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We present a possible discrimination method by the combination of a neural network (NN) and

QCD to separate the quark and gluon jets of e+e annihilation. The network has been trained by

jets of the same energy; thus only the internal structure of the jets has been considered. By the com-
bination of the NN and the QCD matrix element, 92% accuracy in identifying jets has been achieved.

The basic particles in quantum chromodynamics
(QCD) [1] are the quarks and gluons. Experiments (e.g. ,
electron-positron annihilation) produce hadrons. These
fragmentation processes may be described by phenomeno-
logical models. Uncertainties in these models present a
major obstacle to the detailed testing of QCD. The sepa-
ration of quark jets from gluon jets is a prerequisite to un-
derstand several phenomena. As has been emphasized, a
fairly precise identification is needed, e.g. , to establish the
existence of the three-gluon vertex [2], or to determine the
strong coupling constant using azimuthal asymmetries
[3].

Gluons carry a stronger color charge than quarks, and
one expects this to produce diA'erences in their fragmenta-
tion, namely, higher multiplicity, softer hadron spectrum,
and broader p, distribution. There has been intensive
theoretical study to calculate variables sensitive to the
diA'erences between quark and gluon jets [4], and to pro-
vide methods to analyze the experimental data and to see
the above-mentioned differences between quark and gluon
jets [5,6].

Studies on the fragmentation of quark and antiquark
jets in electron-positron annihilation have been quite suc-
cessful. Less knowledge has been accumulated from ex-
periments on the fragmentation of high-energy gluon jets.
Experimental studies encounter the problem that in e+e
annihilation quark jets dominantly appear in the two-jet
(qq) topology, but gluon jets turn up only in three or more
jet topologies (e+e qqg, Y ggg). Because of these
dilliculties, most studies of gluon-jet fragmentation result-
ed in inconclusive results. One can study symmetric
three-jet events and compare the results with the results of
the two-jet events gained at —', c.m. energies [7]. There
are several approaches based on studies of jets with
diA'erent energies [8].

Despite the considerable amount of experimental eA'ort,
unambiguous dift'erences between quark- and gluon-
induced jets have not yet been established.

In recent papers a neural network (NN) method for
identifying the parton ancestor of a jet has been suggested
[9,10]. The method is able to separate gluon and quark
jets originating from a Monte Carlo simulation of e+e
events with = 85% accuracy. The result is independent of
the Monte Carlo model used. The network has access to
the energy of the jets and, thus, can exploit the fact that
gluon jets usually have a smaller energy.

The primary aim of this Rapid Communication is to

present a possible quark/gluon jet discrimination method
by combining the NN approach with QCD in electron-
positron annihilation. (A possible generalization and de-
tails will be published elsewhere [11].) The network has
been trained by quark and gluon jets of the same energy;
thus, only the internal structure of a jet has been con-
sidered. The input data, based on the Monte Carlo event
generator used, correspond to a total basis in the sense
that all the longitudinal and transversal momenta of the
outgoing hadrons with respect to the jet axis have been
used in the analysis. On the other hand, the QCD matrix
element at a definite jet energy also yields a probability
for a jet being a gluon or a quark one.

These studies (e.g., [9,10] and the present one) are re-
markably diA'erent from real experiments at least in one
respect. In a Monte Carlo analysis it is easy to define the
parton ancestor of a jet since the event generator is under
control. One can store the momenta of the partonic state
and then fragment the partons. Comparing the momenta
of the partons and the jets, the partons may easily be as-
signed to the jets. In real experimental situations the par-
ton ancestor is unknown (and in fact the problem is to
determine it).

The new interdisciplinary methods of neural networks,
in addition to their theoretical significance, have proven
successful in various fields and provide an alternative
method of data processing.

The self-organizing adaptive NN model used in this pa-
per was introduced by Kohonen and has been described in
detail in the author's book [12]. The modified version of
the original model, the learning vector quantization
(LVQ), has already proven to be more advantageous in
certain statistical pattern recognition problems [13] com-
pared to the widespread feed-forward model [14].

In general, the application of NN consists of three dis-
tinct periods: learning, testing, and generalization. In
discrimination problems the learning phase corresponds to
the construction of the discrimination function

With the present model, learning and testing are real-
ized in a supervised way: jet data vectors along with the
information on their established quark or gluon origin are
given to the NN. En the testing phase one tests the perfor-
mance of the discrimination function produced by the net-
work with data never seen by the NN. The generaliza-
tion, the active phase of the network, yields predictions for
unknown samples. To perform a generalization on Monte
Carlo data is of no significance; therefore, we encourage
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where p is the distance and the minimum is with respect to
all reference vectors and for all categories. If x ' (t) be-
longs to the same category as the closest reference vector
(c=m) then this reference vector is updated in the fol-
lowing way:

k' '(i+1)=k„' '(r)+a(r)[x"(r) —k' '(i)], (2)

if the categories are not identical (m~c),
k„' '(t +1)=k„'(r) —a(r)[x"(r) —k' '(t)],
for all the other reference vectors,

k,t-)(i+1) =k,(-)(r ), (4)

where 0 & a(t) & 1 and a(t ) is decreasing monotonously
with discrete time.

In the test phase the NN returns the category repre-
sented by the reference vector closest to the given input.
This result may be compared to the correct answer to
measure the classification performance of the NN.

We have illustrated these ideas in Fig. 1. The presented
discrimination problem is taken from the real quark/gluon
jet data. We have plotted jets having 30-GeV energy in
two dimensions (transversal momentum fractions of the
first versus the third particles). In the naive approach the
discriminating curve is a straight line [Fig. 1(a)]. Follow-
ing the method outlined above (e.g. , having two-two refer-
ence vectors) the discriminating curve is not a straight
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FIG. 1. Discrimination of 30 GeV quark and gluon jets (see
text), (a) naive approach; (b) LVQ result with 2-2 reference
vectors.

the experimentalists to perform this phase and classify the
available experimental data.

In the r category, d-dimensional LVQ model for any
category c we have a fixed number (n, ) of d-dimensional
reference vectors k (i = I, . . . , n, ; c = I, . . . , r) T. he
learning period starts with the initialization of the refer-
ence vectors (e.g., the first n, input data for each category
are equal to k ). During the adaptive learning process
the reference vectors are moved at time t according to the
incoming data x ' (t). [Here the incoming data x(t) re-
ceived at t belong to the category c.] The "movements"
are organized by the learning rule in order to obtain an
optimal discrimination with the nearest neighb-or method.
The learning algorithm is the following.

Let k„(t) be the reference vector closest to a given in-
put xi')(t) in some (e.g. , Euclidean) metric at time t:

p[k„(t) —x ' (t)] =min p[k (t) —xt' (r)], (1)

line; it has two bends [Fig. 1(b)]. Consequently the
discrimination performance improves. By increasing the
number of the reference vectors the discriminating curve
becomes more and more sophisticated further improving
the success rate.

To study the properties of quark and gluon jets we have
used Monte Carlo data generated by JETSET 6.3 [15]. The
partonic configuration is calculated from perturbative
QCD in the form of second-order matrix element for finite
jet resolution parameter y;„. We have changed the QCD
part of JETSET 6.3 to get rid of the approximation of Gut-
brod et al [16]., by the method of the Mark J collabora-
tion (for more details see [17]). In the Monte Carlo
analysis fragmentation parameters fitted to data from the
CERN e+e collider LEP given by the OPAL Colla-
boration [18] have been used.

We have used 1000000 hadronic events at the Z reso-
nance. In the hadronic final states not only the charged,
but neutral particles have been considered as well. Soft
particles gaining energy less than 5% of the total energy of
the jet have been neglected.

Having generated an event we applied the LUCLUs clus-
ter algorithm [12] to determine the number, the energies,
and the directions of the jets. Jets obtaining less than 5%
of the total center-of-mass energy (E, ) have always
been excluded. Our Monte Carlo studies show that
=99% of the three-jet events is originated from three-
parton events, there is only a very small 0.6% and 0.4%
background from four- and two-parton events, respective-
ly.

We have analyzed the following data samples.
(a) General three-jet events. A quark (antiquark or

gluon) jet is defined as the jet closest to the quark (anti-
quark or gluon) parton, with the closeness defined as the
relative angle between them. The minimal angle between
two jets was set to 35 .

(b) In order to compare the results, particularly the re-
sults obtained by imposing a cut on the energy of the jets,
with those of [10,111, we have also studied the JETSET 7.2
parton shower option with the default values of the gen-
erator. In this analysis the same cluster algorithm has
been used as above. The d„„„cuthas been set to 2.5 GeV,
with an additional constraint requiring exactly or at least
three jets. A quark jet is defined as the jet closest to a
quark with the closeness defined in the same way as in the
clustering. Jets not assigned to a quark have been defined
as gluon jets.

The NN input information we used are the following.
(a) The jet label (whether a particular jet is of quark or

gluon origin).
(b) The energy (E„.,i) and the invariant-mass square

(Q,«) of the jet.
(c) The longitudinal pi/p„«and transversal p&/p, «mo-

menta fractions of all the outcoming particles. Previously
mentioned soft particles have been rejected.

Fifty reference vectors have been used in the network
analysis. In each run reference vectors have been associ-
ated in equal number with quark and gluon categories.
Initial reference values for the vectors were picked out
from the input data; namely, the first 25 quark and 25
gluon data were chosen.
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Test results show decreasing success rate Iluctuations
when the number of the reference vectors have been in-
creased. The accuracy of the prediction monotonically in-
creases with the number of learning steps and seems to
saturate after about 8000 steps (Fig. 2). 8000 patterns
have been used in the test period to determine the
network's performance.

The performance of a given method is presented in the
form 84% (76/88). This notation indicates that the
method gives 76% and 88% identification rates for gluon
and quark jets, respectively, while the weighted average
(for all the quark and gluon jets used in the analysis)
identification rate is 84%.

Quark and gluon jet separation As g.luons are pro-
duced in bremsstrahlunglike processes, they usually have
smaller energies than the primary quark jets. Imposing a
cut for our three-jet sample at 23 GeV (jets with energy
larger than 23 GeV are called quark jets, while others
gluon jets) results in a success rate of 88% (77/93).

We have checked this simple energy cut method for the
reproducible multijet sample of [10] (JETSET 7.2, minimal
angle between jets 40, d„„.„=2.5 GeV, requiring at least
three jets, neglecting jets with less than 5% of the total
E, , 5400 hadronic events). They report 84% success
rate with a feedforward NN with one hidden layer.
Surprisingly, the simple energy cut leads to a slightly
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FIG. 2. The success rate of the LVQ method (30 GeV jets) vs

the number of learning steps.

higher result (85%). In our opinion their network has just
almost learned the fact that jets with small energies are
usually gluons, while jets with larger energies are the
quark ones, ignoring the rest of the input information.

The underlying perturbative QCD matrix element
gives the pg (x, ~Ixb, x, ) probability that a jet (in a three-jet
event) with a given x, =2E,/E, m energy fraction is a
gluon jet (the two other jets have xb and x, energy frac-
tions). For instance, in first order of a, this probability is
clearly

(geo)(
~ )

xb +xc xa +xb xb +xc xc +xa2 2 2 2 2 2 2 2

(I —xb)(1 —x, ) (1 —x, )(1 —x))) (1 —xb)(1 —x, ) (1 —x, )(1 —x )
(5)

One can use this probability (5) to identify jets, e.g. , if
pg & 2 then a jet is said to be a gluon; otherwise it is
said to be quark. This identification method gives an 87%
(77/92) performance for hadronic three-jet events.

Our first NN approach was to teach our network the
data set including energy, invariant-mass squared, and all
the transversal and longitudinal momenta of the six most
energetic particles. The performance has been quite in-
dependent of the number of learning steps and of the
number of particles in the input data.

The obtained success rate of 86% does not exceed the
result where no NN has been used, only the energy as a
cut has been considered. It seems that the NN has picked
out energy as the most important selection factor rather
than the hidden information contained in other details.
Therefore the failure of this type of brute-force approach
is confirmed. Thus a diff'erent approach, based on a
separate study of kinematic properties and the internal
structure of jets, is needed.

To exclude energy from the NN input data the jets
have been sorted into ten energy classes (from 5 to 50
GeV by 5 GeV) of 8000 jets each (4000 quark and 4000
gluon ones). Learning and testing were performed sepa-
rately for each energy class.

Thus the NN has been able to utilize only the informa-
tion contained in the Q;„and in the momenta fractions of
the particles in the jets. The reference vectors were ex-
pected to represent and find the fine details hidden in the
data.

The above procedure resulted in a success rate of 70%

I

as a weighted average over all energy categories. This re-
sult seemed to be rather low but the information yielded
by the NN could be considered to be independent of the
energy value based QCD categorization. Therefore to im-
prove the performance one would try to combine the infor-
mation yielded by the NN and the underlying QCD ma-
trix element. The NN approach is a nearest-neighbor
method with discrete output, thus the first step is to ex-
tend it to continuous values in order to obtain the proba-
bility for a given jet being of quark or gluon origin.

It is straightforward to define the variable R for any jet
given by x:

p(x —k„~ ) —p(x —k g )R= (6)
p(x —k„~ )+p(x —k g )

where k is the nearest quark or gluon reference vector
to the input x [as in Eq. (1)]. R falls within [ —1,1].

We calculated R values for the gluon- and quark-jet
test samples separately. f~(R) and fg(R) denote the ob-
tained density functions shown in Fig. 3(a). These func-
tions may be used to calculate a probabilistic value for a
given input with a certain R value. The input jet is ex-
pected to be a quark jet with a probability of pq and a
gluon jet with probability p&

(NN) R A(
f, (R)+f, (R) '

(7)
(ww) R fg«)

f, (R)+f,(R) '
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FIG. 3. (a) Quark and gluon density functions in R; (b) probability of being a quark or gluon jet calculated from Eq. (7).

respectively. These probabilities are plotted in Fig. 3(b)
as a function of R.

Provided the probabilities p~+ ) by (3) and p~( ) by
(8) are independent one easily gets the combined p~
probability for an input to be a quark jet:

(QCD) (NN )

=1-p" -'p-+2p". p-pq pq pq pq

The above combination of the probabilities with a
P~ —,

' cut has led to a 92% success rate. This indicates
that the optimal way is to combine the information of the
fragmentation properties and the underlying QCD matrix
element.

The increase from 87% success rate (only QCD matrix
element approach) to the present 92% accuracy does not
seem to be a very significant change; however, this result
means that the misidentification rate is 62% higher either
in the QCD method or in the brute-force NN approach
(e.g., our first approach or [IO]) compared to the com-
bined one.

We have applied conventional, NN, and combined
QCD-NN methods to separate quark and gluon jets.

The conclusions may be summarized as follows.
(i) The kinematic separation based on an energy cut or

p~/s results in = 87%-88% identification success rate.(QCD)

(ii) The NN alone can reach = 86%. Thus the perfor-
mance of the method based on kinematic variables and the
naive NN are about the same. This is the reason why the
success rate in [9,10] with NN is not higher than that
with the kinematic cut for the same event sample. Clearly
what the NN does is nothing more than realize this simple
kinematic information.

(iii) We have sorted the data into ten equidistant ener-

gy categories (from 5 to 50 GeV) and analyzed them in-
dependently with the NN. Combining these results with
the underlying QCD probabilities based on the kinemati-
cal configuration of the jet system we have reached 92%
success rate, a prediction accuracy superior to previous
work.

The whole NN algorithm combined with the QCD
method is very easy to implement in parallel hardware;
thus, it offers a very promising method for on-line trigger-
ing in high-energy experiments.

The authors would like to thank F. Csikor and G. Poc-
sik for constructive discussions on particle physics. Many
thanks go to T. Geszti for his inspiring ideas on neural
networks.
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