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Compact and noncompact gauge theories on a lattice
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A noncompact formulation of gauge theories on the lattice recently proposed makes use of auxiliary
fields. We show that in such a formulation the representation of the gauge group in the case of SU(2)
is completely reducible, one of the irreducible multiplets containing the Yang-Mills fields plus one aux-
iliary field. Elimination of this field by a gauge-invariant constraint leads to Wilson s formulation.

The only consistent regularization of gauge theories
outside the perturbative domain is their definition on the
lattice. In Wilson's formulation [1],however, gauge fields
have to be identified with coordinates on a compact group
manifold. This gives rise to a number of problems if one
wants to go beyond the numerical calculation on a lattice
in order to understand the scaling behavior of the theory
at short distance. From the point of view of Wilson regu-
larization a decompactification transition is expected
which should induce a regime of locally small field fluc-
tuations consistent with asymptotic freedom. What
remains, however, to be understood is the connection be-
tween decompactification and settlement of asymptotic
freedom.

A related important issue concerns confinement. In the
Wilson model its mechanism is quite simple at strong cou-
pling where it is strictly connected with the compact na-
ture of the gauge variables, while after decompactification
it has not yet been understood.

A good starting point to try to answer these questions
would be to use a regularization of gauge theories which
would preserve the advantages of lattice regularization in-
volving, however, noncompact fields, thus putting decom-
pactification out of the game.

A diff'erent class of problems with the Wilson model
comes from the fact that the action of a gauge transfor-
mation is highly nonlinear even in a neighborhood of the
identity, resulting in a very complicated structure of the
Faddeev-Popov terms which have to be introduced togeth-
er with a gauge fixing to define a calculation procedure
suitable for a perturbative treatment [2].

These difficulties could be avoided with an alternative
regularization in which the action of gauge transforma-
tions is linear, which again requires noncompact gauge
fields.

A noncompact formulation of gauge theories on a lat-
tice has been proposed where exact gauge invariance is
obtained by introducing auxiliary fields [3]. The whole set
of gauge plus auxiliary fields lives in the algebra of
GL(M, c), where M is the dimension of the (matrix) rep-
resentation. Suitable gauge-invariant terms can be added
to the action in order to ensure that in the formal continu-

um limit the auxiliary fields vanish, with the exception of
an Abelian real field.

No attention was paid, formulating the new regulariza-
tion, to the reducibility of the representation of the gauge
group. In this note we show that for the gauge group
SU(2) the representation breaks into two irreducible rep-
resentations, one of which contains all the Yang-Mills
fields plus one auxiliary field which can be made to vanish
in the continuum limit. In this way the realization of the
gauge group is linear at finite lattice spacing. But the
auxiliary field can also be eliminated by a gauge-invariant
constraint. Then the realization of the gauge group be-
comes nonlinear and one obtains Wilson's formulation.

To fix the notation and for the convenience of the
reader let us sketch briefly the new lattice regularization.
It is based on a discretized form of the continuum gauge
transformations:

d J'= [f(x+p)——f(x)] .
1

a
(2)

The coupling constant has been set equal to unity.
In order that (1) transform into other objects of the

same type, A„must be of the form

where the factor I/v'M has been introduced for conveni-
ence, T are the generators of the gauge group, and I is
the identity matrix. We use the normalization

[T„Tb]=if,b, T, ,
(4)

[T~, Tb] =(2/M)b, b+dgb~T, .

From the transformation of the components

A„'(x) = —.g(x)a„g t(x) +g(x)A„(x)g t(x+p) .
1

l

In the above equation a is the lattice spacing, x a vector
with integral components, p a vector with components
p, =8„„g(x)an element of the group U(N), and A„ the
discrete derivative
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A„', =A„,+Apnea f—,b, ApbO, —(a/iM )Wphpd, —(a/2)day„Bpbhp6, —(al2)f,b, A„bhpO, a—Bp,hpdo,

W„' =W„+ (a/iM )A„.~„e.+av„~„~,,

B„',=B„, fa—b, Bpb0, + (a/iM ) Vphpd, + (a/2)d, b, Apbhpd, —(al2)fab, Bpbhp6, +aApahp80,

V„' =V„—(a/iM )B„.~„O.+JM~„~,—aW„~„~, ,

(s)

F„„(x)= —.[D„{x)D,{x+p) —D„(x)D„{x+v) l .1

1

It is antisymmetric and transforms according to

F„,(x) g(x)Fp, (x)g t(x+ p+ v) .

The pure Yang-Mills Lagrangian density can therefore be
written

XvM = —,
' PTrF„,F„,. {io)

It is easy to check that XvM becomes the Yang-Mills
Lagrangian density in the continuum limit, so that in this
limit it is also parity invariant. However, at finite lattice
spacing it is not. Denoting by I„ the operator which per-
forms the inversion with respect to the p axis (x~ i„x),
we have

Ip Dp(x)Ip =Dp (ipx p),
I„'D,(x)I„=D,(ipx) for pWv.

XvM is not invariant under the above transformations,
but it can be made invariant by the addition of suitable
terms that will be discussed later.

The gauge-invariant term which makes all the auxiliary
fields but V„vanish is

' 2

Trg Dpt(x)Dp(x) — 2, (12)
2A p a

where k is a parameter with the dimension of a length. In
the formal limit a ~ 0 it provides a term

~B[W„(x)]~B[B„,(x)] (i 3)
X,p a

in the measure of the partition function. Notice that the

we see that for a 0 the A„, transform like Yang-Mills
fields so that the B„„V„,and 8'„are auxiliary fields.

The basic ingredient to construct the Lagrangian is the
covariant derivative

D„=(i/a) I+i~„,
which under (1) transforms according to

D„(x)=g(x)D„(x)g t(x+ p) .

The strength can be defined in analogy with the continu-

I

surviving field V„cannot be required to be zero by gauge
fixing because the corresponding Faddeev-Popov deter-
minant ~ould vanish for 8„, 0.

Finally, among other terms there is
r-—m QTr Dpt(x)Dp(x)- (i4)

which has the form of a mass term, and has, in fact, led to
the speculation [3] that the present regularization might
provide a way to smuggle a mass for the vector bosons
without making recourse to the Higgs mechanism. At the
end of the paper we will show that actually this is not pos-
sible.

The gauge transformations within each multiplet are
essentially homogeneous. They become exactly homo-
geneous introducing the field

Apa Apa+ 1 Wp lpga jab Ab 1+—dp ga,

W„' W„+ A„,g„g, ,

Bpa Bpa+ Vp+pga f b Bpb 1+ Ap g

The explicit expression of XvM for the multiplet
(A„„W„)is

(is)

We must emphasize, however, that the homogeneity of
the transformations must be spontaneously broken ac-
cording to the above equation, in order that the covariant
derivative contain an ordinary derivative and hence the
theory be a gauge theory. Such a breaking does occur in
the presence of Xp.

The case of U(2) is different from the others because of
the reality of the SU(2) spinor representation which
makes the symmetric constants d,b, vanish. If we restrict
ourselves to SU(2), by setting 60=0 in Eqs. (S), we see
that the multiplets (A„„W„)and (B„„V„)do not mix
with each other and are irreducible representations:

+YM p +pW (x) A„Wp(x)+ [A„b(x)A„b(x+p) —W„(x)W„(x+p) —(p v)]
1

4

+ ~.A-(x) —~.A,.(x) — [~.b,A,b{x)A.,(x+p)+W„(x)A„.(x+p)1

+ W.(x+p)A„, (x) —(p v)]
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To have a renormalizable Lagrangian we must add all
the other gauge-invariant terms of dimension not greater
than 4. These terms are polynomials in the composite
gauge-invariant field t„:

is a unitary matrix which can be identified with Wilson's
link variable. All the terms in the action now vanish with
the exception of XvM, which becomes Wilson's Lagrang-
ian

r„(x)1=D„'(x)D„(x)—,=D„(x)D„'(x)—1 1

a a

—A +—W — W I1 2 I 2 J2
2 2 Q

(is)

XvM=X„ for tp=O.

The partition function can be written

Z = QdW„(x) QdA„, (x)b[t„( )]

(29)

where

Ap =+A„, .
a

Here we denote all these polynomials by P of which we
only use the normalization

(20)P =0 for tp =0.
The expression of P will be given in a separate paper

where the perturbative features of the present regulariza-
tion are analyzed. 'P also contains the terms necessary to
make XvM parity invariant.

Finally, the gauge-field Lagrangian density is

Xo =XvM+Xc+P+X (2i)
and the partition function can be written

Z =~ QdWp(x) QdAp, (x) exp QXo(A—p, Wp)
X,p a

(22)
This concludes the discussion of the irreducible repre-

sentation when the auxiliary field Wp is retained.
One can obtain Wilson's formation as a special case if

Wp is eliminated altogether by imposing the constraint

Z „~dA„( )[1—
—,
' 'A„'( )l

x,m, a

xgexp QJ vM(—A„,W„" )
CFp

(3i)

In the Jacobian arising from the integration we recog-
nize the invariant measure on SU(2), so we can rewrite
Z~ in the standard form

Z~ a. QdUp(x) exp
x,p

(32)

We conclude the paper by showing that even with the
present regularization pure gauge theories are incompati-
ble with massive vector bosons. To this end we derive the
Ward identities for the effective action I, under the hy-
pothesis that it is stationary for Ap, =0, and Wp = W:

=0 for A„,(x) =0, W„(x) =Wp.
er ar

A„, x Wpx
(33)

x exp —g XvM(A„, W„)
'

. (30)

Integrating over 8'p, we get

tp =0,
whose solutions are

with

W„"= —~ [i —
—,
' a 'A'(x) l '",

ap=+ 1,

(23) Because of gauge invariance,

ar=+SC„'(x) +gaA„.(x)

=0

where

(34)

(2s)A2(2ja2
The constraint (23) has the effect of compactifying the

gauge field. As usual after elimination of auxiliary fields
the representation becomes nonlinear:

C„' =42ja —(Wp —W) .

By the definition

t)r d r+ ar
8Ap(x) '

BAp. (x) 'T

the above equation can be rewritten

(3s)

(36)

fabcApb&c (a j2)fabcAp~~p+c ~

The covariant derivative becomes

1Dp p s

where

Up =op(1 ——,
' a A„) '~ I+iaAp

(26)

(2s)
I

8'I =Trg J2aA„(x)h—p8(x)
p, x C„x

+2bAp(x) A„x
Integrating by parts, we get

(37)

8I =QTr8(x) ~ J2ah„~ A„(x) + [W —Cp'(x)]
p, x |ICp x BAp x

er
i Ap(x p)y ( )

I—i A„(x), ~ =0,A„x (3s)
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) being the left derivative

'f(x) =—[f(x)—f(x —p)] . (39)

Because of the arbitrariness of 8(x) the above equation implies the vanishing of the quantity in curly brackets at each
point x. Evaluating the derivative with respect to A, (y) of such a quantity at A„=O, W„=W, we get

g[W —C„'(x)] I =O for a„=O, C„'=
a (40)

As already noticed we must exclude the possibility W= J2/a, for which the covariant derivative would no longer con-
tain an ordinary derivative. It then follows that there can be no effective-mass term in the effective action.
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