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We prove that in extended Sckwarzschild spacetime there exists a family of Cauchy surfaces which

come arbitrarily close to the black-hole singularity at r =0 but are such that there do not exist any

trapped surfaces lying within the past of any of these Cauchy surfaces. We argue that, in any spheri-

caily symmetric spacetime describing gravitational collapse to a Schwarzschild black hole, it should be
possible to choose a spaceiike slicing by Cauchy surfaces which terminates when a singularity (outside
the matter) is reached, such that the region of the spacetime covered by the slicing contains no outer
trapped surfaces. Thus, an important feature of the numerical collapse examples of Shapiro and Teu-
kolsky, cited by them as evidence against cosmic censorship, does not appear to be qualitatively
different from features which occur (for an appropriate choice of slicing) in the standard examples of
collapse to a black hole.

Recently, Shapiro and Teukolsky [1,2] have reported
results of numerical simulations involving the gravitation-
al collapse of a prolate gas spheroid in general relativity.
They numerically evolved the Einstein-Vlasov equations
using maximal (i.e., K =0, where K denotes the trace of
extrinsic curvature) slices until a singularity was reached.
In some of their models, this singularity appeared in the
vacuum region just outside the "tips" of the spindlelike
configuration of gas. They then searched for the presence
of an outer marginally trapped surface on their slices and
found that none occurred, thus showing that no outer
trapped surfaces lie within any of their time slices. As
they noted, no general theorems require the presence of
trapped surfaces in the collapse to a black hole. (The
event horizon of the black hole must "settle down" to an
outer marginally trapped surface at late times, but will
normally have a positive expansion at any finite time. )
Nevertheless, the usual physical arguments concerning
why black holes rather than naked singularities should be
formed by collapse strongly suggests that outer trapped
surfaces always should accompany black-hole formation.
Thus, Shapiro and Teukolsky concluded that their exam-
ples provided strong evidence that cosmic censorship can

be violated, i.e., that in their examples the singularity
which forms is "naked. "

The purpose of this paper is to point out that, in fact,
phenomena qualitatively very similar to those of their ex-
amples should occur for appropriately chosen (highly non-
spherical) slicings of spacetimes describing standard ex-
amples of spherical gravitational collapse of a body to a
Schwarzschild black hole. Hence, it does not appear that
the phenomena they find should be viewed as evidence
against cosmic censorship. In order to determine whether
a black hole or naked singularity occurs in the examples of
Shapiro and Teukolsky, it will be necessary to continue
the evolution of their spacetimes considerably further into
the future.

To explain how a choice of slicing of a spherical-
collapse spacetime can be made so as to produce features
simillar to the Shapiro-Teukolsky examples, we shall first
consider the pure vacuum, extended Schwarzschild (i.e.,
Kruskal) spacetime. We shall prove that one can choose
Cauchy surfaces for a Schwarzschild spacetime which
come arbitrarily close to hitting the black-hole singularity
at r =0 such that no trapped surfaces can be found in the
past of any of these Cauchy surfaces. The modifications
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From Eq. (1), we see that if an observer at the north pole
(0=0) of a two-sphere inside the black hole at "time" r
emits a light ray, the total change in the angular coordi-
nate of the light ray before it is absorbed by the singulari-
ty at r =0 is

h, 8= dr
[P r /L +r(2rtt —r)]'

(2mr —r ) 'i

=2arcsinvr/2m .

Thus, an observer at radius r & 2m and 6=0 cannot send
a signal to any event whatsoever in the spacetime which is
located at an angular coordinate greater than

Oo(r) =2arcsindr/2m .

Note that Oo(r) &x for all r &2m. Thus, an observer
who enters the black hole at the north pole (0=0) cannot
causally communicate with any observer who falls into the
black hole along the south pole.

The basic idea of our construction may now be ex-
plained. The above calculation shows that the north pole
of any sphere within the black hole is spacelike related to
the south pole of any other two-sphere within the black
hole. Hence, it should be possible to choose a spacelike
Cauchy surface 8' of extended Schwarzschild spacetime,
which interpolates between trajectories of the north and
south poles similar to those illustrated in Fig. 1. The
causal past J (C ) of such a Cauchy surface would then
contain no "complete two-sphere" (i.e., a two-sphere
which is homotopically nontrivial) within the black hole.

needed to obtain similar results for spherical-collapse
spacetimes then will be described at the end of this paper.

The key fact upon which our construction is based is
that the Schwarzschild singularity at r =0 possesses "an-
gular horizons" of much the same nature as the well-
studied "cosmological horizons" occurring in Robertson-
Walker models. Just as two observers emerging from the
"big-bang" singularity cannot attain causal contact until
a finite time after the big bang, even though a =0 at the
big bang so that they start out "zero distance" apart, two
observers radially falling into a Schwarzschild black hole
from different angles will lose causal contact a finite time
before reaching the singularity, even though r =0 at the
singularity. The angular horizons are easily computed by
integrating the "orbit equation"

I

[F. 'r4/I '+r(2m —«)] ' '
for a null geodesic in Schwarzschild spacetime [see Eq.
(6.3.35) of [3]]. This equation is commonly used to cal-
culate the bending of light rays outside the black hole.
However, it also is valid inside the black hole, where r
plays the natural role of a time coordinate:

rth pole

pote"

FIG. 1. A spacelike hypersurface in extended Schwarzschild
spacetirne, determined by the equation F(r, t, B) =0. Depicted
are the trajectories of the north and south poles, i.e., the curves
determined by F(r, t,0) 0 and F(r, t, x) =0. (The trajectories
at intermediate angles interpolate between these two. ) The
north pole comes close to the black-hole singularity, but the
south pole remains outside the black hole.

Hence J (C ) would be an excellent candidate for a suit-
able portion of extended Schwarzschild spacetime which
comes arbitrarily close to the singularity and yet contains
no trapped surfaces.

We now shall establish that in extended Schwarzschild
spacetime, Cauchy surfaces of this sort do indeed exist.
Specifically, we prove the following theorem.

Theorem. Given s & 0, there exists a Cauchy surface C'

of extended Schwarzschild spacetime having the proper-
ties that (i) there exists a point x E C which lies inside the
black hole at coordinate radius r ~ a and (ii) J (C ) con-
tains no trapped surfaces.

Proof. To begin the proof of this theorem, let y be any
future-directed timelike curve along which 8=0, such
that y terminates at the singularity at r=0. (In other
words, y is the world line of an observer who enters the
black hole at the north pole and undergoes no angular
motion as he falls into the black-hole singularity. ) Consid-
er the chronological past of y, denoted I (y). [I (y)
defines a terminal indecomposable past set (TIP), i.e., a
point of the causal boundary of Schwarzschild spacetime;
see, e.g., [4].] We can characterize I (y) most usefully
by specifying the portion of each two-sphere in a Kruskal
diagram which lies in I (y). This is done in Fig. 2. Note
that for any r & 2m the maximum value of 0 over all two-
spheres on the hypersurface Z„consisting of all events

FIG. 2. A Kruskal diagram, with the lines of constant 0
showing the portion of each two-sphere which lies in I (y).
[Below the line 8 =n, the entire two-sphere lies in I (y).]
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As Eq. (7) shows, the Z„hypersurfaces are contracting in
the 8 and p directions but expanding in the t direction as
one moves "forward in time, " i.e., as r decreases. Hence,
insofar as the first term in Eq. (6) is concerned, the most
diScult place on T to maintain positive convergence is a
point where the surface is tangent to the (I)/8t) direction.
This suggests that we focus attention on a neighborhood
of the point p E T at which the angular coordinate 0 at-
tains its maximum value, 0 „. „. Now, in the neighborhood
of p, the surface T on Z„can be described locally by the
equation 8=f(t,p). In terms of f, the convergence p at p
is given from Eqs. (6) and (7) by

m/r I—p= cotH+ r 1)f+ I |)+
r t)t r sin 8 t)p

Since 8 is maximized at p, we have I) f/jt ~ 0,
8 f/8p ~ 0, and, hence, at p,

m/r —
1

p ~ cotmax

Furthermore, since T lies in I (y), we have 8,. „&Hp(r),
where Hp is given by Eq. (4). Remarkably, we obtain

coteo m/r —I

(2mr —r )'
and, hence, at p G T we find that

p&Q,

with radial coordinate r is given by Eq. (4). In Fig. 3, we
also show the intersection of I (y) with the time slice Z„
with r =m.

The proof of the theorem will be based upon the fact
that I (y) contains no outer trapped surfaces lying
within r ~ 2m. To demonstrate this, we first show that for
any r &2m, I (y) contains no outer trapped surfaces
which lie on the hypersurface Z, . To prove this, suppose
that TCZ, AI (y) were outer trapped; i.e., we suppose
that T is a two-dimensional, compact (without boundary)
surface lying within Z, such that the convergence p of the
outgoing null geodesics orthogonal to T is everywhere pos-
itive, p) 0. Now, the outgoing null normal k' can be
written as

k' =n'+ s', (5)
where n' is the unit (timelike) normal to Z, and s' is the
(spacelike) outgoing unit normal to T in Z„. Hence, we
have

p = qV.k—b = q'(V. nb+—V.s, ) = q "K.„—p. —

(6)
Here q h denotes the induced metric on T, I' denotes the
trace of the extrinsic curvature of T in Z„and K,b denotes
the extrinsic curvature of X, in Schwarzschild spacetime,
which is easily computed to be

r ' I/2 r

FIG. 3. The hypersurface r m, which has the topology (and
geometry) of 5 &IR. (The p coordinate is suppressed. ) The
shaded region sho~s the portion of this hypersurface lying in
I (y).

-

which shows that T cannot be outer trapped, as we desired
to show.

To prove that no trapped surfaces exist in I (y) we as-
sume that T'r-I (y) is trapped. We note first that by a
standard theorem (see, e.g. , [3,4]) T' must be entirely
contained within the black hole (r ~ 2m), so we may re-
strict attention to that region of extended Schwarzschild
spacetime. We let p'E T' be the point which maximizes
the function g(r, H, &) =8+Hp(r) on T', where Hp is
defined by Eq. (4). In a neighborhood of p', consider the
congruence of the outgoing null geodesics normal to T'.
Let 8 & 0 and consider the intersection of this congruence
with the hypersurface Z„-s, where r denotes the radial
coordinate of p'. (Thus Z„—s is an r =const hypersurface
which lies "above" p'. ) Let qb denote the intersection
point of the null geodesic emanating from p' with X,—~.
Then, for 8 suSciently small, the maximum of the 0 coor-
dinate of the intersection of the outgoing null congruence
with Z„—s will be achieved at qs. Hence, Eq. (9) holds for
the convergence of the outgoing null congruence at q~.
However, the Raychaudhuri equation (see, e.g. , [3]) im-
plies that p is nondecreasing along each null geodesic.
Hence, we obtain

p p(,) m/(r —8) —
1

[2m (r —8) —(r —b) ] '

In the limit 8 0, we have

8(qb) —8(p') & Hp(r) .

Thus, we obtain

p(p') &0,

cotH(qs)
r

(12)

(13)

giving the desired conclusion that T' is not outer trapped
and, hence, not trapped.

Now let M' denote the union of I (y) with the region
of extended Schwarzschild spacetime which lies outside
the black hole. Then clearly M' contains no trapped sur-
faces. Furthermore, if we view M' as a spacetime in its
own right, it is globally hyperbolic. [Proof: We have
M'=I (yUB), where 8 denotes the boundary of the
black-hole region of Schwarzschild spacetime. However,
any region of a globally hyperbolic spacetime which can
be expressed as the chronological past of any subset of the
spacetime is itself globally hyperbolic; see, lemma 2. 1 of
[5] for a proof. ] Hence, given any x 6 M', there exists a
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Cauchy surface 8 for M' passing through x. However,
any such C also must be a Cauchy surface for the entire
Schwarzschild spacetime M. (Proof: lf not, there would
exist a timelike curve which is past and future inextendi-
ble in M and lies entirely within M —M'. However,
M —M' is a subset of the black-hole region, and there
does not exist any past inextendible timelike curve con-
tained in the black-hole region of extended Schwarzschild
spacetime. ) Finally, the past of C in M is contained in M'
and, hence, contains no trapped surfaces. Thus, given
s&0, we choose x E M' to lie within the black hole at
coordinate radius r ~ e. Then, any Cauchy surface C for
M —M' which passes through x satisfies the two proper-
ties claimed in the theorem. f3

Although the above proof shows that no outer trapped
or outer marginally trapped surfaces exist in I (y)
within the black hole (r ~ 2m), it might appear from Eqs.
(9) and (10) that the causal past of y, J (y), could con-
tain a marginally outer trapped surface on any Z„hyper-
surface with r &2m. However, this is not the case be-
cause if we choose a surface with 8 „. „=8o, the terms in

Eq. (8) involving the second derivatives of f will make a
strictly negative contribution to p, so again we have p & 0
at the point p where 8=8 .„„. Nevertheless, J (y) does
contain one marginally trapped surface: the bifurcation
two-sphere of the event horizon, at r =2m.

Now, let S be any spacelike slice of extended
Schwarzschild spacetime whose past includes y; i.e., S in-
tersects the black-hole singularity at the TIP defined by y.
Since I (S) must include an open neighborhood of the
bifurcation two-sphere, it follows that I (S) will contain
trapped surfaces. However, by choosing S to lie very close
to the boundary I (y) of the past of y, there should be no
difficulty in ensuring that all of the outer trapped surfaces

in I (S) within the black hole must enter a small neigh-
borhood of the bifurcation two-sphere.

Consider, now, a spacetime corresponding to the spheri-
cal gravitational collapse of a body to a Schwarzschild
black hole. Then the bifurcation two-sphere of extended
Schwarzschild spacetime will be "covered up" by the col-
lapsing matter. In such a spacetime, let y be a timelike
curve which enters the black-hole singularity in the vacu-
um region outside the collapsing matter. Then, by choos-
ing a spacelike slice S, which lies close to I (y) while in-
side the black hole (but becomes asymptotically fiat at
infinity), there should be no difficulty in ensuring that
I (S) contains no outer trapped surfaces. Thus, we be-
lieve that in any spacetime describing spherical collapse to
a Schwarzschild black hole, one can find a portion of the
spacetime, namely, I (S), which has all the qualitative
features of the portions of the spacetimes obtained numer-
ically by Shapiro and Teukolsky.

Of course, the spacetimes constructed by Shapiro and
Teukolsky are highly nonspherical, and undoubtedly
many details regarding the causal structure of their space-
times near the singularity will diff'er from the spherical
case. Furthermore, there are additional reasons for
believing that a black hole might not form in their exam-
ples, specifically, the similarity of their spacetimes to that
of a collapsing infinite cylinder. However, our analysis in-
dicates that the absence of outer trapped surfaces in the
portions of the spacetimes which they construct is entirely
consistent with the formation of a black hole.

This research was supported in part by National Sci-
ence Foundation Grant No. PHY 89-18388 to the Univer-
sity of Chicago.

[I]S. L. Shapiro and S. A. Teukolsky, Phys. Rev. Lett. 66,
994 (1991).

[2] S. L. Shapiro and S. A. Teukolsky, Am. Sci. 79, 330
(1991).

[3] R. M. Wald, General Relativity (University of Chicago

Press, Chicago, 1984).
[4] S. W. Hawking and G. F. R. Ellis, The Large Scale

Structure of Spacetime (Cambridge Univ. Press, Cam-
bridge, 1973).

[5] B. S. Kay and R. M. Wald, Phys. Rep. 207, 49 (1991).


