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We describe a method by which existing precision measurements may be used to provide a new
laboratory test of the special theory of relativity. In this test the speed of light cem is compared to the
limiting velocity of massive particles, ¢,. Although it is conventionally assumed that cem = cm = ¢,
this need not be the case in phenomenological alternatives to special relativity. Our results impose
limits on the quantity (1 — ¢;m/cem). Unlike null tests of special relativity, this limit does not depend
on assumptions concerning the motion of the laboratory with respect to a preferred frame.

Recent experimental and theoretical advances have re-
newed interest in tests of special relativity and their inter-
pretation. Experimentally, results from several measure-
ments of the Hughes-Drever (HD) type have set stringent
limits on possible spatial anisotropies that could signal
a breakdown of Lorentz invariance, and hence of spe-
cial relativity [1-7]. Theoretical work by Haugan and
Will (HW) has led to a framework within which a break-
down of relativity is described in a self-consistent manner
[8-11]. In the present paper we describe a new test of spe-
cial relativity which complements existing tests derived
from the HD and other experiments.

A central result of the synthesis represented by the spe-
cial theory of relativity is the existence of a unique veloc-
ity equal to both the propagation velocity of electromag-
netic radiation in a vacuum, and the limiting velocity for
ponderable matter. The existence of a single character-
istic velocity is central to special relativity and it can be
argued that this uniqueness is in fact a fundamental as-
sumption of special relativity. Such an argument follows
from the observation (see, e.g., Ref. [12]) that the form
of the Lorentz transformations can be derived from very
limited assumptions concerning the transformation prop-
erties of purely mechanical physical observables. Such
a derivation provides the exact mathematical form for
transformations of mechanical properties between iner-
tial frames, but requires the introduction of an arbitrary
constant having the units of velocity. This velocity, which
we shall call ¢y, corresponds to the limiting velocity to
which an object of nonzero mass can be accelerated. To
appreciate the generality of this approach, we note that
Galilean relativity may be viewed as a special case with
¢m = 0o. Note that from such purely kinematic consid-
erations alone we are unable to make a statement about
the magnitude of cy,.

A second fundamental assumption of special relativity
arises from the consequences of electrodynamic relativity.
Here it is assumed that the form of Maxwell’s equations
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(or any equivalent formulation of classical electrodynam-
ics) is invariant under transformations between inertial
frames. This is the familiar assertion that the speed of
light is a constant for all inertial frames. This assumption
introduces a second characteristic velocity, cem, which is
associated with electrodynamics. .

In the above view, the special theory of relativity fol-
lows from the assertion that ¢, = co,. Note that the va-
lidity of this assertion is ultimately an experimental ques-
tion. Indeed, as we shall discuss, measurements which are
viewed as “tests of special relativity” may be character-
ized as tests of this fundamental assumption.

Although the preceding arguments make it clear that
¢m and cem may be viewed as distinct, they do not pro-
vide a theoretical basis for the interpretation of experi-
mental tests of their equality. This requires a dynamical
formulation which self-consistently incorporates the dis-
tinction between ¢, and ce, into the interactions of test
objects. The HW formalism provides such a framework
for the electromagnetic interactions of charged particles,
but requires additional assumptions about the nature of
the coupling. Specifically HW assume that there is a
coordinate system in which the action I is rotationally
symmetric. They further assume that in this coordinate
system all equations of motion are linear in the appro-
priate fields, even when ¢y # cem. Under these assump-
tions,
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In Eq. (1) m;, e; are the rest mass and charge of particle
i, and v{ = dz!/dt where z¥(t) is the particle’s world
line with z° = t. The potential and fields are given by
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In Eq. (1), which employs the electromagnetic conven-
tions of Ref. [13], ¢y, enters in the Lagrangian for the
free electromagnetic field through a field redefinition, as
explained in Refs. [10] and [11].

If em = cem the action in Eq. (1) is Lorentz invariant,
and thus assumes the same form in any inertial frame.
However, if ¢y, # cem there is only one preferred frame
in which Eq. (1) holds. Thus in the HW formalism one
manifestation of (and an experimental signal for) a break-
down of special relativity is the appearance of anomalous
velocity-dependent effects which arise from motion of a
test system with respect to the preferred frame. Experi-
ments of the Michelson-Morley type [14, 15] constitute
the most familiar of such measurements. HD experi-
ments, as interpreted by HW, also fall in this category.
Eq. (1) suggests another class of experimental tests of
special relativity—those which directly check the equal-
ity of ¢m and cem. In Eq. (1) it is ¢y which determines
the energy of a particle of mass m; thus, £ = mc2,. By
contrast the propagation of light is determined by cem,
and the energy E of a photon of frequency v is given by
E = hv = heem/A. A measurement of the wavelength
A of a photon emitted in a transition where a mass Am
is converted into electromagnetic radiation provides an
experimental relation between c,, and cen, of the form

Amct = eem . (2)

DY
Equation (2) provides the basis for our test of the as-
sumption that ¢y = cem-

To formulate a precision test of the equality of ¢, and
Cem based on Eq. (2), it is convenient to define two dis-
tinct “fine-structure constants” qem = e?/4meqhcem and
am = 62/47l'€()hcm. These quantities may be viewed as
“electromagnetic” and “mechanical” fine-structure con-
stants respectively [16]. Each is capable of being inde-
pendently determined using existing precision measure-
ments. Before proceeding, we note that some care is
necessary in the interpretation of experimental results as
the definition of the unit for length in the Systéme Inter-
national (SI) is directly based on cey,. The meter is now
defined as the distance traveled by electromagnetic radi-
ation in a vacuum in 1/299 792458 sec [17]. The meter
is “realized” by measuring the frequency v of visible (or
infrared) radiation from a stabilized laser with respect to
the cesium atomic clock which defines the second. The
wavelength A of this radiation is given by A = cem /v and
serves as a de facto length standard. We note several
obvious, but important points. First, an appearance of ¢
using the defined value is, in effect, an appearance of cepy .
Second, the determination of the frequency of any elec-
tromagnetic radiation from its wavelength through the
use of the relation ¢ = Av implies the use of cem. Finally,
care must be exercised in the interpretation of any result
involving a length measurement in SI units, since cem
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may enter implicitly through the definition of the meter.

We first consider the “quantum Hall” determination
of a via a measurement of the von Klitzing constant Ry
= h/e?. While one may directly express o = poc/2R,
an experimental determination of « in this fashion is lim-
ited by the accuracy of SI electrical measurements. A
more accurate procedure is to carry out the determina-
tion of Ry in “as maintained” electrical units, Rg NisT,
and then to convert this “as maintained” resistance mea-
surement to SI ohms [18]. Following this procedure one
has

Hoc

* = 20nisTRx mist ®)
where Qnist is the “as maintained” ohm expressed in SI
units. The subscript “NIST” refers to “as maintained”
electrical measurements carried out at the National Insti-
tute of Standards and Technology [18]. These currently
provide the most accurate determination of the quantum
Hall o.

The quantum Hall relation Rx = h/e? is derived from
classical electromagnetism and nonrelativistic quantum
mechanics for the electron. The determination of QnisT
is a purely classical electrical measurement involving the
determination of the length of a calculable capacitor in SI
units [19]. Finally, the “defined” value of cem, is employed
on the right of Eq. (3). The quantities on the right of
Eq. (3) involve neither the mechanical ¢y, nor the use of
relativistic particle mechanics. We conclude that the «
determined by Eq. (3) involves only cem, and is therefore
the “electromagnetic” fine-structure constant aen,. The
experimental value for aem is [18]

azl =137.0359979(32) . (4)

It has long been realized that determinations of the
Rydberg constant R.,, and the Compton wavelength of
the electron A¢, can be combined to provide a determi-
nation of a through the relation [20-23]

a = (2RouAc)'/? . (5)

In current R, determinations, the wavelength of the ra-
diation associated with a transition between two states
of atomic hydrogen having different principal quantum
numbers is measured with respect to a stabilized laser of
known wavelength (see for example Ref. [24]). To low-
est order the difference in the electronic energy between
states having principal quantum numbers n; and nj is
given by E = (1/n? — 1/n3)[m.e*/(8¢2h?)]. After cor-
recting for higher-order effects, this energy is equated to
the energy of the transition photon E = hecep,/A. From
such considerations, an experimental value of Ry =
mee*/8cZch3 is obtained. The determination of R (to
lowest order) involves only nonrelativistic dynamics and
does not depend on ¢n,. The ¢ which appears in this
experimental R., arises from the relation between the
photon energy and wavelength as discussed above, and is
identified as cepp -

We now consider a series of measurements which, taken
together, yield a value for the SI wavelength of positron
annihilation radiation. If we neglect corrections for bind-
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ing energy in positronium, assume negligible positron and
electron kinetic energies, and view the annihilation in the
center-of-mass frame, then the energy of the annihilation
photon will be given by the rest energy of the electron.
(There are stringent experimental limits on the equality
of the electron and positron masses from experiments of
an essentially nonrelativistic character [25].) The rest
energy of the electron is given by E = m.c2,, while the
energy of the annihilation radiation, expressed in terms
of its wavelength A¢ (the Compton wavelength), is given
by E = hcem/Ac. It follows that A\c = hcem/mec,.

An accurate determination of A¢ requires several steps.
First the lattice spacing of a perfect single crystal of sil-
icon is determined by direct comparison with a primary
optical wavelength standard [26] (the stabilized laser). In
the second step, the lattice spacing of this particular crys-
tal is compared with another perfect crystal suitable for
v-ray diffraction [27]. In the third step, the wavelength
of a suitable v reference line is determined by measuring
its Bragg angle with the calibrated diffraction crystal. In
the present discussion an appropriate reference v ray is
the so-called Au 411-keV line, which results from a radia-
tive cascade in 1°8Hg following neutron capture in 1°7Au,
and the subsequent B decay of !°®Au [28]. The fourth
and final step involves the comparison of this Au 411-
keV line with the 511-keV positron annihilation line us-
ing a curved crystal 4-ray spectrometer [29]. This chain
involves only a series of length comparisons using essen-
tially arbitrary “transfer” standards (the lattice spacing
of silicon, the wavelength of the Au 411-keV line). Thus,
this procedure may be viewed as providing a determina-
tion of Ac in terms of the SI definition of the meter. It
follows from the previous discussion that a determina-
tion of the fine structure constant via Eq. (5) provides
a value for the “mechanical” fine structure constant a,.
Our analysis assumes that electromagnetic radiation suf-
fers no dispersion in vacuum. Adequate experimental
limits on such a dispersion have been set [30, 31].

The experimental value for the wavelength of the Au
411-keV line [28] A41; must be corrected for a change
in the best value for the silicon lattice spacing. Us-
ing the value for the silicon lattice spacing given in
Ref. [32], Aq11 = 3.0107731(11) x 10~'2m. The wave-
length ratio Aq11/Ac¢ is Aa11/Ac = 1.240884 (12 ppm)
[29]. Thus A¢c = 2.426313 x 107'2m (12 ppm). From
Eq. (5) and the recommended value [24] for R, =
10973 731.5709(18) m~! we obtain a value for the me-
chanical a,, given by

an! = 137.0359 (12 ppm) . (6)
Finally from Egs. (4) and (6) we find

1— M~ 1(12) x 106 . (7

€em

The error in the above result is dominated by the un-
certainty in A¢, arising from the width of the positron
annihilation line [29].

As noted above, null tests of special relativity are based
on the observation that when ¢y, # cem, anomalous ef-
fects may arise which depend on the vector velocity v of
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the test system with respect to a preferred frame. For
this reason such experiments set limits on expressions of
the form (1 — c2,/c2.,)|v|?, in contrast with the velocity-
independent result in Eq. (7). Searches for preferred-
frame effects generally utilize such direction-dependent
quantities as v’v/ (4,5 = 1,2,3), or v - V where v is the
velocity of the center of a rotating disk with respect to
the preferred frame, and V is the (time-varying) velocity
of the edge of a rotating disk. The anisotropic effects
produced by such factors generate characteristic periodic
signals that can be isolated and measured with high pre-
cision, and this is one reason for the great sensitivity of
such experiments. HW [9] have analyzed a variety of
searches for preferred-frame effects under the assumption
that the velocity v relative to the preferred frame is the
velocity of the Earth relative to the cosmic microwave
background [33] (Jv| = 380kms™!). Their most strin-
gent limit is

1—c2/c2 | <3x1072%, (8)

utilizing the data of Ref. [4]. Although the constraint in
Eq. (8) is far more stringent than our limit in Eq. (7), it
depends on the observation of different physical phenom-
ena, and on an assumption not required in our analysis:
that the preferred frame is that frame in which the mi-
crowave background is isotropic.

HW note [9] that the result in Eq. (8) constrains the
tensor contribution to any anomalous coupling which vi-
olates Lorentz invariance, but not the scalar contribu-
tion which does not lead to anisotropic effects. Since the
scalar and tensor anomalies are not necessarily related
[9,34], separate limits on scalar (or rotationally invariant)
anomalies are important, and Eq. (7) provides one such
constraint. Another set of constraints on scalar couplings
comes from the Edtvds experiment [9,35,36], particularly
some of the recent high-precision versions of the exper-
iment [37]. However, anomalies can arise in the Eotvos
experiment by a violation not only of local Lorentz in-
variance, but also of local position invariance [10, 11].
The Eotvos experiments can nonetheless be used to test
Lorentz invariance by making the plausible assumption
that there is no fortuitous cancellation between these dis-
tinct anomalies. The significance of Eq. (7) is that, in
contrast with the E&6tvos results, it provides an unam-
biguous test of local Lorentz invariance which is inde-
pendent of other dynamical assumptions.

In principle, it is also possible to set limits on the quan-
tity (1—c2,/c2,,) by simultaneously determining both the
energy and the velocity of an electron (or other particle)
in an accelerator (or storage ring). However it is likely to
be difficult to set a limit at an interesting level of preci-
sion by such a procedure, since this would require highly
accurate knowledge of particle energies in absolute units.

There are experimental approaches which could pro-
vide a significant reduction in the error on o, as deter-
mined above. It has been suggested [20] that a much
more accurate determination of A¢ would be possible
with a cold, thermalized positronium source. Doppler
broadening in such a source is greatly reduced and an
improvement in accuracy of 2 orders of magnitude in A¢
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might be obtainable.

An alternative procedure for the determination of a;,
is to measure the change in atomic mass of a radiat-
ing system, along with the wavelength of the emitted
photon. However, it should be noted [38] that such a
transition process is more complicated than an annihila-
tion because only part of the mass energy is converted
into radiation. Hence a simple application of the mass-
energy relation to the photon energy may require addi-
tional dynamical assumptions. Nonetheless, it has been
previously noted [39-41] that it is possible to determine «
from the independent determination of neutron binding
energies in light elements in both atomic mass units and
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in wave numbers. It can be shown that such a determina-
tion gives a value for ay,. New mass spectroscopic tech-
niques based on trapped ion technology [42,43] combined
with very high accuracy y-ray wavelength determinations
[39-41,44] may ultimately provide a determination of am
with an error at the level of (1-2)x10~7.
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