rf, x)/p at the present epoch are
given in Fig. 12(a). These contours are similar to those of
a Gaussian random field. However, differences are quite
apparent in the histogram of Fig 12(b) which is strongly
non-Gaussian. In fact fluctuations less than —2o are
highly suppressed. Contour plots for N& and its distribu-
tion are given in Figs. 13(a) and 13(b).

Peebles [13]has proposed that non-Gaussian primordi-
al fluctuations should perhaps be applied in the modeling
of structure formation. He has pointed out [14] that the
clipping of peaks in the initial density geld would pro-
duce sheet-like features. For example, such structures
appear in the slice of the Universe considered by the
Center for Astrophysics [3]. Model B presented in this
paper also produces smooth sheet-like structures. Basi-
cally the result of nonlinear evolution of the scalar fields
over the interface is to clip the 20. peaks in the gravita-



1152 D. S. SALOPEK 45

tional potential @H(r,x) .Since 5p/p is related to 0&H

through the Newton-Poisson relation, it is true in a crude
sense that the peaks in @H correspond to peaks in 5plp:
one expects high-density fields in the wells of the
Newtonian potential —@H. In fact, there are some parts
of the lattice where 20. peaks in 5p/p are nonexistent, al-
though this is not universally true because some 2o. peaks
survive such as in the left half of Fig. 9(a). The signature
for non-Gaussian fluctuations is not very pronounced in
the histogram for 5p/p, although it is quite clear in the
maps.

By fitting qualitatively the observed distribution of
galaxies on the scale of 50 Mpc, model B yields a crude
prediction: cold spots in large-angle microwave-
background maps should be suppressed as was demon-
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strated in Fig. 4. However, this model does not immedi-
ately explain the excess power in the galaxy-galaxy corre-
lation function as reported by Maddox et al. [5].
Perhaps, it is necessary to incorporate nonlinear evolu-
tion of the density field through an N-body code.

C. Prospects for observing non-Gaussian fluctuations
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If the microwave-background anisotropy is measured
in the near future, then the best test of non-Gaussian Auc-
tuations would come from all-sky maps at large angular
scales. For example, if the experimental resolution was
3'X3', one could accumulate approximately 5000 pixel
measurements over the entire sky. If experimental sys-
tematic effects could be modeled, and if galactic as well as
extragalactic radio sources could be removed from the
signal, one could then construct a reasonably good histo-
gram of ATOM&/TOM& which could be compared with
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FIG. 9. Evolution of non-Gaussian primordial fluctuations
through the radiation- and matter-dominated eras of the CDM
scenario is a straightforward application of the transfer function
in conjunction with a fast-Fourier transform. In (a) are shown
lcr and 2o. fluctuations in 5p/p at the present epoch for model
B. The box is 128 Mpc wide, assuming that the current Hubble
parameter is 0=50 kms '/Mpc. In the right half of the box,
2a fluctuations are suppressed, thus producing wall-like struc-
tures. This scenario is in qualitative agreement with some
features of the Center For Astrophysics slice of the Universe.
In (b), the histogram for 6p!p (solid curve) deviates slightly
from a Gaussian {dashed curve).
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FIG. 10. For model B, contour plots in the gravitational po-
tential 4H are shown at the present epoch for the same slice as

Fig. 9(a). The broken curves are 1o and Ocr deviations from the
mean of the 2D slice whereas the solid curves are 1o. fluctua-
tions. There are no +2o. deviations as can be seen in the histo-
gram of (b). In this model, non-Gaussian fiuctutaions are more
apparent in the distribution of the gravitational potential than
in 5p/p, Fig. 9(b).
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FIG. 11. For model 8, the present power spectra in 4H and

5p/p (Figs. 9 and 10) are calculated by multiplying the primor-
dial power spectrum in g given in Fig. 5 by the CDM transfer
function. k=1 corresponds to a wavelength at the present
epoch of 128 Mpc. The fina shape is essentially the same as
CDM with Gaussian statistics. Scale-invariant non-Gaussian
fluctuations do not add extra power.

Because the inflation model probes arbitrarily small

distance scales, it is quite likely that non-Gaussian fluc-

tuations may arise from the interactions of various fields.

However, the greatest obstacle is actually calculating
these effects. As the first nontrivial improvement over
homogeneous minisuperspace models, one should calcu-
late nonlinear effects at long wavelengths. The long-
wavelength system is essentially classical, although
short-wavelength quantum noise provides its initial con-
ditions. In addition, it is tractable. By applying analytic
solutions for scalar fields self-interacting through an ex-
ponential potential, it is not necessary to numerically in-
tegrate any differential equations. One can construct vi-
able non-Gaussian models by joining several potential re-
gions where ln V(P&, $2) is linear. Unfortunately, there is
some tuning in the non-Gaussian models of this paper.
The initial homogeneous values of the fields are free pa-
rameters. If one would change these values, one could
produce models that yield only Gaussian fluctuations.

(a) MODEL C: CONTOUR PLOTS FOR 6p/p
T

120

100
the models of Sec. UB. In the near future, the Cosmic
Background Explorer [7] will attempt such maps. In ad-
dition, all-sky maps could be provided by balloon-borne
experiments [51—53]. Tests at smaller angular scales
would probably not give enough independent measure-
ments to test non-Gaussian fluctuations, although the
first measurements of anisotropies are indeed likely to
come at smaller angular scales [52].
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VI. CONCLUSIONS AND SUMMARY

One can view the phenomenology of large scale struc-
ture in the Universe as a three-step process. Firstly, one
should construct a viable particle-physics model that is
consistent with the required level of metric fluctuations.
Embedding inflation in a particle-physics scenario is not
easy, although some interesting attempts have been made
by Salopek, Bond, and Bardeen [45], as well as Freese,
Frieman, and Olinto [54]. Secondly, one should tailor the
model to give the correct shape of the fluctuation spec-
trum. For example, large scale power may be obtained in
linear perturbation theory if the scalar-field potential is
suitably chosen [45]. However, it is preferable to obtain
large-scale power through scales that enter the transfer
function (see Bond and Efstathiou [55] who consider the
possibility of a decaying 17-keV neutrino). Thirdly, one
should ensure that the statistics of the model agree with
observations. In this paper, a richer class of inflation
models is considered which produce non-Gaussian pri-
mordial fluctuations.

The distribution of cosmic microwave temperature an-
isotropies could serve as a valuable discriminator of vari-
ous xnodels of the early Universe. For example, it could
indicate that nonlinearities in the inflation model were
important. It could even determine what was the initial
quantum state of the Universe (see, for example, Hartle
[56]).
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FIG. 12. {a)For completeness, I show the lo. and 2o. contour
levels of 5p/p for model C at the present epoch. The box has a
width of 128 Mpc. Since the —2o., lo. , and Oo. contours are not
drawn, the contour levels shown are somewhat similar to those
of CDM with Gaussian fluctuations. Galaxies would presum-
ably correspond to the high-density peaks which appear in tight
groups of islands. (b) The histogram of 5p/p in the slice is
shown; —2o. fluctuations are highly suppressed.
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FIG. 13. For model C, contour plots in 4~ are shown in (a)

at the present epoch for the same slice as Fig. 12(a). The bro-
ken curves are —lo and Oo deviations whereas the solid curves
are lo. and 2o. fluctuations. There are no —2o. deviations, as

can be seen in the histogram of (b).

However, the calculation of non-Gaussian fluctuations is
only in its infancy, and hopefully more elegant models
can be constructed in the future. A scalar field model
with many "bumps" in its potential will yield more natu-
ral results. In addition, the 1ong-wavelength approxima-
tion is only the first step in calculating nonlinearities in
inflation models. Richer approximation schemes should
be considered in the future.

There is currently no strong cosmological evidence for
non-Gaussian fluctuations. One of the goals of the
present work was to generate the simple model B that
could fit qualitatively the observed sheetlike distribution
of galaxies [3]. As a result, one expects that cold spots in
the microwave-background maps are suppressed. How-
ever, since the primordial fluctuations presented in this
paper remain scale invariant, the correlation functions
are identical to the CDM case with Gaussian initial con-
ditions. A potential problem with model B is how to ac-
count for the excess power in the galaxy-galaxy correla-
tion function as seen by Maddox et al. [5]. The proper
interpretation of these observations is being disputed, and
perhaps non-Gaussian primordial fluctuations could
resolve the discrepancy. For example, it wou1d be in-
teresting to consider 1V-body simulations with the initial
conditions from model B.

The definitive test for non-Gaussian fluctuations wi11

hopefully come in the near future from the Cosmic Back-
ground Explorer satellite [7] which should be in a posi-
tion to test the CDM model prediction. In addition,
balloon-borne experiments could also provide all-sky
microwave-background maps at large angular scales
[51—53].
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APPENDIX A: CONSTANTS OF INTEGRATION FOR COSMOLOGICAL SYSTEMS WITH LINEAR ln V(pk)

For a long-wavelength gravitational system with the potential given by (2.8), there are four constants of integration,
the new canonical variables (b, m, m, a ) which totally characterize the cosmological system. The first two are

' 1/2 1/2

m =m 'cosO —m 'sinO—
V'3p

(vr ') +(m ') +2e Voexp
&l Z (A 1)

m 'cosO+~ 'sinO

~b

It is then convenient to introduce auxiliary fields u, U:

1
u =arcsinh —arcsinhu,

U (3p —1)(m +1)

v = [2(3p —1)Vo] '~ +m (3p —1)+3p m 'e exp

' 1/2
(pzcos0 —

III,sin8)
(m 'cos0+m 'sinO),

(A3a)

(A3b)
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in which case the remaining new canonical variables are

b =(cos8 —m sin8)gz —(m cos8+sin8)$,
1/2

pm&+ [u V m (3p —1)+3p +in~cosh(u) —sinh(u)V m (3p —1)+3p ~] .
3p —1

(A4)

1/2
pm rz,

P,cos8+ Pzsin8—
Pl PlQ

m (3p —1)+3p V'mz(3p —1)+3p
(A5)

These expressions were derived in Ref. [34] through differentiation of the Hubble parameter using Eqs. (2.6c), (2.6d),
and (2.9).

APPENDIX B: COMPUTATIONAL NOTES

The calculations described in this paper are purely algebraic. All of the differential equations have been solved
analytically, and the numerical methods involve at most the solution of a transcendental equation in a single variable.
The most difficult step in the analysis of models B and C in Sec. IV is the determination where the scalar fields strike re-
gion 3 in the three interface models. In this appendix, I will describe how to invert the resulting equation.

Given the new canonical variables (b (x), m (x), m. (x),n. (x)), Eqs. (Al) —(A5), characterizing a trajectory Eq. (2.12)
in region 2, one wishes to find where the scalar fields will intersect the interface with equation Pz=g&tanyz3. Hence one
must solve the following equation for P, :

m„~3pz
P, tangz3 =m P&+b—

V'12m. 3pz —1
[u Qm (3pz —1)+3pz+ln~cosh(u) —sinh(u)Qm (3pz —1)+3pz

~ ],
where

(Bla)

Qrn (3pz —1)+3pz
(u —u„) . (Blb)

(Since 8z =0 in region 2, P, =P', and Pz =Pz. ) Before one may proceed further, one needs to know the sign of
cosh(u) —sinh(u)Qm (3pz —1)+3pz. In models B and C, it should be clear that P&

—P, „&0because P, is initially
moving to the right, and hence P& „is the maximum possible displacement of P, . Thus, from Eq. (Blb),

sgn[cosh(u) —sinh(u)Qm (3pz —1)+3pz]=sgn[sinh(u „—u )/sinh(u„)]=sgn(m) .

After a change of variable and some definitions,

(B2)

z =exp@41 41

where

(B3a)

1
y =3p2 1+ 1—

3p2

1/2

m tangz& Qm (3p, —1)+3p, , (B3b)

P=(y —1) 2
P2mP

m 'Qm (3pz —1)+3pz, (B3c)

(B3d)

4af= —sgn(m)2sinhu exp
P2mP

' 1/2

(3pz —1)[(m —tangz3)P, „+b] u„Qm '(3p—z
—1)+3pz (B3e}

Eq. (Bl) may be recast in the more useful form

O=g(z}:—z z+f . — (B4)

This algebraic equation may be solved using Newton s method (see, for example, Ref. [57]. For the initial guess, one
chooses

4u+4i-
1 2

(B5}
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where P&1 is the value of the first scalar field at the interface between region 1 and 2. Successive approximations to z are
given by

g (& )/g(zJ ),
All calculations leading to g are calculated using double precision which is accurate to 15 figures.

After one has determined the value of P& at the 2-3 interface, the corresponding values of Pz and u are found from Eq.
(2.12). The Hubble parameter 0 is given by Eq. (2.9a); a is found using Eqs. (A2) and (A3),

m-ba= —,'ln . exp

1/2
4~ m (3p2 —1)+3p2

2(3p~ —1)Vo

n ' and n. ' follow from Eqs. (Al) and (A2):

m = —m~ b

~2= Pl p e3aH+~b
+4nP,

Hence, all the field variables (a,P, m. ') are known at the interface between regions 2 and 3. One may then determine
the new canonical variables (b, m, m. , n ) in region 3 through Eqs. (Al) —(A5) with 8=83, p =p3. (Note that the field
variables are continuous across the interface, but the new canonical variables are not. ) Finally, one calculates g in re-
gion 3 using Eq. (2.14).
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