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Parity anomaly in three dimensions via fermion-number fractionalization in two dimensions
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A new approach, peculiar in its simplicity, to the parity anomaly of relativistic fermions coupled to a
static external gauge field, in 2+1 dimensions, clarifies the relationship to the fermion number frac-
tionalization in 1+1 dimensions. From this correspondence we get the parity-anomaly behavior at
finite temperature.

I. INTRODUCTION

The parity anomaly in (2+1)-dimensional quantum
electrodynamics [1] means that from the theory defined
by

X = ttt(i& m) ilt—

it follows that the fermion current has a vacuum expecta-
tion value

2

(J")= e""~F,p+0(m ')

p~ (xo) &0 and p2(xo) =0. The first step of the
GW method is the computation of (J"(xo))
=(0(tent(xo)y"tlt(xo) ~0) by means of an expansion in gra-
dients, where one considers that the fields p~ and pq were
introduced adiabatically in the fermion system. Then,
looking at the value of &J"(xo)&, we put it in a form which
is chirally symmetric, that is, invariant when pi
and p2 pi. The final result is

(4)

which shows the breaking of parity symmetry.
The interest in this result increased when some relation-

ship with the condensed-matter physics of two-dimen-
sional systems was suggested [2], the quantum Hall effect
being a particular example. The usual derivation of (2) is
based on an accurate analysis of the fermion determinant.

If model (1) is studied at finite temperature, (2) can be
obtained when P ee, that is, at the low-temperature
limit. Finite-temperature effects have been studied [3] by
general methods. However, the results in the literature
were obtained only at the low-temperature limit [4].

There is, nevertheless (as we will show), a strong rela-
tionship between this anomaly and the fermion number
fractionalization in 1+1 dimensions, which gives us a
straightforward way to compute the parity anomaly at
finite temperature. Our approach consists in the transfor-
mation of (1), at finite temperature, into a model made up
of an infinity of uncoupled fermions in 1+1 dimensions.
We, then, recognize (J") as a sum of currents defined in
1+1 dimensions. These currents, on the other hand, can
be obtained using the method of Goldstone and Wilczek
[5] (GW).

In the following we will review briefly the GW method
and, then, show our approach to the parity anomaly.

III. PARITY ANOMALY AT FINITE TEMPERATURE

Let us study (1) at finite temperature. In order to per-
form a more complete analysis, we add to (1) a chemical-
potential term, ugly y. The partition function (in Eu-
clidean space) [7] is given by

Z = Dilt Dtlt exp( —S[P, ttt] ),
where

~p
S[ttt, p] =„dt d x ly(B' —m —uy )ty

and

yo + yl + y2 —leypgp0 tl [ t) 2 tl . p

ax' tlx'

p=p y

(5)

(6)

(7)

y =os, y' =o~, y =a2 (Pauli matrices) . (9)

tlt(x, t) =g e'""' l(it)x, (10)

Because of the antiperiodic condition for fermions, we can
express the fields y and y as

II. THE GW METHOD itt(x, t) =pe '""'tlr, (x),

Some models in field theory may exhibit fractional
charge [4-6]. The GW method is a general way to obtain,
using perturbation theory, the fermionic current. Let us
consider, following GW, the Lagrangian

where co„=(2n+ 1 )tt/P, n =0, ~ 1, ~ 2, . . . .
Substituting (10) and (11) in (5) and integrating over

t, we get

X =i Vt&ttt+ itt(q )+is py') tlt (3) Z =„+Dy„Dtl „exp( —Sl[V „],[Il „]]), (12)

defined in 1+1 dimensions. Let xo be a point such that where

~4 R2950 1991 The American Physical Society



~

~ ri ~
~~ y g[ ~ &ir lir ~ ~, ~ ri

PARITY ANOMALY IN THREE DIMENSIONS VIA FERMION-. . . R2951

S[{iir„j,{y„j]=pg d2x[iir„(F m—)iver„—ieA„iir, y"iir, +(iso, u)iir. y yn]
n 4

=Pg d2x[@„(V'—m) y„—ieA; i7i„y'iir„—ieA piir, y y„+(ito„—u) iir„y iir, l .
n 4

(14)

yl 0

2 ]

y =o.3= —io.]o.2= —iy'y —ia a'—= —ia

and also

ao. x] yo

A2 0], X2

(15a)

(I Sb)

(ISc)

(16a)

(16b)

In the above expression, V'= y'8/Bx '+ y t)/Bx .
Since (y') =(y ) =1, we may consider (14) as the

Euclidean action of a theory which contains an infinity of
fermions in 1+1 dimensions. To make this more explicit,
let us, then, change our notation:

I

The corresponding theory, in Minkowski space, is given by

S=Pg d y {i7i„i&iir„—i7i„[m+i (eA p
—iu —to„)a5] iir„j .

n 4

(18)
At this point, we stress the similarity between action (18)
and the one obtained from the Lagrangian (3). The
diII'erence is that in (18) there is a covariant derivative.
However, this would contribute with terms proportional to
a„ to the current (4), which must be absent due to the
gauge invariance. For a while we neglect the problems as-
sociated with the chemical potential, that is, we use (4) to
get

(j")—=pg(y„a" y„)

S=PQ d y[y, (&E —m)y„eApfr„a y—„

where

+ (i u+ ro„)iir„a'iir„],

LIE =a p+a', ie(a ap+—a'a~) .p ~I I

gyp ay '

The identification of (14) with a system of fermions now
becomes clear. Using the above conventions, we have 2' n m'+(eAp iu —co—„)'

The e"'8,A added in (20) should also, in principle, be
added to (4), as it is compatible with current conservation.
A depends on the fields. Yet, this is a term of order m
that, as we will see, depends on P as P', 0 ~ a ~ I, when

P ~. The field A is assumed well behaved, that is,
A(x) 0 when x" +' ~, and does not contribute to the
fermion number. The sum in (20) may be performed ex-.
actly [8]:

n m +(eAp —iu —ro„)
{tan[ —,

' eApP+ 2 iP([m[ —u)] —tan[ 2 eApP —
2 iP([m[+u)]j .

4l m
(21)

The above quantity is, in general, not real. This follows
from the use of result (4), whenever p2, in (3), has a
nonzero imaginary part. This will occur for u&0 and
ApAO. The result is real for u =0, for any Ap, and for
Ho=0, for any u. In the remaining cases, we may simply
take the real part of (21) (since (J") has to be real) and
rewrite (4) as

=g e(rir„y" y„,&exp[tt(to„, —ro„)] .
n, r~r

Since (J")does not depend on t, its value is given by

(22)

Let us now consider the true current in the (2+1)-
dimensional gauge theory. We have

(I")=e&yry" iir&

(J")=(2x) I v'a t) v'A +c.c.
2 p 2

(1")=eg(ii7„y"y„) .
n

Now, using (20) and (21), we obtain

(23)

(J') =eg(y„y'y„) =eg(iir„a itr„) =—(j )

2

(82Ap)1m{tan[ —,
' eApP+ & iP((m (

—u)] —tan[ 2 eApP ——,
'

iP(~m )+u)]j+—82A
ml 8~ (24a)

~here Im denotes the imaginary part, and also

(J'& =eg(y„y'y„& =eg(iver„a'y„) =—&j'&

2

[ml 8~
(B~Ap)1m{tan[ —. eApP+ —,

' iP(fmf —u)] —tan[ —,
'

eApP ——,
' iP(fmf+u)]j ——8~A. (24b)
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To compute &J & we use the fact that, according to (18),

(J &
= —— -— a"(x')(j (x')&d'x'i 81nZ e b

P bAp P BA

Considering now (25), (24a), and (24b), we see that
r

(J') -— a"(x')
(

e„,[r3'Ap(x')]F(Ap(x'))+e„, IJ"A(x') d'x'
P bApx 4 8tr m

(25)

(26)

where

F(Ap(x')) 1m[tan[2 ehpP+ 2 iP(~m( —u)]
—tan[-,' eapP ——,

' iP(~m~+u)]]

I

eral case of fields A„depending on time, we will have

2

(J"&= ' ""F„+O(m '),
(mf 8tr

(29)

2' (a,~, —a,~, )+O(m-'),
fmf 4n

(J') = t)2Ap+O(m '),
fmf 4~

2' e,~p+O(m-').
/mf 4tr

(28a)

(281 )

(28c)

However, when P~ ~ Lorentz invariance is restored,
which allows us, from (28), to say that, in the more gen-

and the indices p, v, above, need to be interpreted with

care, to avoid confusion.
From (26) we get, using the original notation for the

coordinates,
2

(J'& = (t),w, —t),w, )
)m) 8tr

X Im j tan [ 2 eApP+ —,
' iP([m [

—u )]
—tan[-,' eApP ——,

' iP(~m~+u)]]+O(m ) .

(27)

Let us examine more carefully the results (24a), (24b),
and (27). Studying the case u =0, we find that when

P ~ the currents will be expressed as

which is the well-known result.
We, now, come back to the discussion of the depen-

dence of A with P. The terms O(m ') in (28) are, as we
can easily see, dependent on A/P. Assuming, therefore,
that (J") is well defined for all values of P, we see that A

behaves like P, 0 ~ a ~ 1, when P

IV. CONCLUSIONS

The (2+1)-dimensional gauge-field theory was studied
as a theory of an infinity of fermions in 1+1 dimensions.
We derived the parity anomaly at finite temperature in

the case of static gauge fields. We note that the method

employed here, to pass from 2+ 1 to 1+ 1 dimensions,

may be useful to study other (2+ 1)-dimensional systems,
once there is a great amount of information on (1+1)-
dimensional models.
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