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The geometrical branching model for soft production in hadronic collisions is developed into a Monte
Carlo code, called ECCO, in which the eikonal formalism is combined with cluster cascades. The model
not only can account for the global features of multiparticle production, but is also designed to describe
the properties of rapidity fluctuations in small rapidity bins. With the use of five parameters ECCO can
simultaneously simulate all the data on {n ), P,, C,, dn/dy, C(y,,y,), dN /dp}, and F,, for Vs ranging

from 10 to 65 GeV, nearly all within error bars.

PACS number(s): 13.85.Hd, 12.40.Pp

I. INTRODUCTION

The geometrical branching model (GBM) [1-3] is one
among several models which include notably the dual
parton model (DPM) [4,5] and the FRITIOF model [6],
that are successful in describing the global features of
multiparticle production in soft hadronic collisions [7].
However, until now the GBM has lacked a Monte Carlo
(MC) code that can simulate the event structure of soft
production. The aim of this paper is to amend that de-
fect.

Another more important development of the GBM to
be reported here is the sharpening of our ideas about the
branching process. This is possible because experimental
data on local properties that have become available only
recently place severe demands on dynamical modes.
Here we refer to the phenomenology of intermittency in
multiplicity fluctuations [8], first suggested by Bialas and
Peschanski [9]. It quantifies the fluctuation of rapidity
distribution in small rapidity intervals. Intermittent be-
haviors have been found in all hard and soft processes in
nearly all collisions involving leptons, hadrons, and nu-
clei [10]. Whereas the Lund parton-shower model [11]
has been able to account for the behavior in the hard pro-
cesses of e Te ™ annihilation, no model with a MC code
for soft production can generate the intermittency ob-
served in hadronic collisions [8]. The code that we devel-
op here for the GBM is tuned to fit the intermittency
data, and therefore has the virtue of being able to account
for all aspects of the hadronic data that we have brought
to bear on the code. We have found that the intermitten-
cy data impose severe constraints on the branching pro-
cess, thereby demonstrating the importance of studying
intermittency.

II. A BRIEF REVIEW OF THE GBM

For Vs <100 GeV the GBM has been shown [1] to
possess the observed properties of geometrical scaling,
Koba-Nielsen-Olesen (KNO) scaling, and forward-
backward multiplicity correlation. The inclusive distri-
bution in rapidity has not been calculated because the
model was not sufficiently well developed in the details of
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the branching process [3]. At higher energies it is known
that minijet production breaks the various scaling behav-
iors, and the GBM augmented by QCD hard sub-
processes has successfully accounted for the changes in
the above global properties [12]. Since we aim to concen-
trate in this paper only on the improvement of the soft
production part of the model, deferring the hard process-
es to a future investigation, we shall limit the energy
range of our consideration here to 10<V's <100 GeV,
which covers the CERN ISR range.

Let us first summarize the foundation of the GBM
[1-3,12,13]. The geometrical part of the model refers to
the eikonal formalism of hadronic collision at high ener-
gy. In terms of the eikonal function Q(b) the elastic, in-
elastic, and total cross sections are

oq= [db(1—e %), 2.1)
Oina= [ d2b(1—e 7200 | 2.2)
0= [db2(1—e %) (2.3)

In the energy range of interest stated above there is
geometrical scaling; i.e., 0, /0, is roughly constant [14].
That property can be guaranteed if ) depends only on
the scaled impact parameter R, where

R =b /by(s) (2.4)

so that (2.1)-(2.3) may be written as
oel=7rb(2,(s)f0wdR2(l—e_mR))z , 2.5)
ina=7b3(s) [ TdRM1—e 2R, 2.6)
omt=ﬂ'b%fode22(1—e_mR)) . 2.7

The scale b,(s) is defined by requiring that Oine =Th3(s),
so that the inelasticity function

g(R)=l—e_m‘R) (2.8)
satisfies the normalization condition

fo“’dkzg(R)=1 ) (2.9)
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g (R) describes the probability of having an inelastic col-
lision at R. Expanding it in a power series, we can write

o

gR)=3 ﬂu(R) (2.10)
p=1
where
Tr#(R)=Me_m“” . 2.11)

!

The pth-order term may be regarded as the pth-order re-
scattering contribution, and for p > 2 it is important only
when R is small; the exponential factor is the absorptive
correction.

The eikonal formalism, of course, is quite general [15].
It satisfies unitarity, which relates elastic and inelastic
scattering amplitudes. It emphasizes the spatial proper-
ties of an extended hadron, and in that respect differs
from most other models on hadronic collisions, which are
formulated in the momentum space. It is also consistent
with Regge theory [16], in the framework of which
corresponds to one cut Pomeron, 7, two cut Pomerons,
etc. However, the eikonal-Regge theory does not go
beyond generalities to specify the detail characteristics of
multiparticle production. Only models that are not based
on first principles but are phenomenologically motivated
can carry us further to a description of the properties of
soft interaction. The GBM chooses to regard the soft
production as a branching process, similar but not identi-
cal to the hard production process [17].

If at R the probability of producing n particles is
B,(R), then the multiplicity distribution after impact-
parameter smearing is

P,= [ "dR’g(R)B,(R) . (2.12)
In a first attempt to model B,(R) in the framework of
stochastic processes, B,(R) was expressed in terms of the
Furry distribution F,{‘, which is the solution of the sto-
chastic evolution equation for Furry branching with k
sources [17,18]. It was shown then that with an ap-
propriate R dependence of k (R) the resultant P, agrees
well with the ISR data; it therefore possesses the KNO
scaling property [1,19]. However, since F¥ does not
specify where the particles are produced in rapidity
space, the branching process was underspecified. Never-
theless, the model so described was sufficient to be used
as a basis for going on to higher energies to include mini-
jet production [12] and to large systems involved in nu-
clear collisions [13].

When the GBM was first proposed, the aim was only
to achieve both geometrical scaling and KNO scaling [1].
Soon after that the phenomenology of intermittency re-
ceived intense attention, and it appeared clear that most
existing dynamical models were unable to produce self-
similarity in the rapidity fluctuations [8]. The a model of
random cascading [9] suggests that a dynamical model
based on branching is more likely to succeed. This idea
has been put to test in specific model calculations, which
indeed yield intermittency [20,21]. Thus the GBM has
acquired a new mission, since its branching part is well
poised to incorporate the appropriate mechanism for in-

termittency and forge a realistic dynamical model for soft
production that exhibit both the global and local features
of the experimental data.

In order to implement the branching process with ac-
tual steps of branching, a simple Monte Carlo simulation
was attempted with the aim of reproducing the global
features such as P, in the full rapidity space [3]. Cluster
cascading was considered in a scheme in which a specific
mass spectrum was used. However, that mass spectrum
has an exponential cutoff characterized by a ‘“tempera-
ture,” which introduces a scale in the problem. It is
therefore reasonable to suspect that such a branching
scheme is not likely to lead to self-similarity in rapidity
fluctuation.

In the next section we describe a MC code which yields
results that agree not only with the global properties of
the data, but also with intermittency at all scales of rapi-
dity intervals. Being a first attempt in developing a MC
code for GBM, we are still limited in our objectives. We
shall work essentially in a one-dimensional phase space in
our branching process, even though the p; distribution
will be considered. We shall not consider resonance pro-
duction explicitly, nor keep track of the charges of the
particles produced. By keeping the procedure simple, we
hope to make clear the basic mechanism of particle pro-
duction in our model.

III. MONTE CARLO SIMULATION BY Ecco

We now describe our MC code, called Ecco, which
stands for eikonal cascade code.

For definiteness we consider pp collisions for which the
eikonal function Q(R) has been well determined from

elastic scattering and has the indirect parametrization
(22]

1—e ORI=Q 71¢ ~L1R* 3.1)
Using this in supplement to (2.11) and (2.12) forms the
eikonal basis of our approach. There are various issues
that we must deal with in specifying the branching pro-
cess. We now describe them separately.

A. Energy for particle production

Even at a fixed R the energy W involved in the produc-
tion of particles fluctuates from event to event around an
average that depends on R and V's. Since the proton-
inclusive cross section (p +p—p+X) as a function of
the proton momentum fraction x is known to be rather
flat [23], i.e., do/dx is roughly constant, we know that
the leading particles take away a large portion of V's.
Indeed, the constancy of do /dx implies that the mean
momentum fraction of the proton, {x),, is roughly 1.
That is after averaging over impact parameter. Hence,
we expect { W) to be roughly V's /2, and _the fluctua-
tion of W from (W) is very large. W /V's should be
large at small R, but small at large R.

The dependence of W on R should be through the
eikonal function Q(R). Since Q(R) is the overlap func-
tion that describes the opacity of the colliding hadrons,
more particles are likely to be produced at large Q(R), so
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more energy would be spent in producing those particles.
Our model at this point does not specify the determina-
tion of the momenta of the leading particles, so we can
only take W for the production of mesons to dependent
on Q(R) in some simple manner. Since (R) is an aver-
age quantity, it is actually the event-averaged W, aver-
aged over all collisions at R, that is to be related to (R).
We parametrize that relationship by the formula
A

(3.2)

where Qo=Q(R =0), and A is a free parameter to be
determined phenomenologically. The fluctuation of W
from W for any given event cannot be determined a
priori; thus, it raises a question on the meaningfulness of
conversation of energy in the branching process, when
the initial energy of hadron production for each event is
unknown. We shall return to this point later. We re-
mark here that this is another aspect of the hadronic col-
lision that is very different from e *e ~ annihilation, for
which the initial energy is exactly the total energy for
particle production in every event.

B. Cut Pomerons

In combining (2.10) and (2.11) with (2.12) in order to
calculate the multiplicity distribution P,, we improve the
model by writing

P, =f0 dR? lw,‘(R)B,‘,‘
p=

(3.3)

where B} is introduced in recognition of the interpreta-
tion for each term in the series as an independent contri-
bution from pu rescatterings in the elastic amplitude.
Consider, for example, a term in the elastic amplitude
that involves three interactions, as shown in Fig. 1(a).
Each wavy line represents an interaction, which in the
Regge language corresponds to a Pomeron exchange.
Cutting two of those Pomeron lines makes a contribution
of the u=2 term in (3.3). The uncut line contributes to
rescattering, and a sum of all uncut lines makes up the
exponential factor in (2.11). Thus we need only consider
the cut Pomerons, the exposure of which reveals the pro-
duction amplitude. B} in (3.3) then expresses the proba-
bility of producing n particles when there are u cut
Pomerons, and 7,(R) gives the weight for having u cut
Pomerons, when the scaled impact parameter is R.

The branching part of our model treats each cut Pome-
ron as a cascade of clusters. More explicitly, cutting a
Pomeron term in the elastic amplitude means summing
over production amplitudes squared, as depicted in Fig.
1(b); each production amplitude is treated as a cascade of
clusters, as shown in Fig. 1(c). Different cascades corre-
sponding to different cut Pomerons are independent of
one another except that the initial energies E; add up to
W, a constraint that is to be applied separately to every
term in the series in (3.3). That is, for the uth term in the
series we have

E;=eW, i=12,...,u, (3.4)

(c)

FIG. 1. (a) A three-Pomeron exchange contribution to the
elastic-scattering amplitude with two cut Pomerons. (b) The re-
lationship between a cut Pomeron and a sum over production
processes. (c) A production process represented by branching
subprocesses.

where e; is a real number between 0 and 1, satisfying

m
> e=1,

i=1

(3.5)

E,; is the c.m. energy of the ith cut-Pomeron term.

Since there is no theoretical prescription for the values
of e;, which is outside what Regge theory can specify, we
choose in ECCO to regard e; as a random number between
0 and 1, and to use u such numbers constrained by (3.5)
to specify E;, i =1,...,u. Since E; is determined from
W, which is the mean value averaged over all events at R,
the value of E; cannot realistically be regarded as the ini-
tial energy of a cascade of clusters for a specific collision
at R. As will become clear later, E; will be used mainly
to help determine the number of steps of the cascade.

C. First step in the cascade

In order to form a picture of the branching process, it
is helpful to start with the parton model in mind. In the
parton model quark and gluon distributions in a proton
are Q? dependent; if Q? is small, say Q ~2 GeV/c, the
distributions can be regarded as a description of the par-
ton momenta appropriate for soft-interaction considera-
tions. Indeed, Ochs [24] has observed many years ago
that the parton momentum distribution is very similar to
the inclusive pion distribution. It suggests that in soft
collisions one may regard the partons in the opposite-
going protons as having no interactions after the
confinement bags are broken, and that they hadronize lo-
cally in rapidity space. This picture is, of course, too
crude to be taken seriously. Nevertheless, the hint is that
there is no long-range interaction among the partons



45 GEOMETRICAL BRANCHING MODEL: A MONTE CARLO. .. 109

from the two incident protons, the rapidity separation
among them being mostly very large, and that very
short-range correlation in rapidity eventually leads to
hadronization.

The hint suggests a general strategy in formulating the
branching process in our model. We want branching be-
cause that is the only way we can get intermittency. We
also want the eikonal formalism because it provides the
solid foundation that will guarantee the global features to
be correct in addition to having the proper connection to
elastic scattering through unitarity. In that formalism
the branching process can be introduced only as many
cascading subprocesses acting in parallel, each having an
“initial energy”” E;. To incorporate the suggestion hinted
by the naive picture of the parton model, the first step in
the cascade must not be into two massive clusters with
opposite momenta determined by energy-momentum
conservation, since that would introduce too much long-
range correlation. As we have concluded in Sec. III A,
energy conservation is meaningless when the total energy
W for particle production is unknown from event to
event.

Recognizing that the parton distribution is an average
distribution, averaged over many events, we should not
expect our cascade products to behave the same way for
every event. Since the parton distribution has a rounded
peak at zero-momentum fraction, the mapping from
momentum fraction to rapidity yields a rapidity distribu-
tion that has a central flat plateau. The fluctuation of
parton rapidities in the central region can be substantial
from event to event so long as the sum reproduces the
plateau structure of the inclusive distribution. With all
this in mind we now prescribe the first step of the cas-
cade. Regarding E; as the mass m of the mother cluster
that partitions into two daughter clusters of masses m;
and m,, we require first that the mass distribution be

m;+m,

D(ml,mz): ’ (36)

m

while the relative magnitude of m, and m, is totally ran-
dom; y is a parameter to be determined phenomenologi-
cally. Note that no mass scale is introduced in (3.6). The
rapidities of m; and m, are +y, and —y,, where y; is a
random number between 0 and y,,, with

ymangln(\/; /mp) 3 (37)

m,, being the proton mass, and § another parameter to be
determined. The random distribution in y yields, upon
event averaging, a flat plateau structure whose width de-
pends on &.

An important part of the above prescription is that
energy-momentum conservation is not imposed. As al-
ready mentioned, W is not known, neither are the mo-
menta of the leading particles in every event. To keep
track of the energy and momentum of each cluster is
therefore pointless. In reality there may not be any clus-
ters in the sense of timelike massive states with a reason-
ably well-defined notion of mass and momentum. The
guide posts for our branching process will be intermitten-
cy, which is the phenomenology of fluctuations. We use

the language of clusters to implement our ideas about
cascading in order to obtain intermittency. Our emphasis
will be placed on where in rapidity the particles are likely
to be produced relative to one another, and subject to
that likelihood we must allow our branching system to
fluctuate in all variables that can, in principle, fluctuate
from event to event. At the end of the hadronization
process we need only make sure that energy is conserved
for the produced particles to the extent that W does not
exceed Vs —2m »- We shall calculate the distribution of
W from the produced particles in all events and verify
that { W) is roughly Vs /2, as it should be. The fluctua-
tion of W from { W) will be found to be large, also as we
expect it to be.

D. Subsequent steps in the cascade

After the first step, the clusters m,; and m, will act
themselves as mothers and separately partition into two
daughter clusters each in accordance to the mass distri-
bution (3.6). The essential difference from the first step is
in the rapidity distribution of the daughters. We assume
that in all subsequent steps the rapidity y of a daughter
relative to the rapidity of the mother satisfies a power-law
distribution

pO=poy B 0<y<y.., (3.8)
where
Y cut —arccosh , (3.9)

m;+m,

and p, is a normalization factor with 8<1 being a new
parameter. If one daughter has a positive y in the
mother’s rest frame, the other daughter has a negative y,
independently generated according to (3.8). We do not
require energy-momentum conservation at each subse-
quent step of the cascade for the same reason as we have
given for the first step. Equation (3.8) is unlike any y dis-
tribution that one usually associates with hadron produc-
tion, but p(y) does not refer to observed hadrons. We
propose this form for cluster decay mainly to avoid the
introduction of any y scale (except for the finite-size effect
associated with y ), while having short-range correla-
tion that must be operative in the course of hadroniza-
tion. For S8 positive, the two daughters can be very close
in rapidity, thereby allowing the possibility of spikes in
the final distribution, if a sequence of such close
daughters are produced in succession. Such occurrences
are rare, but then so are spike events [25]. The power law
in (3.8) constitutes the kernel of our branching process
that can give rise to self-similarity of observables under
scale transformation of resolution in rapidity. Evidently,
the dynamical mechanism of particle production is con-
structed here with hints gleaned from intermittency. Our
tests on this mechanism are to check whether it can not
only yield the correct rapidity fluctuations that are
quantified by the intermittency analysis, but also generate
the two-particle correlation distribution for the observed
hadrons.
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E. Hadronization

We terminate the cascade when the cluster mass
reaches that of a pion. This is implemented in our code
by the algorithm that so long as the cluster mass m is
greater than 2m _, we allow it to decay further into two
daughters according to (3.6) and (3.8). If m <2m, we
stop the cascade and identify the hadron as a pion, as-
signing it the mass m . This procedure does not exclude
the possibility that a detected pion can be the decay prod-
uct of a resonance, since the cluster before the last step of
branching may well be a resonance. At this stage of the
development of our code we choose the simplest pro-
cedure that can produce all the main features of the data.
Thus we are ignoring kaon production, specific reso-
nances, charge and spin, etc. All of these features will in
time be incorporated into our code in later improved ver-
sions.

F. Transverse Momentum

After the branching process terminates in hadrons we
can then ask about the values of the kinematic variables
that are observed, in particular, y, W, and transverse
momentum py. Since the simulation determines the
values of y for all produced particles in every event, we
can define a quantity that has the interpretation of longi-
tudinal energy:

W, = 3 m_coshy, ,

i=1

(3.10)

where i is summed over all n hadrons (pions) that are pro-
duced. A weak form of energy conservation is

W, <Vs—2m, (3.11)
which certainly should be satisfied. However, the trans-
verse energy can also be substantial and must also be tak-
en into account in the energy consideration.

In treating the transverse momenta of the produced
hadrons we can take advantage of an important feature of
the GBM, viz. the conjugate relationship between p, and
the overlap size based on the uncertainty principle.
Clearly, the larger R is, the smaller is the overlap region
of the two incident protons, and the larger is the fluctua-
tion in p; among the final pions produced. Since the
overlap region of two spheres with fuzzy edges has a
cumbersome geometrical dependence on the impact pa-
rameter, we use a simple Gaussian distribution to de-
scribe the overlap; the corresponding p, distribution is
then also a Gaussian with a width that depends on R,
which we parametrize as

p7

— (3.12)
2(aR)

flpr,R)=fqexp

where f, is the normalization constant and « is a param-
eter characterizing the direct relationship between the
mean pr and R mentioned above. Thus in the GBM we
have a p distribution for each R, and the observed pr
distribution involves an impact-parameter smearing.

In our code we first generate all the events without any

pr. We discard all those events that violate (3.11). It
turns out to be a very small fraction of the total number
of events, as we shall see in the next section. Then in
each collision, for which there is a definite value of R, we
use (3.12) to generate p, for all the particles produced in
the event. From the y; and pr, of the ith particle, we can

calculate
n
W= (mi+p%)/?coshy, (3.13)
i=1 '
for that event. Energy conservation now requires
W<Vs—2m, . (3.14)

A small fraction of events may violate this, although
every event satisfies (3.11) before p; is introduced. Those
events that violate (3.14) are then required to have p=0
for all particles produced. In this way we retain all
events that satisfy (3.11), and use energy conservation
(3.14) to limit the p; of particles with large W,. This
would result in an increase of do /dpy in the first p; bin
which is, however, experimentally unaccessible.

IV. RESULTS OF Ecco

There are five adjustable parameters in ECCO. The
eikonal function is an external input fixed by elastic
scattering, and is therefore not adjustable. The five pa-
rameters are A, v, §, B, and a, introduced in (3.2), (3.6),
(3.7), (3.8), and (3.12), respectively. We shall determine
them by fitting the NA22 data at Vs =22 GeV, and then
with those parameters fixed we let V's run from 10 to 65
GeV. To be able to fit a vast variety of data with just five
parameters is an indication of how good the GBM is.

The parameter A, which controls the average energy W
of particle production at R, has a strong effect on the
average multiplicity {n ). To have KNO scaling is an an-
ticipated virtue of the GBM, based on the results of pre-
vious work [1]. The number of steps of the cascade is
controlled by the parameter y, which, together with A,
strongly affects the fluctuations of the multiplicities from
the average {(n ). The degree of those fluctuations are de-
scribed by the normalized moments

C,=(n?)/(n)?, 4.1)

where

(n9)=3 n'P, . 4.2)

The shape of the single-particle rapidity distribution

dn

pl(y)=7i; 4.3)

is particularly dependent on § and B, since § influences
the width of the plateau through y_.,, and B affects the
width of the decay in each step of the cascade. Even
more sensitive to B is the two-particle distribution

pz(yl,yz):d2n /dyl dy2 , (4.4)

or more specifically the correlation function
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Cyu,y2)=p(y1,3)—p1y1)p1(y,) 4.5)

as well as higher-order correlations. We shall actually
determine 3 mainly by examining the normalized factori-
al moments [9,10]

R W (kj(k;—1)- - (k;—q +1))
q Mj=1 (kj)q

, (4.6)

where k; is the multiplicity of particles in the jth bin and
M is the total number of bins in the rapidity interval Y,
i.e.,

M=Y/§, 4.7)

8 being the bin width. The average { - - - ) in (4.6) is tak-
en over all the events for the jth bin. The F, thus ob-
tained in (4.6) are referred to as vertically analyzed fac-
torial moments, horizontally averaged.

Since we have not kept track of the charge states, n, is
taken simply to be 2n /3, where n is the total multiplicity
of produced particles. NA22 has provided the most ex-
haustive data on a wide variety of observables [26], but
unfortunately at only Vs =22 GeV. We regard those
data as our benchmark, and determine all our parameters
by fitting their data points. We let the energy depen-
dence be a prediction. Since only soft interaction is con-
sidered in this code, we vary V's only in the range 10—65
GeV now, adding hard collisions later to extend the va-
lidity of the model to the CERN SPS collider energy
range and beyond [12].

For global features in the full rapidity space, NA22[26]
lists the following values for the first four moments of the
charge-multiplicity distribution in pp collisions:

(n)=8.93+0.16 ,
C,=1.18%0.01 ,
C;=1.59+0.04 ,
C,=2.410.1 .

ECCO can fit them all with the choice of the two parame-
ters

A=0.1,
y=0.3.

(4.9a)
(4.9b)

We then let Vs vary from 10 to 65 GeV, and have calcu-
lated Cs as well. The results are shown as dashed lines in
Figs. 2 and 3. All predictions are within one standard de-
viation from the data at other energies [27]. In Fig. 3 all
points are above our predictions because the NA22
points at 22 GeV are all low compared to the results from
the other experiments. We can perform a best fit to all
the data points at all energies. The results are shown as
solid lines in Fig. 2 and 3. The corresponding values of
the parameters are

A=0.1,
y=0.2.

(4.10a)
(4.10b)

The fits are evidently very satisfactory, and are particu-

25 [ T AL BRALSLAE B
o Fermilab,Serpukhov
x ISR
I — y=02 _
20 [ y-o3 ECCO )
]
I :
5 | I B | ]
10 20 50 100 200
Vs (GeV)

FIG. 2. Energy dependence of average charge multiplicity.
Data are from Ref. [27]. The solid line is a fit of all data points
by EcCco; the dashed line is a fit of only the NA22 data at
Vs =22 GeV.

larly remarkable when one considers that only two pa-
rameters have been used in the fit.

Having achieved a good fit of the C, moments, it
would not be surprising to find that our prediction for P,
agrees perfectly with the data. In Fig. 4 we show the
KNO plot of the multiplicity distribution [19]; the solid
line is the calculated result using the parameters in (4.10).
The data are for all energies at the CERN ISR [27].

For ¢ and B we consider the data of NA22 on intermit-
tency [26]. In Fig. 5 the factorial moments F, vs 8 in the
log-log plot for ¢ =2,...,5 are shown. All of the mo-
ments are fitted by the choice

£=0.75 ,
B=0.6 .

(4.11a)
(4.11b)

The results are shown by the solid lines in Fig. 5, for
which (4.9) has been used for A and ¥, since they were

8 [ T T oo
L o Fermilab,Serpukhov
F XISR

— y=0.2
6 |- —— y-03 ECCO

]
2;cr= A= XHH= t‘

1 IIIIII[

10 20 50 100 200
Vs (GeV)

FIG. 3. Energy dependence of normalized moments C,.
Data and lines are as described in Fig. 2.
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10° E
10! 3
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& o
g 10? E
v 3
-3 _
10 — y=02 3
———- y=03 ]
‘4 I I 1111 l] 111 L l:

10

0 1 2 3
n/<n>

FIG. 4. KNO distribution. Data and lines are as described
in Fig. 2.

determined by the NA22 data also. In the simulation
6X 10* events have been used in keeping with the statis-
tics of the data. Evidently, the fits are very good. The re-
sult is stable when other runs of 6X 10* events or more
are made. The value of § is actually determined primari-
ly by the requirement that the single-particle rapidity dis-
tribution, dn /dy, has the proper shape, i.e., very nearly
flat between y ==+2, and rather steep drop beyond that
range. Figure 6 shows that distribution. No data is
shown in that figure because the ISR data [28] were given
in pseudorapidity 7, and the recent NA22 data do not in-
clude dn/dy for pp collision. However, our result for
dn/dy looks very good by comparing it with the ISR data
at large 1) and with the NA22 data [26] on {n ) at various

Yeut-
The power-law behavior of F, in Fig. 5,

F <8 % (4.12)

exhibits the self-similarity of multiplicity fluctuation,

-Ind

FIG. 5. Intermittency plot of F, vs 8. Data are from Ref.
[26]; the solid lines are from ECCO using (4.9) and (4.11).
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FIG. 6. Average rapidity distribution at 22 GeV from ECCO.

where 8 is lowered from 4 to 0.1. In our model this is
achieved by the p (y) distribution of (3.8), which describes
the daughter rapidities that peak at small y without a
scale. As far as we know, the GBM as implemented by
ECCO described here is the only dynamical model on soft
production in hadronic collisions that can yield results in
agreement with the intermittency data. The intermitten-
cy indices ¢, are shown in Fig. 7. The anomalous fractal
dimension

d,= % (4.13)

9 g —1
increases with g, as shown in Fig. 8. This is a characteris-
tic feature of the hadronic collisions, where d, increases
with g.

Since momentum conservation has not been imposed
during branching, and since the power-law rapidity dis-
tribution (3.8) for cluster decay is not familiar, it is useful
to determine the two-particle correlation function of the
produced particles, (4.5), which is far more familiar. This
is shown in Fig. 9, which represents 11X 10* events hav-
ing n =15 and 16, out of a total of 10° events. It is an ex-
clusive correlation function C,(y,y,) in that only events
with n particles are considered. When integrated over
both y; and y,, it is normalized to —n, but when y, is
fixed at O, the integration over y, yields —p,(0). Figure 9
shows the correct shape with correlation length around
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FIG. 7. The intermittency indices as a function of the order g
of the moments.
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FIG. 8. The anomalous fractal dimension d, as a function of
q.

one unit of rapidity. Since we do not yet have predictions
on charged particle spectra, we cannot compare our re-
sults quantitatively with the data on charged-particle
correlation functions [29]. There being no adjustable pa-
rameter used here, we feel that our results are qualitative-
ly satisfactory. It should be emphasized that, unlike
many models where two-particle correlation is put in by
hand with adjustable correlation length &, we calculate
C(y,,y,) from the dynamical process of branching, and
that the observed £~1 is an output from our simulation
by ECCoO.

It is worthwhile to remark that to fit the factorial mo-
ments in Fig. 5 does not necessarily imply that one must
subscribe to the view in favor of the existence of a new
physics underlying the power-law behavior. Indeed,
there are some [30] who stress that the conventional
short-range correlation is enough to fit the data on F,.
However, we believe that the challenge has been to con-
struct a dynamical model that can fit the data in Fig. S.
We have found the task difficult until (3.8) is adopted and
positive B tried. We note that p(y)<y ~%6 is a rather
broad distribution, but also has a singularity at y =0; it
represents the essence of the “new” physics that ECCO

Cn(01y2)

-2

FIG. 9. Two-particle correlation function, defined in (4.5),
with y, fixed at 0.

has uncovered.

For the p; distribution it is well known that the aver-
age transverse momenta of soft production in the ISR
range is {py)=0.35 GeV [29]. We have adjusted the pa-
rameter a in (3.12) to the value

a=0.4 GeV

and obtained the final distribution dN /dp? of the pro-
duced particles that is exponential in pr in the range
0.2<pr<1GeV,i.e,

4.14)

dN /dp2~ exp( -—pT/pTo) . (4.15)
The result is shown in Fig. 10 and compared with the
ISR data [29] for p +p — 7+ X, which have (p;)=0.35
GeV; the normalization is adjusted to fit, since the data
are for Ed’o /dp* at y,,=1.5. The solid lines in that
figure are for Vs =22 GeV, while the dotted lines are for
V's =63 GeV, for which we have repeated the calculation
with exactly the same parameters. Our dN /dp? has a
small increase at p; =0 because 15% of the events are re-
quired to have no pr in order to satisfy (3.14). Although
the effect at p; =0 is not observable, it is nevertheless an
unsatisfactory aspect of the code that we hope to remove
in an improved version later, when branching in three di-
mensions is considered. The value of a in (4.14) is physi-
cally reasonable since R varies from zero at complete
overlap to essentially 2 where 2(R) is less than 1% of
Q(0).

Finally, we can calculate the W distribution. In our
simulation initially with p; set to zero we found that al-
though energy-momentum conservation has not been ap-
plied during cascading, only 1.5% of the events have W
that violates (3.11). Those events are rejected. The re-
sults in Figs. 2—10 do not include those events. For the
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FIG. 10. Transverse-momentum distribution with data from
Ref. [29] and solid line (22 GeV) and dotted line (63 GeV) from
Ecco. The data are for y,, =1.5, so the normalizations of the
lines are adjusted to fit the data at p~=0.4 GeV/c.
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FIG. 11. Distribution of energy fraction for particle produc-
tion at 22 GeV (solid line) and 63 GeV (dashed line).

remaining 98.5% events we introduce p; in accordance
to the procedure given in Sec. III F with results described
in the preceding paragraph. Knowing y; and p; for each

particle in each event, we can calculate W according to
(3.13). For the W distribution of all events, we introduce
the scaled variable

w=W/(Vs—2m,) (4.16)
and give the normalized w distribution Q (w) in Fig. 11
for V's =22 and 63 GeV. The average fraction of energy
for particle production is (w)=0.51 for V's =22 GeV,
and 0.46 for V's =63 GeV. This is in accord with the
empirical notion that inelasticity is around § and de-
creases with energy.

We find all the results obtained to be very satisfactory.
Since every feature of multiparticle production, global as
well as local, is reproduced in our simulation, we feel that
the GBM must have captured the essence of soft-
production processes.

V. CONCLUSION

We have shown that ECCO is able to produce correctly
all the global and local features of particle production in
soft hadronic collisions in the energy range 10< Vs <65
GeV. The success is to be traced to both the geometrical
aspect of the model, which is implemented by the eikonal
formulation of hadronic collisions, and the dynamical as-
pect that is contained in the branching process. While
the eikonalism is standard and general, the branching dy-
namics for soft interaction is not. It is not fashioned after
hard collisions, nor is it purely stochastic. It could not
have been devised without the guidance of intermittency.
In that respect the large body of experimental work on
intermittency has been fully justified.

The physical picture of the production process that we
gain from this study is not a simple one, as it should not
be, since hadrons are complicated, extended objects. The
eikonal formalism orders the inelastic collision process in
a series of basic interactions; the number of important
terms in that series depends on the impact parameter R.
The smaller R is, the more overlap, and the more interac-
tions take place. Unless the experiment makes special
cuts to select the centrality of the collisions, R must be

integrated over, and therein lies an important source of
fluctuation that must not be overlooked.

After the whole collision is reduced to a series of basic
interactions, our attention can then be focused on the na-
ture of the interaction that leads to particle production.
Although we used the language of cluster cascading, the
clusters have not been treated as massive objects on mass
shells. The masses that have been given them have been
used only for the purpose of tracking the evolution of
branching. Playing the role of time in more conventional
stochastic processes, those masses act as evolution pa-
rameters and determine when the various cascading
chains stop branching. If we think in terms of partons,
we can always group partons in a certain portion of the
phase space together and call them clusters. By not re-
quiring those massive clusters to decay with energy-

momentum conservation, we are effectively allowing the
partons to be off shell, while they evolve toward hadroni-
zation.

The dynamical content of our branching process is that
in the first step the left-going and right-going partons are
uncorrelated and can essentially be anywhere in the rapi-
dity space. But after that, the clustering of partons has
no preferred scale of rapidity separation. This results in
the short-range correlation in the produced hadrons ob-
served globally. More than that, it also allows the parti-
cles to be very close in rapidity, thereby providing the
possibility of spike events, which are rare but cannot be
totally absent, if the self-similarity of rapidity fluctuation
extends down to very small bin size.

The success of ECCO should not be taken to imply that
we understand fully the real dynamics of soft production.
We have found an effective method to describe the pro-
duction process; however, to provide a more fundamental
description of the dynamics that validates the procedure
used in ECCO will require far more work yet to be done.
At least we now have a direction to aim that we know is
phenomenologically pertinent.

In addition to including jet production at higher ener-
gies, a very urgent development to pursue with what we
now have at hand is to apply ECCO to relativistic heavy-
ion collisions, where new data are abundant. We see no
basic difficulty in doing that, since the generalization of
the eikonal formalism to nuclear collisions has already
been considered [13]. If the intermittency data of heavy-
ion collisions can be reproduced by ECCO without further
adjustment, then what we have at hand is an effective tool
to detect any basic change in the nuclear medium that
may occur in the future, when either the nuclear size or
the energy is increased. For if the formation of quark-
gluon plasma leads to a different intermittency pattern
[31], then EccCO should fail to fit the data in the new re-
gime, and that failure would be a signal of new physics.
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