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Monopoles of SU(15) grand unification
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In a. recently analyzed grand unified model based on the gauge group SU(15), monopoles are
automatically consistent with the cosmological mass density bound. The Parker bound of monopole
Aux puts some constraints on the model which can be easily satisfied.

The interesting idea of gauging symmetries like baryon
number (B) and lepton number (I ) was incorporated [1]
in grand unification models based on the group SU(16).
In these models, B and I are violated spontaneously.
The resulting proton decay rate is much slower [1,2] com-
pared to the prediction of more popular unification mod-
els based on SU(5) or SO(10).

Interest in such models has recently been revived by
some discussion of a unification model [3, 4] based on
SU(15). The difference of this model with those based
on SU(16) is that in the fundamental representation
containing the fermions there is no right-handed neu-
trino. Baryon number is still part of the gauge sym-
metry although lepton number is not. The spontaneous
symmetry-breaking process breaks B [5, 6], giving rise to
baryon-violating processes. It has been shown that, in
a particular chain of symmetry breaking, the unification
scale can be as low as 10 GeV. This prediction is very
diAerent from those of popular grand unification models
where the unification scale is 10 GeV or higher. How-
ever, a low unification scale in the context of SU(15) does
not conQict with data on proton stability because proton
decay is very suppressed [3, 7] in this model, just as it is
in SU(16).

Here, we want t,o point out another aspect of the
SU(15) model which has not been emphasized before.
Because of the possibility of low unification scale, gauge
monopoles in this model can be easily consistent with
cosmological bounds. This characteristic, again, is very
different from that of SU(5), where gauge monopoles vio-
late cosmological energy density bounds by many orders
of magnitude.

We start by outlining the derivation of the cosmological
bound on the monopoles [8]. At the present era, the en-

ergy density of the monopoles is given by pM
—rnMnM,

where n&M is the mass of a monopole and nM is their
present number density. This energy density must sat-
isfy

at the scale VM of symmetry breaking which gives rise
to the monopoles. To estimate the number density of
the monopoles, we use Kibble's picture [9] in which
monopoles are produced when domains of the broken-
symmetry phase coalesce. This picture gives rise to about
one monopole within the horizon at the time of the cre-
ation of the monopoles. Formally, one can write the
monopole number density nM at that era as

nM/n~ = 20pg„I (TM/Mt ) (4)

since the photon number density is related to tempera-
ture by n& ——0.24T . Since that era, the total number of
monopoles has not changed noticeably since monopole-
antimonopole annihilation cross sections are negligible
[10]. Therefore, the number density of monopoles has
changed only due to the expansion of the universe. The
photon number density, on the other hand, has changed
also due to annihilations of particle-antiparticle pairs.
Denoting the increase of photon number density due to
these reheatings by a factor fRH, we obtain

3/2 3
p 20Pg* TM p

fa.H MI
(5)

where n 400 cm is the present number density of
photons. Using these estimates and introducing the pa-
rameter a„=TM/VM, we obtain

3/2 3 y 4

=8 10 ' "* " GV/
aM fnH 1GeV (6)

nag ——p/I~sq,

where ZM is the horizon length at the time of monopole
creation, and P 1. Using EM —0.6g„M~/TM where

g~ is the eAective number of relativistic degrees of free-
dom and Tpg is the temperature at that era, we obtain

min&& & 10 h GeV/cm
The bound in Eq. (1) then translates to

1

mM = (&~~r/aM, (2)
where ( 1, and nM is the fine-structure constant

where 6 is the Hubble pa.rameter in units of 100
kms Mpc . AVe can parametrize the monopole mass
by

(7)

Observational limits on the value of Hubble parameter
imply 2 & h & 1. The parameters ( and P are of order
unity. The fine-structure constant is typically 10
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The quantities AH and g„depend on the number of de-
grees of freedom in the model, and are typically 10 .
The factor a,c denotes the supercooling needed below the
symmetry-breaking scale before monopoles can appear.
For second-order or weakly first-order phase transitions,
one would naturally expect this not to be much smaller
than unity. Then, Eq. (7) clearly shows why monopoles
of SU(5) unification model were inconsistent with cosmol-
ogy. In order to make SU(5) monopoles acceptable with
the cosmological mass density bound, one therefore has
to invoice either infiation, or a large supercooling (i.e. ,a„« 1) as may be possible in the case of a strongly
first-order transition.

For the recently discussed SU(15) model of grand uni-
fication, the situation is very difIerent. The symmetry-
breaking chain which gives a low unification scale is

SU(15):SU(12)q x SU(3)i

: SU(6)1. x SU(6)~ x U(l)~ x SU(3)i
":SU(3), x SU(2)L, x U(1)1

: SU(3), x U(1)q. (8)

At the scale M~, a U(1) factor appears, which gives rise
to monopoles. Thus, the monopole scale VM in the ear-
lier discussion should be identified with the scale M~ in
this model. Renormalization-group analysis of the model
shows that the scale M~ can easily satisfy Eq. (7), as we
discuss below.

Introducing the notation M~ ——10"~ GeV for any
mass scale M~, one gets the following relations connect-
ing different mass scales [4, 5]:

nag
——2n~ + 5.34, na ——gn~ + 5.42. (10)

It was emphasized [5] that the above solution for n~,
together with the constraint M@ & M~, implies M~ &
5 x 10io GeV. Any value of M~ in this range is easily
consistent with the bound in Eq. (7). If M~ happens «
be close to the upper limit allowed by renormalization-
group calculations, the monopoles can constitute the bulk
of the energy density in the universe and therefore can
solve the dark-matter problem.

We now discuss the Parker bound [11] on monopole
fIuxes in our Galaxy, which derives from the considera-

18nG —6nrr —7n~ —5nw ——3I& s
—sin Hw (Mw)

(9)
t'3 n(Mw) I

!18nG —10n~ —5n~ —3nw = I&
~

——
(8 ns (Mw) p

where It = 8x/[Iln(Mw) ln 10]. Using n i(Mw) = 128,
sin Ow(Mw) = 0.228, ns, (mw) = 9.35 and putting
n~ ——logio 81, one can solve na and n~ in terms of n~.

using B8 i 3 x 10 s G and g (2e) i. The coherence
length of this magnetic field within our Galaxy [ll] is

10 cm. For monopoles with masses in the range of
10 GeV or less, it is easy to see that a monopole crossing
one coherence length can obtain velocities of order of the
speed of light. Thus, using vM 1 in Eq. (11),we obtain

n~o~ & 10-"cm-'. (12)

It should be noted that this bound on number densities is
much stronger than that obtained for SU(5) monopoles.
The reason is that the SU(5) monopoles are much heavier
so that their average velocity is much smaller. However,
though the bound on nMo is stronger for SU(15), it can
be satisfied easily since VM can be much smaller in this
model. To see this, we rewrite Eq. (12) by using the
estimate of nMO from Eq. (5), getting

( JrRH
VM & sI2 x 10 GeV.(».' ~.;)

This can put nontrivial constraints on the mass scales
of the model. Through renormalization-group analysis
and the values of the gauge coupling constants at the
weak scale, the scales M~ and M~ can be expressed as
functions of the scale M~. For example, if we take the
prefactor in Eq. (13) to be unity, we get M~ & 10 GeV,
which implies MA & 2 x 10 GeV and MG & 3 x 10 GeV
from Eq. (10). This is stronger than the bounds from
any other consideration. If, within our Galaxy, the local
density of monopoles is higher than the estimate of Eq.
(5), the bound on VM becomes stronger.

To summarize, we have shown that the monopoles ap-
pearing the course of symmetry breaking of SU(15) grand
unified group are consistent with the cosmological energy
density bound. In sharp contrast to monopoles arising,
e.g. , in SU(5) grand unified model, one does not have
to invoke large supercooling to achieve this. The Parker
bound on monopole flux in our Galaxy can put some con-
straints on the scales of the model. These constraints are
consistent with renormaliz ation-group calculations.

tion that the galactic magnetic field B8@ is not destroyed
by the acceleration of the monopoles. For monopoles
with magnetic charge Q, the energy dissipation rate is of
order gnMvMBs i, where uM' denotes their average ve-
locity. Demanding that the energy density in the galactic
magnetic field, B2 i/8', is not depleted in time r 10s yr
which is the time needed to regenerate the field, one ob-
tains

nov B
1P cm s sr

4n 32m.zg7
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