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The energy loss dE/dx for a heavy quark propagating through a quark-gluon plasma is calculated to
leading order in the QCD coupling constant. Simple formulas for dE/dx are obtained in the regions
E«Mg/T and E»Mg/T, where Mg is the mass of the heavy quark and T is the temperature. The
crossover energy between the two regions is determined to be approximately l.SMtt/T. Under condi-
tions relevant to ultrarelativistic heavy-ion collisions, charm quarks and bottom quarks lie on opposite
sides of the crossover energy and therefore experience significantly different energy losses.

Sets caused by high-energy quarks and gluons in ul-
trarelativistic heavy-ion collisions might provide a probe
for the existence of a quark-gluon plasma (QGP). High-
energy partons coming from initial hard collisions lose en-
ergy by propagating through the dense matter formed be-
tween the nuclei after collision. The energy loss is expect-
ed to be greater in AA collisions compared to pp or pA
collisions, a phenomenon known as jet quenching. Gyu-
lassy and Plumer [I] suggested that jet quenching should
be suppressed if the dense matter consists of a QGP in-
stead of hadrons. Their observation was based on an esti-
mate of the energy loss of high-energy partons in a QGP
by Bjorken [2] ( —dE/dx —0.2 GeV/fm for a 20-GeV
quark at a temperature of about T=0.25 GeV), which is
considerably smaller than in hadronic matter ( —dE/
dx- I GeV/fm). Bjorken considered the collisional ener-

gy loss of a massless quark due to elastic scattering off the
quarks and gluons in the QGP. At tree level, there is a
logarithmic infrared singularity in the integral over the
three-momentum transfer q. Bjorken estimated the ener-

gy loss by keeping only the logarithmic term with physi-
cally reasonable upper and lower limits q~;„and q~.,„.In
a complete calculation, the upper and lower cutoffs on q
should be provided automatically by the physics of the
energy-loss process. The purpose of this paper is to

present a complete calculation of the energy loss of an en-
ergetic heavy quark to leading order in the QCD coupling
constant.

Thoma and Gyulassy [3] eliminated the ambiguity due
to the lower limit q;„ofthe momentum transfer by prop-
erly including the screening effects of the QGP. The loga-
rithmic infrared divergence that arises in naive calcula-
tions is cut off at the soft momentum scale g, T, where g,
is the QCD coupling constant. Unfortunately their calcu-
lation was incomplete in the region of hard momentum
transfer (q-T) and therefore required the imposition of
an upper limit q,.„.The resulting ambiguity was avoided
in a complementary calculation carried out by Svetitsky
[4] in a study of the diffusion of charm quarks in the
QGP. Svetitsky's drag coefficient is directly related to the
energy loss: A(p ) ( dE/dx)/p, where E an—d p are the
energy and momentum of the heavy quark. In a straight-
forward tree-level calculation of the energy loss due to
elastic scattering, the kinematics of the scattering process
automatically sets an upper limit on the momentum
transfer. To cut off the infrared divergence in the tree-
level calculation, Svetitsky used the ad hoc prescription of
introducing a gluon mass which violates gauge invariance
and introduces an ambiguity equivalent to Bjorken's
choice of q
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To obtain the energy loss to leading order in g„the
hard-momentum-transfer contribution can be calculated
at tree level, but in the soft q region it is necessary to use a
resummed perturbation expansion developed by Braaten
and Pisarski [5]. The hard thermal loop corrections to
the propagator of the exchanged gluon must be resummed
in order to include the screening effects of the plasma, and
this resummation reproduces the result of Thoma and
Gyulassy [3] in the soft region. The contributions from
the hard and soft regions must then be matched together
consistently to give the complete energy loss to leading or-
der in g, . A general method for carrying out this match-
ing has been developed by Braaten and Yuan [6]. One in-
troduces an arbitrary intermediate momentum scale q*
satisfying g, T&&q &&T, which is always possible in the
weak-coupling limit g, 0. For moderate values of g„
this should be interpreted as merely a mathematical de-
vice for isolating all terms of leading order in g, . The con-
tribution from hard q & q* is calculated using tree-level
Feynman diagrams while ignoring any screening due to
the plasma. The logarithmic infrared divergences of the
tree-level calculation manifest themselves as logarithms of
q*. The contribution from soft momentum transfers
q & q* is calculated using the resummed perturbation ex-
pansion to take into account the effects of screening, and
it also depends logarithmically on q*. Adding the hard
and soft contributions, the dependence on the arbitrary
scale q* cancels.

In Ref. [7], a quantum-field-theoretic formulation of
the energy loss was developed. The method of Braaten
and Yuan [6] was then used to compute the energy loss of
a muon propagating through a plasma of electrons, posi-
trons, and photons to leading order in the QED coupling
constant e and in T/M, where M is the mass of the muon.
In this paper, that calculation will be extended to obtain

I

the energy loss of a relativistic heavy quark propagating
through a QGP to leading order in g, and in T/Mg, where
Mg is the mass of the heavy quark. We assume that the
mass Mg and the momentum p of the heavy quark are
both much larger than the temperature T of the plasma.
Simple results can be obtained in two energy regimes,
E((Mg/T and E»Mg/T. The maximum momentum
transfer q from elastic scattering off a thermal quark or
gluon with energy k is q,. „=2k(l+ k/E)/(1 —v

+2k/E), where U is the velocity of the heavy quark. In
the region E ((Mg/T, we can set q .,„=2k/(1—U), while
for E»Mg/T, the maximum momentum transfer is the
energy of the heavy quark: q „.„=E.In the region
E—Mg/T, the formula for dE/dx is very complicated be-
cause the general expression for q,. „must be used. A
good approximation to dE/dx in this crossover region can
be obtained by switching from the formula for E «M j/T
to the formula for the ultrarelativistic region E»M&~/T
at a crossover energy E„„,which is determined by con-
tinuity.

At leadirig order in g„the energy loss of a heavy quark
comes from elastic scattering from thermal quarks (Qq
scattering) and thermal gluons (Qg scattering). We first
consider the energy loss in the region E ((Mg/T. We as-
sume that the heavy quark has a kinetic energy much
greater than T. Some of the contributions to dE/dx can
be obtained from the corresponding QED calculation in
Ref. [7] by simple substitution. The soft contribution
from Qg and Qq scattering is obtained from the QED case
by replacing e by the QCD coupling constant g„multiply-
ing by a color factor 3, and replacing the thermal photon
mass mr =eT/3 by the thermal gluon mass [8] ms= (g, T/J3) (1+nf/6) ', where nf is the number of active
Ilavors in the QGP. The result is

' Qs+Qe 4Tq
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where QI(x) = j —ln[(1+x)/(1 —x)l+2/xj/x and Q&(x) = [In[(1+x)/(I —x)]+2x/(1 —x )j/x. The hard contribu-
tion to dE/dx from Qq scattering is obtained from the QED calculation in Ref. [7] by replacing e by g„multiplying by a
color factor 3, and summing over the nf flavors of the initial thermal quark:
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where Sp(x) = —fodr(1/t)ln(1 —t) is the Spence function, @=0.57722 is Euler's constant, and g(z) is the Riemann
zeta function: g(2)/g(2) = —0.56996. Note that the logarithm of q* in (2) cancels against the ln(q*) term proportional
tonf in (1).
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The only new calculation that is required to obtain dE/dx for a heavy quark is the hard contribution from Qg scatter-
ing. The rate of energy loss —dE/dx is obtained by computing the interaction rate of the heavy quark weighted by the
factor (E E')—/U, where U is the velocity of the heavy quark and E' is its energy after the collision. The hard contribution
can be isolated by imposing a constraint q & q* on the magnitude of the three-momentum transfer q =k' —k. The hard
contribution from Qg scattering is

dE
dX

where P =(E,p) and K =(k, k) are the four-momenta of
the incoming quark and gluon and P' and K' are the mo-

menta of the outgoing quark and gluon. The phase space
is weighted by a Bose distribution ns(k) =(e"' —1)
for the incoming gluon and a Bose-enhancement factor
I+ns(k') for the outgoing gluon. The factor 16 is the
number of spin and color states of the thermal gluon, and

(~At~ & is the square of the matrix element, averaged over
initial and summed over final spins and colors.

The matrix element At =At, +At, +At„for Qg scatter-
ing is given by the sum of the three Feynman diagrams in

Fig. 1. There are s- and u-channel diagrams that corre-
spond to Compton scattering in QED and a t-channel dia-
gram involving the three-gluon vertex. In QED, Compton
scattering does not contribute to dE/dx for a heavy lepton
at leading order in T/M due to a cancellation between the
s- and u-channel diagrams. In QCD, the cancellation is

upset by the non-Abelian coupling of quarks to gluons.
The square of the amplitude A,, +A,„reduces in the limit

k, k'«E to
4

(~Atg+AtM~)gg()(g)

The interference term Re(At, (At, +At„)*)between the
t-channel and the s- and u-channel amplitudes vanishes in

where Q =K' K is the fo—ur-momentum of the exchanged
gluon. One must take care in computing (5) to sum only
over the physical polarization states of the gluons. If a co-
variant expression is used for the polarization sum, then a
contribution to (5) from quark-ghost scattering must be
included in order to cancel that of unphysical gluon polar-
ization states [9].

The squared matrix elements (4) and (5) must be in-
serted into (3). The integrals can be evaluated analytical-
ly using the methods of Ref. [7]. Scattering in the s and u
channels does not give rise to an infrared divergence from
the small-q region, so the infrared cutoff q* can be set to
zero in this calculation. The result is

' gg(s+u)
dE

hard

gs T 1 1
—v 1+v4 2

ln
12% v 2v 1 v

There is an infrared divergence from the t-channel dia-
gram, so the cutoff q & q* is necessary. Using q*«T,
the result is

I

this limit. In the Feynman gauge, the square of the t-
channel amplitude reduces in the limit k, k'«E to

4 (P K)(P.K') —Mg(K K')
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The complete result for dE/dx for a relativistic heavy
quark with energy E«Mg/T is obtained by adding the
soft contribution (1) and the hard contributions (2), (6),
and (7). It can be written in the form

dE 8z'a~ T ~y 1 1
—v l+v1+ ln

dx 3 6 v 2V 1 v

gion E»Mg/T. Here again several of the contributions
can be extracted from the QED calculation published in
Ref. [7]. The soft contribution from Qg and Qq scattering
1S

' Qs+Qv

1+ ln q —0.843 . (9)

xin 2"' "+"'8(v)
mgMg

where 8(U) is a smooth function of the velocity that in-
creases monotonically from 8(0) =0.604 at v =0 to a
maximum of 0.731 at v =0.88, and then decreases to
8(1)=0.629 at v =1.

We next consider scattering in the ultrarelativistic re-
FIG. l. Tree-level Feynman diagrams for gg scattering (z

channel, u channel, and t channel).
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The hard contribution from Qq scattering is

dE gsT nf
1

2TE + 8 + g(2)
dx

h „d 12m 6 (q*) 3 p(2)

(10)
The hard contribution from Qg scattering requires a new
calculation. The s- and u-channel contributions vanish,
and the t channel gives
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Adding up the contributions to dE/dx in (9)-(11), the
total energy loss for energies E))Mg/T is

8za T
3

I+ 1 2 I 0920
6 mg

(12)
In the region E —Mg/T, the formula for the energy loss

must cross over from the v 1 limit of (8) to (12). It
should be a good approximation to simply use (8) up to
some crossover energy E,„„,and then switch to (12). By
demanding that dE/dx remain continuous at E =E,

„„„

we determine the crossover energy to be E,„„,=1.80

XMAS/T

for nf =2 active Ilavors of quarks.2

The energy-loss formulas (8) and (12) are illustrated
by the solid lines in Figs. 2 and 3 for conditions of
relevance to ultrarelativistic heavy-ion collisions. We take
the temperature of the plasma to be T =250 MeV, and we
take the strong coupling constant at that temperature to
be a, =0.2, which is in accordance with some lattice QCD
calculations [10]. In Fig. 2, we show the energy loss of the
charm quark, assuming a mass M, =1.5 GeV. The cross-
over energy is E,„„,= 16 GeV, so that most of the range of
energy relevant for jets in heavy-ion collisions is covered
by the ultrarelativistic formula (12). The discontinuity in
slope at the crossover point could be avoided by a more

0 1 » » I » » I » » I » » I

0 10 20 30 40 50

complete calculation for the region E—M(2/T. In Fig. 3,
we show the energy loss of a bottom quark with mass
Mb =5.0 GeV. The crossover energy is E„„,=180 GeV,
so the entire range of energy is covered by the formula
(8). Note that the energy loss for a bottom quark in a
QGP has a different momentum dependence from the
charm quark, and is significantly smaller in magnitude.
For example, for a momentum of 20 GeV, we find

dE/dx =0.3 —GeV/fm for a charm quark and
dE/dx =0.15 —GeV/fm for a bottom quark, both of

which are considerably smaller than the energy loss in ha-
dronic matter of about 1 GeV/fm. Bottom-quark jets
should therefore suA'er significantly less quenching than
charm-quark jets if a QGP is created in a heavy-ion col-
lision.

Also shown for comparison in Figs. 2 and 3 are the re-
sults of previous calculations of the energy loss. The dot-
ted curves are the estimates of Bjorken [2] for light quarks
adapted to the case of heavy quarks:

p [Gevl
FIG. 3. Energy loss dE/dx of a bottom quark as a function of

its momentum for T=250 MeV and a., =0.2. The complete re-
sult to leading order in g,, (solid curve) is compared to previous
calculations by Thoma and Gyulassy (dashed curve) and Bjork-
en (dotted curve).
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FIG. 2. Energy loss dE/dx of a charm quark as a function of
its momentum for T=250 MeV and a., =0.2. The complete re-
sult to leading order in g,, (solid curve) is compared to previous
calculations by Thoma and Gyulassy (dashed curve) and Bjork-
en (dotted curve).

xln™ x . (13)
qmin

For the upper limit on the momentum transfer, we follow
Bjorken in using q .,„=ATE, while for the lower limit
we use the Debye screening mass q;„=J3ms. The
dashed curves in Figs. 2 and 3 are the calculations of Tho-
ma and Gyulassy [3]. For the charm quark in Fig. 2, the
complete leading-order calculation is in reasonable agree-
ment with that of Thoma and Gyulassy at low energies,
but then crosses over to a form that is closer to Bjorken's
estimate (13) at high energies.

The formula (8) for the energy loss breaks down at
thermal energies v —(T/Mg)'/. The energy loss must
change sign in this region, because a quark with v =0 can
only gain energy in a collision. The methods used above
to compute dE/dx at high energies can also be used to
compute it in the limit v 0. For weak coupling g„
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—dE/dx is negative corresponding to energy gain and it
has a kinematic 1/v divergence:

16+a, T
3Mgv

1+ ln 2
6+ 0.604 T

6 mg

(14)
Note that the coefficient inside the logarithm agrees with
the one in (8) in the limit v 0. A comparison of (14)
with the v~ 0 limit of (8) can be used to make a semi-
quantitative estimate of the velocity at which the energy-
loss changes sign v=(3T/Mg)'~. With a plasma tem-
perature of 250 MeV as used in Figs. 2 and 3, this corre-
sponds to a momentum of 1.5 GeV for charm quarks and
2. 1 GeV for bottom quarks.

The formula (8) for dE/dx also breaks down at low en-
ergies for another reason. For coupling constants g,
& 1.08, the argument of the logarithm in (8) is less than I

for E & 0.93g,Mg and the energy loss is negative, imply-
ing a gain of energy. If Mg is sufficiently large, the ener-
gy below which (8) turns negative is much greater than
the thermal energy. This unphysical behavior is due to a
failure of the extrapolation from the weak-coupling limit
g, 0 to the physical value of g, . This failure is not of
great practical importance for the properties of heavy-
quark jets in ultrarelativistic heavy-ion collisions. For the
charm quark as shown in Fig. 2, (8) turns negative at a
momentum of about 1.2 GeV, while for the bottom quark
as illustrated in Fig. 3, it turns negative around 4. 1 GeV.
These are both lower than the energies of experimental in-
terest. Nevertheless, this result serves as a warning that
for properties of the QGP that have a logarithmic sensi-
tivity to different energy scales, calculations to leading or-
der in g, may be meaningless. The usefulness of such a
calculation can be determined only after computing the
multiplicative constant inside the logarithm. In particu-
lar, any calculation that keeps only the leading-order
ln(1/g, ) term is meaningless until the constant is also cal-
culated.

The negative values of —dE/dx predicted by (8) arise
from isolating the terms of leading order in g„without
any contamination from higher orders in g, . This diffi-
culty can be circumvented by using an effective propaga-
tor for soft gluons not only at soft momentum transfers q
as in Ref. [7], but for all q. In the hard q region, this cor-
responds to including a subset of corrections that are
higher order in g, . Consistency and gauge invariance then
demand that the effective vertices of Braaten and Pisarski
[5] be used for the coupling of the virtual gluon to the
thermal quarks and gluons and that the thermal quarks
and gluons be placed on the mass shells of their respective
effective propagators. This would of course greatly in-
crease the complexity of the calculation of dE/dx.

We discuss brieAy the energy loss of a high-energy light
quark in the QGP. The energy loss of an ultrarelativistic
heavy quark in (12) was calculated under the assumption
T«Mg «E. To obtain the energy loss of a light quark to
leading order in g„the calculation should be repeated un-
der the assumption mq « T«E. A recent calculation by
Mrowczynski [11] improves on previous calculations but
is incomplete. Mrowczynski recognized the need to in-
clude contributions from both hard and soft momentum

transfer. His separation of the integral over the transverse
component qT of the momentum transfer into two regions
qT & ko and qT & ko is similar to our separation of q into
soft (q (q*) and hard (q & q*) regions. In contrast
with our calculation of dE/dx for a heavy quark where the
dependence on q* cancels, Mrowczynski's final result de-
pends on ko. He makes the arbitrary choice of setting ko
equal to the Debye screening mass J3mg. The failure of
the ko dependence to cancel in the final answer is a symp-
tom of an incomplete calculation. Mrowczynski's calcula-
tion also suffers an additional ambiguity in the choice of
the maximum energy transfer, which should be imposed
automatically by the physics in a complete calculation.
Very large energy transfers arise from the energy of the
quark being transferred to a collinear gluon, in which case
the energy is not dispersed into the plasma. For light par-
ticles, it is most appropriate to think in terms of the ener-

gy of the jet rather than that of individual particles. Ener-

gy transfer to a collinear particle should then be interpret-
ed not as energy loss, but instead as evolution of the jet
due to its interactions with the plasma. A complete calcu-
lation of dE/dx for the jet will necessarily depend on the
definition of a jet.

In this paper, we have only considered the collisional
energy loss due to elastic Qq and gg scattering. In addi-
tion, there is radiative energy loss due to bremsstrahlung
processes, such as Qq scattering into Qqg with exchange
of a virtual gluon. While a naive tree level calculation of
the radiative energy loss gives a result that is higher order
by a factor of g, , it suffers from a quadratic infrared
divergence in the integral over the momentum transferred
through the virtual gluon. When the screening of the
plasma at the scale g, T is taken into account by resum-
ming hard thermal loop corrections to the gluon propaga-
tor, the quadratic divergence is replaced by a factor of
I/g, T . Thus the radiative process contributes to the en-
ergy loss at the same order in g, as elastic scattering. Un-
fortunately, as is the case with damping rate for a high-
energy particle [3,12], the screening of the plasma at the
scale g, T only softens the quadratic infrared divergence of
the tree level calculation into a logarithmic one. Because
of the lack of screening of the static magnetic interaction
at the scale g, T, the radiative energy loss has a logarith-
mic infrared sensitivity to the smaller momentum scale
g, T. A complete leading order calculation of the radia-
tive energy loss must therefore await the development of
more powerful resummation techniques than those needed
to calculate the energy loss from elastic scattering.

This work was begun at the Nuclear Theory Institute at
Seattle during the program on Hard QCD Probes of
Dense Nuclear and Hadronic Matter. We than the Insti-
tute for its hospitality and we thank the organizer of the
program, Miklos Gyulassy, for valuable discussions. We
also thank Art Weldon for useful comments. This work
was supported in part by the Director, Office of Energy
Research, Division of Nuclear Physics of the Office of
High Energy and Nuclear Physics of the U.S. Department
of Energy under Contracts No. DE-AC03-76F00098 and
No. DE-AC02-76-ER022789 and the Deutsche For-
schungsgemeinschaft.



R2630 ERIC BRAATEN AND MARKUS H. TH()MA

[ll M. Gyulassy and M. Pliimer, Phys. Lett. B 243, 432
(1990).

[2] 3. D. Bjorken, Fermilab Report No. PUB-82/59-THY
(unpublished).

[3] M. Thoma and M. Gyulassy, Nucl. Phys. B351, 491
(1991).

[4] B. Svetitsky, Phys. Rev. D 37, 2484 (1988).
[5] E. Braaten and R. D. Pisarski, Phys. Rev. Lett. 64, 1338

(1990); E. Braaten and R. D. Pisarski, Nucl. Phys. B337,
569 (1990);B339, 310 (1990).

[6] E. Braaten and T. C. Yuan, Phys. Rev. Lett. 66, 2183
(1991).

[7] E. Braaten and M. H. Thoma, Phys. Rev. D 44, 1298
(1991).

[8] O. K. Kalashnikov and V. V. Klimov, Yad. Fiz. 31, 1357
(1980) [Sov. 3. Nucl. Phys. 31, 699 (1980)]; V. V. Kli-
mov, Zh. Eksp. Teor. Fiz. 82, 336 (1982) [Sov. Phys.
3ETP 55, 199 (1982)l; H. A. Weldon, Phys. Rev. D 26,
1394 (1982).

[9] R. Cutler and D. Sivers, Phys. Rev. D 17, 196 (1978).
[10] F. Karsch, in Lattice '88, Proceedings of the International

Symposium, Batavia, Illinois, 1988, edited by A. S. Kron-
feld and P. B. Mackenzie [Nucl. Phys. B (Proc. Suppl. ) 9,
357 (1989)]; M. Gao, ibid , 368. (1989); M. Gao, Phys.
Rev. D 41, 626 (1990).

[11]S. Mrowczynski, Soltan report, 1991 (unpublished).
[12] R. D. Pisarski, Phys. Rev. Lett. 63, 1129 (1989).


