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The equation of state relating the tension 7" and the energy per unit length U of a cosmic stringbis
investigated in the simplest nontrivial case, namely, that of a field theory with U(1)!°®!xU(1)8lobal
invariance, in four dimensions, which is interpretable as the zero-charge-coupling-constant limit of
the more general superconducting string models that have been previously investigated. This limit
has the advantage of giving vacuum vortex defects that are strictly local so that the quantities such
as U and T that are relevant for the macroscopic description can be computed without ambiguity.
In the case of “electric” states (with timelike current) for which no comparable previous calculations
exist, it is shown there is a critical frequency w. beyond which the vortex becomes unstable due
to “charge” carrier emission. In the case of “magnetic” states (with spacelike current), the present
analysis provides more precise results than those of previous investigations, whose predictions are
broadly confirmed for typical moderate models in which the tension 7" remains comparable to the
energy density U though not for extreme models, in which serious discrepancies are revealed.

PACS number(s): 98.80.Cq, 11.17.ty

INTRODUCTION

The purpose of this work is to derive the macroscopic
quantities characterizing the dynamics of a current-
carrying cosmic-string model of a charge-uncoupled or
neutral kind whose complexity is intermediate between
that of the original nonconducting kind proposed by Kib-
ble [1] and that of the charge-coupled current-carrying
kind proposed by Witten [2]. The most significantly new
feature of this work is a first quantitative investigation of
“electric” states, meaning those for which the current is
timelike whereas previous numerical results (confirmed
in moderate situations by the more precise numerical
method used here) were restricted to “magnetic” states,
meaning those for which the current is spacelike. One of
the reasons why only a very few authors [3, 4] have paid
much attention to “electric”-type states was the consider-
ation that the corresponding electromagnetic fields would
tend to be screened. However, more recent discussions
[5] have made the point that the most important effects
of currents in cosmic strings are mechanical rather than
electromagnetic and as such can be studied even in the
neutral (uncoupled) limit to which the present work is
restricted.

Early discussions of the potential astrophysical sig-
nificance of strings of the latter kind concentrated on
spectacular effects (such as the formation of cosmologi-
cal voids [6]) that might have been expected as a con-
sequence of electromagnetic radiation resulting from the
charge coupling of the currents. However it later became
apparent that the most important effects of currents in
cosmic strings are of a purely mechanical nature, and can
be analyzed as a first approximation in terms of cosmic-
string models of the simpler kind considered here, which

45

are to be interpreted as corresponding to the limit in
which the electromagnetic charge coupling constant e is
considered to be sufficiently small to be neglected.

The dominant importance of purely mechanical rather
than electromagnetic effects of currents in cosmic strings
seems to have been first noticed by Davis and Shellard [5].
They drew attention to the fact that unlike nonconduct-
ing cosmic-string loops of the Kibble variety which must
ultimately lose all their energy by gravitational radiation
(and thus finally decay away to nothing), in current-
carrying loops (whether of neutral or charge-coupled
kind) gravitational (and when relevant electromagnetic)
radiation losses will cease as the loop approaches a finite-
energy centrifugally supported ground state in which it
can survive indefinitely, the simplest configuration for
such a stationary state having the form of a ring [5,
7]. This means that for massive [grand-unified-theory
(GUT) energy scale] strings the currents whose existence
was postulated in earlier discussions [2] can be excluded
in advance on the grounds that the resulting relic distri-
bution of cosmic-string loops would have been so dense as
to have brought about closure and premature collapse of
the universe. According to a tentative quantitative esti-
mate by Carter [8] the avoidance of such a catastrophe re-
quires that the characteristic energy scale for any (neutral
or charged) conducting string distribution in the universe
should not greatly exceed that of the electroweak unifica-
tion as predicted by the diverse variants (see, e.g., Fayet
[9]) of the original Glashow-Salam-Weinberg model.

A particularly convenient feature of the kind of un-
coupled or neutral cosmic-string model to be considered
here is that, as for a cosmic-string model of the simple
nonconducting type originally discussed by Kibble [1], it
is appropriately describable from a macroscopic point of
view as a “string” in the strict sense. This means that
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its effective cross section is negligible compared with its
length (its macroscopic motion being governed by a two-
dimensional action which in the Kibble model is just that
of Goto and Nambu), because its underlying microscopic
structure is that of a vortex defect of the vacuum that is
strictly local: the relevant fields are effectively confined
to the immediate vicinity of the vortex center (at least in
the approximation in which the extremely weak effect of
gravitation is neglected). This is to be contrasted with
the situation in a typical so-called superconducting string
model of the type originally discussed by Witten [2] (and
also of course in the gravitationally coupled version of
the original Kibble model) in which the vacuum vortex
defect is local in only a rather loose approximate sense,
having an associated field distribution that is effectively
unbounded at least in the idealized limit of an isolated
state, the cross-sectional integral of physical quantities
such as the energy density being divergent, due to the
contribution of the accompanying electromagnetic field
that arises from the presence of a source current along
the vortex. The description of such a nonlocal vortex as
a “string” at macroscopic level is only justifiable in the
limit of applications for which, relative to their values in
the core, the density of quantities such as the energy is
sufficiently small to be neglected in the outer part, whose
extent will in practice usually be limited by an effective
cutoff at a distance beyond which effects of the external
environment become relevant.

The weakness of the electromagnetic coupling constant
e (and the even greater weakness that is typical of grav-
itational coupling) ensures that the appropriately trun-
cated versions of what (in an idealized isolated state)
would have been divergent integrals will in practice very
often be negligible in comparison with the core contri-
butions, so that macroscopic description as a narrowly
confined “string” will after all be appropriate. It is only
in such a limit (which might also result from the effect
of screening in the charge-coupled case) that it will be
justifiable to apply a formalism of the kind developed by
Carter [10-12] whereby the macroscopic motion is calcu-
lable simply from knowledge of the effective equation of
state of the string model.

In order to set up the macroscopic string formalism it
suffices to specify the appropriate two-dimensional action
(generalizing the simple Goto-Nambu action that governs
the nonconducting Kibble model). Specification of the
action is equivalent to the specification of two distinct
equations of state relating the tension T of the string to
the corresponding rest mass energy per unit length U say,
one of these equations applying to the “magnetic” regime
in which the current is spacelike, and the other applying
to the “electric” regime in which the current is timelike
[10,12].

The most qualitatively new physical insight provided
by the present work concerns the “electric” regime, which
was largely ignored in previous studies except for what
is implicit in the pionnering work of Davis and Shellard
[5]. This regime has also been studied microscopically by
Aryal, Vilenkin, and Vachaspati [3] as well as by Spergel,
Piran, and Goodman [4] who were especially interested
in electromagnetic effects (pair creation and radiation).
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Also we have to mention studies concerned with con-
texts such as that of the Kaluza-Klein mechanism [13,
14,12, 15] or the noise mechanism [16, 17, 15] that are of
a different nature from the ordinary (four-dimensional)
conducting vortex mechanism under consideration here.
For the “electric” (i.e., timelike current) regime, the ef-
fect of allowance for charge coupling can be expected to
be more important than it has been found to be in the
“magnetic” case, but considerations of this aspect will
be postponed for future work [18]. An important new
feature that is brought to light in the present study of
the uncoupled limit is the existence of a phase frequency
threshold at which the vortex ceases to be strictly local so
that (as inevitable in the charge-coupled case) a macro-
scopic “string” description ceases to be exactly valid in
the strictest sense, and beyond which it rapidly comes
to break down altogether even as an approximation, a
phenomenon that is interpretable as due to creation and
ejection of current-carrying particles.

As far as magnetic states are concerned, the results of
the present work can be summarized as confirming the
general picture provided by previous studies [19, 20] in
typical moderate cases for which the parameters of the
underlying field theory are such that the tension remains
comparable with the energy density U (one new detail
emerges however, namely, that contrary to what occurs
in the simplified model that is most commonly used [4,
12, 15] for which longitudinal perturbations propagate at
the speed of light and therefore faster than transverse
perturbations, in the more accurate study carried out
here, it is found that longitudinal perturbations always
propagate more slowly than transverse ones, a result that
may have important implications for the problem of sta-
bility of stationary loop states [21]). However, in the
more extreme cases for which a “cosmic-spring” limit
of vanishing tension had been claimed to exist [20, 22],
the accurate numerical method used in the present work
leads to conclusions that are significantly different, so as
to raise serious doubt about the reality of such states
(whose physical relevance had already been called into
question in view of stability considerations [11,12]). Of
course, the previous work differed from ours by the inclu-
sion of charge coupling which violates the strictly local
character of the vortex, but work to be described in a fol-
lowing article suggests that allowance for this effect is not
sufficient to account for the discrepancy. It would appear
from preliminary investigations presently in progress [23]
that the results of previous studies of the more extreme
cases in question were seriously misleading due to poor
convergence of the numerical methods that were used.
It can be conjectured that the so—called “cosmic-spring”
states may merely have been an illusory artifact of an
unsatisfactory approximation scheme with no underlying
mathematical (still less physical) reality.

I. EQUATIONS OF MOTION

The field-theoretical model used by Kibble [1] is a spe-
cial case within the class first discussed by Englert and
Brout [24], in which spontaneous symmetry breaking oc-
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curs in the manner required by the Higgs mechanism [25].
In this case, the symmetry is that of the simplest Abelian
gauge Lie group, namely U(1)!°°®: the Lagrangian de-
scribes a complex scalar Higgs field & coupled with a
gauge vector B¥ by a charge-coupling constant, ¢ say.
This is the simplest field theory in which cosmic strings
can form. Witten generalized this Lagrangian so as to
allow the existence of what he referred to as “supercon-
ducting cosmic strings,” by introducing a second scalar
field ¥, which we shall refer to as the current carrier.
Witten took the carrier scalar to be coupled by a second
charge-coupling constant, e say, to a second gauge vector
A, which he assumed to be the ordinary electromagnetic
field. There is however a simpler extension of the Kibble
model that still allows the existence of a current in the
string but which is characterized by a global, rather than
local U(1)8'°°2 symmetry; that is, its Lagrangian is only
invariant under the addition of a constant in the phase of
the current carrier field £. In this model, whose exami-
nation is the subject of the present work, the conserved
current is effectively neutral, having no coupling to any
associated gauge vector (this being the feature that al-
lows the corresponding vortex to be strictly local as in
the simple Kibble model but unlike what occurs in the
general Witten model). Explicitly, this “neutral carrier”
model is given by the (renormalizable) Lagrangian

£ = —5(Du@)(DHO) — 5(V,E)(VHE)"

1 v
_16_7‘_H[U/H“ - V(Qv E)a

A
V(@) = Z2(18 — n2)? + £ ~ n))IF
A 14 my o
+22 (2 + B2 ISP, M

D,® = (V, +1i¢B,)®,
Hu, = VB, — V,B,,

where the signature of the metric is +2. This model can
be considered either as a lowest-order approximation to
the charged-coupled model of Witten or as a description
of a conceivable physical situation in which the relevant
current might be of exactly neutral type. In this La-
grangian, each parameter is supposed real and positive,
so that, contrary to Witten, m, is the actual mass of
the current carrier ¥. Note also that the positivity of
the coupling constants and of the squared mass is a con-
sequence of the requirement that the vacuum has to be
a global minimum of the potential with respect to the
bosonic X field, i.e., of the requirement

82V
(== 0,12 =) > 0, (2)

which is needed for the theory to be physically meaning-
ful.

We are concerned with vortex strings solution in which
the U(1)#!°bal symmetry is broken by the Kibble-Witten
mechanism which requires that the potential
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A 1 A
V(18| =0) = Znt + 5(m5 — 2f7))IEP + |5
3)

should be minimized with a nonzero vacuum expectation
value of the field ¥. It is necessary for this that the
combination

my = 2f7* —m; (4)
(where m2, is what Witten [2] denoted simply by m?)
should be positive:

my, > 0. (5)
We now set
¥ =oe'?, (6)

where the amplitudes ¢ and o and the phase variables
o and 9 are real. Then the independent variables are
these functions, B, and their derivatives. This yields the
following equations of motion (note that these would be
completely different if the fields were complex):

® = pe'®  and

Ve (VEa+gB*)] = 0, )
Vu(e?VH4) = 0, ®

VuVFp = o(Vua + ¢Bu)(V¥a + ¢B¥)

Y
+-§ﬁso(<p2 - %) +2fpo?, 9)

VuVte = oV, Vi + 2fp?0 + Ap0°
+(m2 —2fn’)o, (10)

(11)

The current conservation laws (7) and (8) are inter-
pretable as the Ncether identities expressing invariance
with respect to changes in the phases of ® and X. The
conserved current associated with the latter (global) in-
variance is given by

T* = a?Vhy.

V H" = 4mqp*(V’a + ¢BY).

(12)

We now restrict our attention to a straight stationary
string configuration which we take to be aligned along the
z axis. We postulate that the solution should be cylin-
drically symmetric modulo phase transformations, which
means that the amplitudes ¢ and o can depend only on
a radial variable r say. Asin the case of a nonconducting
cosmic-string model of the type considered by Kibble [1],
we suppose that the phase « of the Higgs field ® depends
only on the cylindrical angle variable 8 in the form

a = 27wné, (13)
where n is necessarily an integral winding number while
as in the more general conducting string models of the
type introduced by Witten [2] the phase of the carrier
field X is postulated to be independant both of § and of
r, varying only as a function of the longitudinal variable
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z and the time ¢ in the form
Y =wt — kz, (14)
where k£ and w are constants. Then, setting
w=k?-w? (15)

and introducing the abbreviation Q(r) = n+ ¢Bjy, we ob-
tain the cylindrical equations of motion [because of (13)
and (8), combined with the fact that o is a function of
r only, By is the only nonzero component of the gauge

field B,]

d?>p 1ldp 1 5 1 9 2 2
2t gy T aP@ + gAee(e” —n7) + 2fpo”,

d?c 1ldo ) 3
-p-{-;—a?: w0'+2f<p o+ A0
+(m3 — 2fn*)o, (16)
d’Q 1dQ 2 2
a2 "y e
where

> 0 in the magnetic case,
w { < 0 in the electric case,

=0 in the null case,

according to the classification of Carter [10,11]. We may
now impose the physical boundary conditions

9(0) =0, @(c0)=mn,
L0 =0, o) =0, (17)
Q(0) =n, Q(o0) =0,

and scale the variables and fields by setting

Mo 4
p=nX, 6 =——=Y, r=—7=, (18)
V/\v vV /\¢77
AsA . .
w= 22 20 n4w, q2 = /\¢q2. (19)

We can now define the free parameters of the theory

_m o fm
PERN T X
(20)
my
a3z = T—— 2
3 ’\¢/\a774’

all of them being positive as a restatement of Eq. (2).
Note that this scaling and the definition of the parame-
ters seem identical to that of Babul, Piran, and Spergel
[20], but here, as emphasized before, m, is the actual
mass of the current carrier. Therefore, knowing the mass
of the Higgs particle to be m, = \/zn, the physical
meaning of these parameters is clear:

(21)

The relationship of the parameters defined here to those
used by Babul, Piran, and Spergel [20], which we shall
distinguish by a dagger, is given by

t .1
o =2 1?2 — a{,
a3
1y2
ay = 29;27) - o, (22)
3
oo - (ah = 201)°
af

with the “renormalization”

vt !
Y= and W= (2“-';’-1) ot (23)
«
222 1 3
a3

for the current carrier field. However, there exists an-

other set of parameters, namely,
as A a9 f a3 Mg
Bs=y/—=—,
a1 my
(24)

Pa=—=+1,
¢ a1 Ag

whose immediate physical significance makes them useful
for the interpretation of the results obtainable in explor-
ing the a; space. In a physically realistic model where
the Higgs-boson-mass scale is at least that of the elec-
troweak unification scale and in which the relevant parti-
cle trapped in the string is the lightest charged particle,
i.e., the electron, one expects these free parameters to be
very small quantities that could be used in a perturba-
tive way, noting that ag will certainly be a few orders of
magnitude smaller than «; and a5 in this case. Moreover,
there is another restriction in the fact that we require the
vacuum to be “uncharged” and “nonconducting” [regard-
ing the U(1)8'°P2! charge], i.e.,

V(IZI=0,]2|=n) < V(IZ| #0,|®] = 0), (25)
which implies
(a3 — 2a2)? < 323 (26)

i.e., we require the ratio of the masses not to be less than
a fixed value, namely,

m} f Ag

My sl [2 (27)
mi )\¢ 2A¢

or, stated differently, the ratios between f and A4 and be-
tween A, and Ay must be small enough (or close enough
in case of a fine-tuned problem) so that (27) holds. We
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can now write down the dimensionless equations of mo-
tion, in terms of the variable p, as

X"+ %X’ = -’}—2XQ2 + -;-X(XZ — 1)+ 2a,XY?,

yr Ly BH20(XP -1
p

(28)

ay

+By(y?+1),
(¢3}

QII _ %QI — 47rq~2X2Q.

We shall return to these equations after having defined
all the quantities of physical interest such as the energy,
the tension, and the action.

II. EQUATION OF STATE

In order to obtain the equation of state, for which we
take it for granted that only the case of unit winding
number n = 1 is relevant, we need to compute the energy-
momentum tensor from the variations of the Lagrangian
with respect to the metric by means of
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and

T= —27r/rdrT“. (32)
Also we use the current density (12) to define the magni-
tude C of a line density current in the string with internal
string coordinate

C°=21r/rdr]“, a=t or z, (33)
as
C=/lcz -2, (34)

which we will denote as “charge number density”
throughout the rest of this work. Now we can write down
our actual definitions of U, T, and C as integrals over the
microscopic fields in terms of cylindrical variables, but
since we are going to concentrate on a particular exam-
ple, we are obliged to define a referential in which 4 is
a function of ¢ or z only, in which case the phase of the
current carrier field ¥ will be wt or —kz, where w or k
are constants. In the null case, with w = 0, we find, as
in an ordinary relativistic string,

T% + T%% = 0,ie., U =T, (35)

6L and obviously C = 0. In the magnetic sector, we have
T’:/ = __zgua 6gau + 6“1/‘6’ (29) le 2Q2
_ 12 2 2 2
which, with the Lagrangian (1), gives U=n / rdr (‘P tot+ Irg’r? 2 two+ 2V>
T = w?e? - L, =-1I, (36)
(30)
T°% = k%02 + L. 2 202
T:w/rdr(<p’2+a’2+ 22-+-@—wa'2+2V)
The quantities U and T are then understood to be 4mg’r r
=-L, 37
U=27r/rdrT", (31) . .
| and, in the electric sector,
/2 202 .
U= 7r/rdr (cp'2 +o?+ 47327'2 ﬁr_?— —wo?+ 2V> =L, (38)
2 22
T = 7r/rdr <<p'2 +0? + 47227'2 + ‘Pr? +wo? + 2V) =-L, (39)

while in both cases the charge number density will be
given by

C= 2w\/|w[/rdraz.
Now, if we set v = w/+/|w| = sgn (w)+/|w|, we have

C= 27r|u|/rdr0'2, (41)

(40)

and Egs. (36)-(39) yield an analytical equation of state,
U-T=v|C, (42)

of the form originally obtained by Carter [11], and with
the help of which we can already deduce some conclusions

-
because C has been defined positive. When |w| — oo,
then either U — T also diverges, or C tends to zero. We
will see numerically that both cases occur. Also, as U
(for v > 0) or T (for v < 0) does represent the action
from which the equations of motion are derived, we have

d
_U; =C andd_T
dv

¥>0 dv =¢

<o = (43)

and, therefore, differentiating Eq. (42) with respect to v
leads to

ar
dv

Moreover, we know that C(v = 0) = 0 and C > 0, so
that dC/dv > 0 for v > 0 and dC/dv < 0 for v < 0.

dc

= —y—
v2>0 dv

an dUu
v>0 dv

= udc (44)

v<o  dvlv<o’
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Therefore, Eq. (43) permits us to show that the condi-
tion (Carter [11]) necessary for the string to be stable
with respect to longitudinal perturbations dT/dU < 0 is
satisfied at least in a small neighborhood around v = 0.
Indeed, let us define V* as the set {v > 0 ; dC/dv > 0}
and V- = {v < 0; dC/dv < 0}. Then, for v € V1,
Eq. (42) shows that dU/dv > 0, which implies, because
of the first of Egs. (43), dT/dv < 0; and for v € V™,
one has dT'/dv > 0 and dU/dv < 0. Thus one finds that
dT/dU < 0, for all v € V¥ UV, so that the string is
stable with respect to longitudinal perturbations either
in magnetic and in electric regimes if this condition is a
sufficient one.

J

L _ 2 2 le X2Q2
n? 7r/Mlp<X et mge e T

oY? +

Next we use U and T to define a reduced action per
unit length as an integral over the microscopic fields
which may be used as a multiplicative factor of the Goto-
Nambu action in a macroscopic description of the string.
As we must start from the Lagrangian (1) and integrate
over all space-time, we see that, up to a sign, in the mag-
netic regime this action is just the energy U, and in the
electric reglme it is the tension T. This explains the
notation L in (36) and (39), and the L in (37) and (38)
comes from the duality relation which exists between en-
ergy and tension, as developed by Carter [10]. Explicitly,
for this action per unit length expressed in terms of di-
mensionless variables, we have

%( —1)? 420, Y3(X? - 1)+ a3Y?(3Y? + 1)) (45)

1t is convenient to convert this to a finite-range integral by means of p = tan&, because the density of points will
then be very large at the origin and small at infinity, so that we can compute with great accuracy the core structure
while taking into account the boundary conditions. We obtain

T O )

1 (X2Q2

cos? € \ tan? ¢

In order to compute numerical solutions, we write this
as a finite sum over a grid, vary this sum with respect
to the values of the fields at each point of the grid and
solve the resulting algebraic equations by means of a suc-
cessively overrelaxed (SOR) method (cf., e.g., Adler and
Piran [26]). The necessary integrals (36)-(42) are com-
puted by means of an open alternative extended Simp-
son’s rule, which gives the best accuracy. As a precision
check of the numerical results obtained, we made use of
Eq. (43), that is we computed separately C and dU/dv or
dT'/dv and compared both results; we obtained the same
numerical values with an accuracy better than 10~8 in
this way. A typical result for the Higgs field X and the
current carrier field Y is shown on Fig. 1, in a stable
electric situation.

Finally, as it can be useful for the macroscopic formal-
ism (Carter [12,15]), we computed the function K, given
by

dL dU

I\( )—-—2d—' :2'(711—}

_ T
VZO—. dw

C
= 2— 4
v<0 2|l/Iy ( 7)

and which is shown in Figs. 2 and 3 as a function of 7 and
w, respectively, as a dashed line. We see on these curves
that the first and second derivatives of K with respect to
v are zero for v = 0, so that an expansion as

—L=Ty+ %I(ow + O(wz) (48)

will be a very good approximation in the neighborhood
of v =0.

tan~%¢ (dQ 2
4rg? (df)]

+wY? 4= (X2 1)? + 2e5Y?(X? - 1) + agY?(3Y? + 1)) } (46)

]
b C= 1.279n
i
3, U= 5.076n°
Ey T= 4.9087n°
oy u/uc= Q.745
"\
\
oL ! ]
\
\
y Y(p)
\
\ .
X(p)
1 -
I \
. \
N
: N
Qlp) ~
. ~ ~
00 10 20 30 40
P
FIG. 1. The solutions of the field equations for X, Y,

and Q. This represents a stable “charged” configuration with
w < 0.
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In order to compare our results with the clearest and
most precise previous results, namely those of Babul, Pi-
ran, and Spergel [20], with U(1)!°°® coupling constant
given by

4ar§? = 0.1, (49)
and a nonzero charge coupling given by
(m2e*/ml) =0.1 (50)

(with e the usual electromagnetic charge coupling con-
stant), we have chosen two sets of parameter values that
were used by them, the first being a moderate situation
(differing little from the zero current case) with

a; = 1.68 x 1072,

a; = 5.26 x 1073, (51)
a3 =5.26 x 1074,
which corresponds to
ol =0.32, o} =01, of =0.19, (52)
while the second, with
ay] = 2 x 10_3,
oy =5x 1074, (53)
g = 2 x 10_6,
ie.,
ol =1, o} =025, o} =0.499 (54)

(oY
1

0.02 0.04

v
FIG. 2. The integrated charge (solid line) per unit length
or current given by expression (40) as a function of 7, i.e., C =
(n/\//\_d,)Zw\/Eﬁ J pdpY? and the dimensionless K function
(dashed line) given by K = 4x(a1/Ag) [pdpY?.
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10-3 2x 1077

w

FIG. 3.

Same as Fig. 2 but as a function of .

\ U/n?

0.99} | \

r
0.98 h i
|
007!
I .
| T/,IZ
0.96 |
| T
I
L 1
0.02 0 0.02 0.04
v
FIG. 4. The energy and tension integrated with (36)—(39)

as a function of 7 normalized to unity when the string has no
current. The dashed line is the limit # = 7. and the curves
are drawn in dotted lines when the configuration is unstable
against longitudinal perturbations [11].
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corresponds to a much more extreme situation in which
the original calculation leads to the prediction of a ten-
sion T decreasing to zero at a “cosmic-spring” limit.

Let us concentrate first on the moderate case for which
we obtain a result agreeing closely with that of Babul, Pi-
ran, and Spergel in the magnetic sector to which their in-
vestigation was restricted. It is found that every quantity
of physical interest is continuous while passing through
w = 0. This is evident in Figs. 2-5 where U, T, and C are
shown as functions of # and W, with the energy and the
tension normalized to their values in the Kibble case. It is
apparent on these curves that when w becomes large and
positive, the current carrier field decouples itself from
the Higgs field, leaving just an ordinary Kibble-type cos-
mic string, which is a now well-known phenomenon, but
before attaining this situation, there is a regime (for the
chosen parameter values, it is for 7 greater than approx-
imately 0.021) in which the string is unstable under lon-
gitudinal perturbations (dU/dT > 0). This corresponds
in Fig. 2 to the region where C is a decreasing function
of v and represented as a dotted curve.

Therefore, there is a maximum current contained in the
string because, as the phase gradient of the current car-
rer field increases, it becomes energetically favored for
the “charged” bosons to jump out of the core [2], but also
because the string itself may decay for any longitudinal
perturbation. However, we computed numerically that,
as Witten emphasized, this phenomenon occurs when the
impulsion k along the string exceeds the mass of the bo-
son in vacuum, and we find that the maximum value
for the current is obtained (up to numerical errors) for
w=m,.

A direct plot of T versus U is given in Fig. 6, which

LOT}Hy |

\ U/
|
009t \
|
|
0.93 _i
I
e
0.97 |
| T/n?
0.96 \ _
|
|
| - .
o 10-3 2% 107
w
FIG. 5. Same as Fig. 4 but as a function of .
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shows explicitly the stable regimes attainable by the
string, namely those for which dT/dU < 0. We can see
on this plot that the stability is only possible in a finite
(and in this case small) part of the w space in the mag-
netic case, whereas in the electric situation (as will be
shown in next section) there is a critical value of w given

by
II)C = —«a3, (55)

beyond which no stationary solution exists at all. The
energy, the tension, and the charge number density (see
Eq. (71) for the latter] all diverge as this value is ap-
proached as can be seen in Figs. 5 and 3. In accordance
with Eq. (43) we see that the tension decreases in the
electric regime as W goes to w., so that the divergence
of T should finally lead to negative values. This is ac-
tually what we find numerically, but for the parameters
used here, this occurs only for values of U very close to
7. so that the only effective requirement here is w > w..
More precisely, the stability requirement 7" > 0 against
transverse perturbation [11] is verified as long as v is less
than v, say, where we define v by means of U = v;.C
(Eq. (42) with T = 0], and we find vy 2 v.. This be-
havior is qualitatively similar to what has been observed
[15] for the nondispersive self-dual equation of state that

321 4
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N: L / "‘
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49t
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FIG. 6. The tension versus the energy per unit length.

The “magnetic equation of state” is above the “electric equa-
tion of state.” It can be observed that there is approximate
self-duality [12] (in the sense that the two coincide with con-
siderable precision) in the vicinity of the null limit. The lim-
iting Goto-Nambu case is on the dashed line U = T while
the dotted curve represents the integrable equation of state

UT = UZ.
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results from the very different physical mechanism of mi-
croscopic noise excitation [16, 17].

The most striking feature that may be seen on the
curves described above is that they look much the same
as those obtained for the weakly charge-coupled model
used by Babul, Piran, and Spergel: apart for small cor-
rections whose significance will be analyzed in a future
work [18], we find the energy per unit length, the tension,
and the current to have nearly the same numerical val-
ues whether or not the current carrier is charge coupled.
We can therefore conclude that most of the effects due
to the string superconductivity in the magnetic regime
(e.g., the saturation phenomenon) are qualitatively me-
chanical, their existence being in no way related to the
charge coupling of the theory.

While the qualitative picture obtained by previous
work is confirmed in moderate cases exemplified by the
parameter values (51) and (52), the nontriviality of this
conclusion is shown by the analysis of the more extreme
cases exemplified by the parameter values (53) and (54)
for which our result differs rather drastically from those
obtained before (see Fig. 7). In particular, we do not
find evidence that the tension tends to a zero “cosmic-
spring” limit for any finite current value. This significant
deviation from the previously accepted picture might
be conceived to be due to the simplification constituted
by our neglect of charge coupling in the present work,

i
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FIG. 7. Energy per unit length and tension as functions

of U in the extreme case. Solid curves represents our solutions
and dashed curves are obtained from previous work [20, 22].
Previous results lead to zero or even negative values for the
effective tension already for the relatively small values of &
greater than 1073,
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but an investigation to be described in a following ar-
ticle [23] indicates that, as in the more moderate cases
described above, the effect of the comparatively weak
charge-coupling value as given by Eq. (50) is still unim-
portant even in the extreme case characterized by (53)
and (54) so the source of the discrepancy must be sought
elsewhere. A preliminary investigation suggests that for
the extreme case in question, the numerical methods used
in previous work gave seriously misleading results due to
bad convergence properties. Further work will be needed
to clarify this question, but it can already be conjectured
that the tension has been systematically underestimated
and that it will in fact always remain positive.

Another new feature that arises from our solutions con-
cerns the perturbations’ propagation speeds as given by

T
= T (56)
for the transverse ones and
daT
¢ = ~ (57)

for the longitudinal ones [12]. Contrary to previous sim-
plified equations of state [10, 11, 15] such as the linear
one U + T = C*¢, we find that the longitudinal propa-
gation speed is in fact smaller than the transverse per-
turbation velocity. This is shown in Fig. 8 with ¢, as
a dashed line and ¢, being represented by the solid line
in the moderate situation with parameter values given
by (51). This result, even if obtained here in the neu-
tral limit, may have important implications on stability
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line) perturbation speeds as functions of v.



1100

requirements for loop configurations [12, 21] if verified in
the charge-coupled cases [23].

III. LOCAL ANALYSIS

In order to understand the numerical results described
above, we turn back to the system (28) which we may
solve for p < 1 by means of a Taylor expansion around
the origin as

X(p) =Y =, YO =) uir, Q)= ar*.
i=0 j=0 i=0
(58)

Remembering the boundary conditions (17), one obtains
the leading behavior for the Higgs field,

X ~ Ilnlﬂ'"' + Jc|n[+2plrtl+2 + ey (59)

for a string with a net winding number n, which in turn
implies that @ is an even function of p :

oo
Q~n+ap*+ ) arp™,
k=2

(60)

with 4k(k+1)gak41) = 4W§2$|2n|‘12(k—ln|)a so that one still
has an unknown (namely, ¢-) that is ultimately computed

with a matching with the asymptotic solution. As for Y,
we find

2
Y o (14 (@ - 20 + aaef + D] £+ 00"

(61)
which gives us a constraint on y, since we require Y to
be a decreasing function of p,

2<2C¥2—C¥3—1D
—_— )

a3

(62)

and, as we saw previously that o, and therefore Y, is
real, this leads to W < 2as — a3z, or, stated in dimen-
sionful variables, w < m2, in which m,, is the mass as
defined by (4). This restriction is merely a restatement
of condition (5) with the potential (3) replaced by an
effective potential V given by

V= —)\82174+-;—(m3—2f172+w)a2+%04, (63)
which must also be minimizable by a nonzero vacuum
expectation value for o, now considered as a real self-
interacting Klein-Gordon uncoupled field in the core of
the string.

The values of z|, (dotted) and g» (dashed) are dis-
played in Fig. 9 as function of & for the special (but pre-
sumably the only stable) case n = 1, while the quantity
Yo as a function of 7 is shown in the same figure as a solid
line for the particular set of parameters (51). This pro-
vides a mathematical explanation for the shape of C(v):
as v is increased, the condensate o becomes more coupled
with itself than with the Higgs boson; in that sense, the
X?2Y term in Eq. (28) is subdominant and the only solu-
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tion satisfying the boundary conditions tends to the vac-
uum expectation value of the free self-interacting bosonic
field, which is zero. An interesting feature concerning
these curves and which seems to be independent of any
special values of the parameters «; is the abruptness at
which they join the Kibble situation. This may also be
seen in Fig. 10 where we defined a “string radius” p. as
X(pc) — 1 < €, with £ a small numerical constant. We
observe on these curves the now well-known phenomenon
of the increase of radius when there is some current (or
charge) in the string, and we notice that as the current
goes to zero, this radius falls to p. = pKiP¢ but one may
never get p. < pKiPPe since this would lead to an energy
per unit length greater than that obtained in the Kibble
case, and therefore an unstable configuration.
The case p > 1 yields
X ~ l—le—', Q~626—2\/7_r-qp1
VP

for some constants ¢; and c2, while in examining the
asymptotic equation for Y, we see that Eq. (55) gives
the phase frequency threshold w, in terms of which we
obtain

(64)

Y//+lyl~ W — W
4 ay

y + By3, (65)
231

in which, if @ # @, we can neglect the cubic term and
get ordinary Bessel equations, which gives

° -0.02 0 0.02 0.04

v

FIG.9. The functions yo, £1, and g2 defined by Egs. (61),
(59), and (60) versus ¥, and rescaled by means of z; —
50(z; — 0.404) and ¢, — 480(g> — 4.44 x 1072). The solid
line is yo, the dashed line is g and the dotted line is z;.
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FIG. 10. The “effective radius” p. of the vortex (see text)
versus .
if &> @, ¥~ A
> bl ~ )
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e o~ Acos(kp+6
if D<®W., Y~ —M-—), (67)
N7
while in the last case
if &=, Y~ [2p1, (68)
asg
where k2 = |(@ — @.)/a;| and the amplitude A and

the phase displacement é are constants that should ul-
timately be computed by a matching with the solution
at the origin. Yet, we can only see in Eq. (28) that, as
X(0) = 0, the equation at the origin for Y does not de-
pend on & except in the trivial case where as = 0, which
is when ® and ¥ are not coupled. Thus, A and 6 are
functions of @, a;, as, and az, but not of the special
combination k. The presence of this latter constant in
Eq. (66) seems to us to be the source of the tension un-
derestimation problem outlined at the end of the previous
section. It turns out that for the a parameters used by
previous authors [20, 22] such as those introduced earlier
as the extreme case (53), one has k < 1, so that Y is a
very slowly decreasing function of p. This implies that
the cutoff needed for numerical reasons must be somehow
related to the value of k. We shall return to that point
in the framework of the fully coupled Witten model in a

future article [23].

In the unstable regime @ < ., we can interpret the
result as cylindrical waves around the string, because the
effective field ¥ also has a phase by virtue of Eq. (14) with
k = 0 for w < 0 as we choose a particular reference frame
(T = oe™! with w = /—w), and as we supposed the
string was in a stationary configuration, we can rewrite
the solution as

A e . .
Y ~ Kp(e tKp 16+ezfcp+16);

i.e., the number of incoming waves has to be the same
as the number of outgoing waves. This means that in
order to have a stationary solution, one has to impose
that there exists a bosonic source at infinity to take into
account the incoming waves. Moreover, we note that the
pulsation w also has a critical value (for which the critical
solution for the fields is shown in Fig. 11) w, = m, which
is exactly the mass of the charged boson in the real vac-
uum, so we can interpret the solution in saying that, as
soon as the classical bosonic field oscillates topologically
with enough energy, a particle is created at a quantum
level and is ejected of the string, this phenomenon being
exponentially reduced (tunnel effect) when the oscilla-
tions remain in a classical regime (frequency less than
the mass). In the former regime, it may then be argued
that stationary solutions do not exist since, in order to
avoid an extra source at infinity, the current carrier’s
excitation has to be produced with radial momentum «
directed outward.

.\\ C= 4.171x 0.0757
3h, U= 5.553x 0.01379° ‘
| T= 4.816:x 0.0007°
\ w/w,= 1.000
\
\
2k 1
\
\
\
\
\ X(p)
1 b \
\
i N
3 ~
t. ~
Q(p).'-.i o= e - -
1 ML 1 1
OO 10 20 30 40
¥’
FIG.11. The solutions of the field equations for X, Y, and

Q. This represents the critical configuration with @ = ..
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Now the solution (64) for X is found to be subdomi-
nant when w < w, because of the coupling between the
Higgs boson and the current carrier field. Inserting solu-
tion (67) into (28), and setting X = 1—¢(p), one obtains
the linearized equation

d*(pe) A?
Tdpz T e = pe - 20— cos?(kp + 6), (69)

and we solve it in the hypothesis that ¢’ is negligible,
which is verified afterwards. We find

2 -p
P 2&:;1 (1+ cos[2(fcp+6)]> ot

for some ¢;. This result shows that there is no emission
of Higgs particles because the dominant contribution is
o« 1/p and not 1/,/p and the current associated with
Eq. (7) is damped, so that all the energy lost by the
string is ejected in the flux of “charge.”

Actually, we note that the only divergent terms in
Eqs. (38)-(40) with w < w, are those which contain o2
alone, and if the integration is carried over all the sur-
rounding space, we see that when @ approaches w,, the
total charge density behaves like

w

C~ w—z':n-g- x (1]) - ’(I)c)_l (71)
if we assume that A is independent of @ — w., and it
becomes divergent when & < w,. This kind of divergence
corresponds to what is obtained in the integrable self-
dual case UT = U2 and in the Kaluza-Klein situations
[15-17], so it may eventually be understood as a general
result in the electric regime.

CONCLUSIONS

Let us summarize by stating the following new results
that are actually obtained in this investigation of the
neutral limit.
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(i) It is shown in moderate cases that the previous re-
sults concerning the “magnetic” side of the equation of
state (current saturation, for instance) are, as guessed be-
forehand by several other authors [5], of purely mechan-
ical origin and are not due to electromagnetic coupling
effect.

(i1) More specifically, it is shown in such cases that
the speed of longitudinal perturbations is systematically
lower than that of transverse perturbations.

(iii) It is shown that in more extreme cases, the tension
remains significantly positive and higher than predicted
by previous calculations.

(iv) The equation of state for the “electric regime”
(whose existence was postulated earlier [10, 11]) is ex-
plored for the first time.

(v) It is found numerically that the equation of state
is approximately “self-dual” [12] in some neighborhood
of v = 0. It is found that stability requirements with
respect to longitudinal perturbations are satisfied in the
whole “electric” side.

(vi) It is shown that there exists a phase frequency
threshold beyond which the string emits particles. This
frequency corresponds exactly to the mass of the current
carrier and, as might have been guessed for topological
reasons, there is no Higgs particle emission. This, again,
is not due to electromagnetic coupling effects.

(vii) Finally, the behavior of the amplitude of the
current turns out to be that predicted by independent
macroscopic models [15-17] when w approaches its crit-
ical value. It may be conjectured that this can be quite
general so long as the electromagnetic coupling constant
remains negligible.
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