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The Tremaine-Gunn phase-space constraint giving lower limits on the mass of dark-matter particles
that were once in kinetic equilibrium is generalized to arbitrary decoupling temperatures and chemical
potentials for fermions as well as bosons. It is stressed that even in the cases where no exact limit exists
(e.g., for bosons with a chemical potential approaching the mass) a statistical limit can be obtained. In
most cases particle masses of several eV or more are necessary to explain the dark matter in galaxy

halos.

I. INTRODUCTION

One of the methods often used for constraining the
mass of elementary-particle candidates for the dark
matter in galaxies is the phase-space constraint due to
Tremaine and Gunn [1]. Originally the method was con-
structed with the aim of placing lower limits on the mass
of neutrino candidates for dark matter, but the method
was generally applicable to relativistically decoupling fer-
mions with a zero chemical potential. Madsen [2] gen-
eralized the limits to bosons, realizing the statistical na-
ture of the method for bosons with mass equal to chemi-
cal potential. A few comments on nonrelativistic decou-
pling were included in the latter investigation as well.

The present paper is devoted to a general derivation of
lower mass limits from conservation of fine-grained
phase-space density for bosons as well as fermions with
arbitrary masses, chemical potentials, and decoupling
temperatures. The classical Tremaine-Gunn limit is the
special case of fermions with a zero chemical potential
and relativistic decoupling. Other analytical limits are
derived as well, and the general cases are illustrated in
the figures.

The paper is organized as follows. Section II contains
a derivation of the Tremaine-Gunn limit for a general
distribution function and comments on the possible loop
holes in the method related to the assumption of iso-
thermality of the final state. Section III summarizes the
general mass constraints from phase-space conservation,
and gives some analytical limits. Section IV is devoted to
the relation between the mass limits derived and the
cosmic density parameter. Section V shows how statisti-
cal limits can be obtained in cases where no exact limits
exist, and how statistical limits in general are stronger
than the exact limits. Section VI contains the conclusion.

II. THE TREMAINE-GUNN LIMIT AND
ITS LIMITATIONS

Consider an isotropic gas with a distribution function
given so that 47p2n(p)dp is the number density of parti-
cles with momenta between p and p +dp. The occupation
number is then given as f(p)=h3n(p)/g, where h is
Planck’s constant and g is the number of helicity states.
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For a particle species in kinetic equilibrium the occupa-
tion number is given by a Fermi-Dirac or Bose-Einstein
distribution,

f(p)={exp[(E—p)/T]x1}7 !, (1)

with u being the chemical potential, and the energy relat-
ed to momentum and mass via E2=p2+m? (unless oth-
erwise noted we work in units where c =kz=1).

Denote by N(f) the fraction of particles with an occu-
pation number exceeding f. Using a method introduced
by Tremaine, Hénon, and Lynden-Bell [3], Madsen [2]
utilized conservation of fine-grained phase-space density
during dissipationless evolution to calculate the distribu-
tion of the maximal fraction of particles, N(¢), that can
be arranged to have a coarse-grained phase-space density
exceeding @. Whereas N(g) is general exceeds N(f), a
crucial observation is that ¢ cannot exceed an eventual
maximum value of f.

This observation was the basis of the Tremaine-Gunn
argument [1], which in its simplest version says that the
coarse-grained phase-space density of neutrinos in galaxy
halos cannot exceed the maximum value of the initial
fine-grained density, which in the case of one type of rela-
tivistically decoupling neutrino with zero chemical poten-
tial equals g /2h3 (in the subsequent derivation we shall
use fax&/h> for the maximal fine-grained phase-space
density). Assuming the dark-matter distribution to be an
isothermal sphere with core radius r.=(902/47Gp,)'"?,
where p, is the central density and o is the Maxwellian
one-dimensional velocity dispersion, the corresponding
maximum phase-space density is p.m ~*27o?) 732,
where m is the particle mass. Requiring this maximum
to be less than f g /h° leads to

A 9h3 1/4
mn 2027)/%f 8GO P}
=38 eV O.E)é/4rﬁ)l/2g—l/4fn:alx/4 . (2)

Here 0,0,=0/100 kms™! and r,,=r,/10 kiloparsecs
(kpc).

Equation (2) has been applied to a number of galaxies
by a number of authors for placing lower bounds on the
mass of dark-matter neutrinos (effectively f,.,=1 for
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neutrino plus antineutrino with y=0). “Typical” neutri-
no mass limits derived for spiral galaxies are in the range
5-40 eV, whereas the presence of dark matter in dwarf
spheroidals (still a somewhat controversial issue on the
observational side) would correspond to limits in the
range 100—-300 eV. For comparison the upper cosmolog-
ical bound for a single stable flavor is [4] m,=<91.5 eV
Qhlg ™! (Q is the present mean density in units of the
critical density, and A is the Hubble parameter in units
of 100 kms™!Mpc™!, with 0.4 <h,< 1), and the experi-
mental limit on the mass of the electron antineutrino is
close to 10 eV [5]. Different authors have drawn different
conclusions on the viability of neutrino dark matter from
these numbers [1,6—-13].

Before continuing with a generalization of the
Tremaine-Gunn limit it should be emphasized that the
application of Eq. (2) and the more general results below
is subject to a number of problems, which means that one
should regard the limits as order-of-magnitude estimates,
rather than precise values.

(1) It is very difficult to subtract the luminous contribu-
tion from most rotation curves, thereby isolating the
dark-matter contribution. Only a quite small number of
galaxies are modeled in such detail, that it makes sense to
extract well-defined parameters for the dark halo. Better
observations and detailed modeling have shown that
many of the galaxies for which neutrino mass limits have
been published (including some used by the present au-
thor) are unsuited for that purpose [14,10].

(2) The dark matter is (by definition) not directly ob-
servable. The actual coarse-grained phase-space distribu-
tion cannot be seen, and there is no guarantee that the as-
sumption of an isothermal sphere, which is a basis of Eq.
(2), is correct. In fact, it is not even known whether the
dark matter has an isotropic velocity distribution. As
discussed in Refs. [7,9,12,13], deviations from isotropy
may significantly change mass limits, thereby weakening
the Tremaine-Gunn constraint.

(3) If an isothermal sphere is assumed for the dark
matter, there are still problems related to the determina-
tion of the core radius and velocity dispersion. Using
measured values for the luminous component is not
necessarily correct. In fact, there are good reasons for
believing that the dark matter is more extended than the
luminous matter, so use of the luminous core radius
makes the neutrino mass limits too strong. Similar prob-
lems relate to the velocity dispersion. For instance, the
neutrino mass determined from dwarf spheroidals may be
reduced to acceptable values if the dark halos are much
more extended than the stellar components [6,8,15].

(4) Finally one should incorporate knowledge about the
complete fine-grained distribution function, and the cor-
responding bounds on the coarse-grained distribution, in-
stead of only comparing maximum phase-space densities.
An attempt in this direction was made by Madsen and
Epstein [6], who introduced the concept of a maximally
compact sphere of neutrinos consistent with the neutrino
distribution function at decoupling and the spherical Je-
ans equation (the construction is not a steady-state solu-
tion, but nevertheless gives useful instantaneous limits).
In Section V we shall return to the importance of the fact
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that in some cases a large fraction of particles have occu-
pation numbers much below f ..., so that at least statisti-
cally mass limits increase relative to Eq. (2).

In the rest of this paper we shall compare the fine-
grained phase-space distribution of dark-matter particles
with the isothermal sphere, and therefore neglect the pos-
sible consequences of anisotropy and other deviations
from isothermality [item (2) above]. We shall not com-
ment further on the observational problems discussed as
items (1) and (3), whereas some consequences of consider-
ing the complete distribution of f rather than just f .,
[item (4)] will be described in Sec. V. But the reader
should be aware of the problems described and not use
the generalized Tremaine-Gunn mass limits uncritically.

III. MAXIMUM OCCUPATION AND MINIMUM MASS
The distribution of fine-grained occupation numbers
for a species in kinetic equilibrium is given by Eq. (1) at
the temperature of decoupling, T,. In particular, since
the particle energy is at least equal to the mass, the max-
imum occupation number is given by

fmax={exp[(m —pu)/Tp1£1} 71 3)

For fermions, there are no a priori restrictions on the
chemical potentials. For bosons, u <m, and for bosons
and antibosons annihilating into photons (FZ=—pu),
—m Zpu=m to avoid negative occupation numbers for
particles as well as antiparticles. (Sometimes one works
in terms of the kinetic chemical potential, u; =u—m. In
the present paper we shall not use y,;, but note that the
chemical potential used in Ref. [2] is in fact p;.)

Some useful limits can be extracted from Eq. (3). For
example, for bosons,

7 [(m—u)/Tp] ! if (m—p)/Tp—0,

ax > .

" exp[—(m—u)/Tp] if (m—p)/Tp— o,
so that the minimum mass goes like

—1/4,—1/2, —1/4
mpin—>38 eV o150""r 10 g

[[(m ~p)/Tp1* if (m—p)/TH—0,

exp[(m—u)/4Tp] if (m—p)/Tp— o .
For fermions,

(5)

1 if (m—u)/Tp—— o,
Smax— 3 if (m—p)/Tp—0, 6)
exp[—(m—u)/Tp] if (m—p)/Tp— o,

with

M pin—> 38 €V o1oh 4 2g 14

min
1 if (m—u)/Tp——o,
X {2V% if (m—u)/Tp—0,

exp[(m —u)/4Ty] if (m—u)/Tp— o .

(7

Note that fermions and bosons, as expected, behave
similarly in the nonrelativistic limit [(m —p)/Tp— ],
that the boson mass limits diverge for (m —u)/T, —0,
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and that the fermion mass limits only depend very weakly
on (m—u)/Ty in the degenerate limit. The original
Tremaine-Gunn limit [1] (for one flavor without antipar-
ticles) corresponds to Eq. (7) for (m —u)/Tp,—0 (u=0
and m /Tp < <1). The general results for m_;, as given
by Egs. (2) and (3) are illustrated in Fig. 1.

perature T}, is given by p, =m(Rp/Ry)* [ 4mp>n(p)dp,
where the integral over the distribution is to be calculated
at decoupling, and R, and R, are the scale factors at
decoupling and the present, respectively. Using entropy
conservation on the form g, ,T°R3*= constant, where
8xs =2bosonsgi( Ti /T)3+%2fermionsgi( Ti /T)3’ and intro-

IV. CONTRIBUTION TO THE COSMIC DENSITY ducing the density parameter Q. =p./peir (Peri
The present contribution to the mean mass density of =8.099%5 X107 GeV*), one finds
the Universe from a particle species decoupling at tem-
_J
88450 .3 ro [(x+p/Tp)?—(m/Tp)P1]"*(x+p/Tp)
‘prcrit=m 2 TOf(m—p)/TD +1 dx (®)
278 sp exp(x)+
The integral can be evaluated analytically in certain limits, and takes the following values:
2&(3), boson, Tp>m,u ,
3&(3)/2, fermion, Tp>m,u ,
(u*—m?2)*2/3T3, fermion, Tp <<p—m , )
2exp(u/Tp), fermion and boson, u <O0;|u|>T>m ,
27(m /2w Ty ) *exp[ —(m —u)/Tp], fermion and boson, m,m —u>>Tp ,
where Riemann’s function is {(3)~1.202.
For a present temperature T, =2.75 K T, ;5 one gets the limits
2.00X 10 ?m,y,
1.50X 10 ’m,y,
Q.h8asp - -3 2 2y3/2 y3
————=1{2.77X10 °m(u*—m*)’* /Ty, (10)

8845073,
$OTET .66 X107 2m yexp(p/Tp),

1.04X 10 2m y(m /Tp ) %exp[ —(m —u)/Tp],

log,g

-8 -6 -4

-2 (0] 2

FIG. 1. Generalized Tremaine-Gunn mass limits as given by Egs. (2) and (3). 7y, in units of eV o0"*ro'/* g 7'/ is plotted as a
function of (m —p) /T, for fermions (upper curve) and bosons (lower curve).
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for the same cases given in Eq. (9). (Here m.y is the par-
ticle mass in eV.)

Combining Egs. (2), (3), and (8) it is possible to calcu-
late the minimal value of the density parameter required
if the dark-matter particles obey the generalized
Tremaine-Gunn constraints derived above. Results are
shown in Figs. 2 and 3, where the value of
Q h3T5 38 38,8 T 1657 1§ is plotted as a function
of m /T, for different values of u/T;. For the same sets
of parameters Figs. 4 and 5 show the corresponding value
of the minimum mass required (in units of eV

—1/4,—1/2,—1/4
T100 710 '8 ).

A few trends are apparent. First of all, particles
decoupling in the extremely nonrelativistic regime

(m /Tp>>1) generally have no problems with obeying
the phase-space constraints. As seen from Figs. 2 and 3
the contribution to the density parameter decreases
strongly (like (m /Ty, ) ?exp[ —3(m —u)/4Tp]) with in-
creasing m /T, which means that particles must be
much more massive than m_; to play a role as dark
matter, and if they are, then the phase-space constraint is
amply satisfied. For fermions problems increase with in-
creasing chemical potential, and in the relativistic decou-
pling regime the density contribution grows with

logy | 2

2L

-4 -2 o Iog10 m 2

FIG. 2. Minimal value of the density parameter 2, for fer-
mions obeying Eq. (2), as a function of m /T, for u/Tp=—16,
—8, —4, —2,0,2,4,8,16 (lower to upper curve). (), is given in

. —2m3  _3/4,—1 —1/4,-1/2
units of £ °T3 758°/°8 #sp& %500 100" T10 -

(u/Tp)? for u>>Tp, meaning that only weakly or non-
degenerate fermions in the eV mass range can be the dark
matter in this regime. The exact limits depend on the
size of the galaxy under investigation: The dwarf
spheroidal problem comes in via the factor o0 *r o'"%
the smaller the galaxy, the higher the minimal mass and
contribution to the density parameter. Also, the limits
depend on g, /8 .s0- For decoupling in the temperature
range 1-100 MeV this factor is of order 3, but for very
early decoupling it may reach a value near 30.

For bosons the situation is more complex in that the
minimal contribution to the density parameter is not a
monotonic function of m /T, for a fixed u/T,. The con-
tribution is negligible in the nonrelativistic regime as well
as for u—m. Problems are biggest for mildly nonrela-
tivistic decoupling, but as demonstrated in Sec. V mass
limits for relativistic decoupling increase significantly if
one recognizes that only a limited fraction of bosons have
occupation numbers near f,,.

The figures all show results for a single particle species
with the given chemical potential. If antiparticles are
distinct from the particles, and if particles and antiparti-
cles can annihilate into photons, then the antiparticles
will be distributed according to Eq. (1) with chemical po-
tential Z=—pu. For u=p=0 antiparticles are as abun-
dant as particles; the total contribution to 2, will double,

logyq ¥e)

ot -102 -107

7 / - 10
—2 10° oz |0t |1
3
10
-4l ]
-6
-4 -2 0 log 2

m
10 Tp

FIG. 3. As Fig. 2, but for bosons with u /T, as indicated.
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and the mass limits derived from phase-space constraints
will be reduced by a factor of 2714, For >0 the an-
tiparticles will be less abundant and changes will be less
than the factors of 2 and 27!/ mentioned previously
[16].

V. STATISTICAL TREMAINE-GUNN LIMITS

As illustrated in Figs. 1 and 2 in Ref. [2] only a minor
fraction of particles have occupation numbers close to
fmax- Observations indicate that the dark matter in
galaxies contribute at least 10% (and probably more) of
the total dark-matter content in the Universe. It is there-
fore necessary to utilize particles from a significant frac-
tion of the distribution, meaning that the typical occupa-
tion number of dark-matter particles, in particular for bo-
sons, may be much smaller than f,,. This again means
that the minimum mass and the contribution to Q, in-
crease, strengthening problems with obeying the general-
ized Tremaine-Gunn constraints.

The limits described in previous sections are exact in
the sense that they can be applied to individual galaxies.
The stronger limits discussed in the present section are
statistical and should as such be applied to samples of
galaxies. The distinction lies in the possibility of hand-
picking high-occupation-number particles for the halos of
a few galaxies, thereby making it possible to explain the

5
10g16[ Mmin !
al |
]
3t ]
2F .
L S I
%% T,
FIG. 4. Minimum fermion mass (in units of eV
oi00”*r10'?g /%) obeying Eq. (2) for the parameter sets used in

Fig. 2 (upper to lower curve).
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dark matter with particle masses near the exact m;,.
This, however, cannot be done (especially for bosons) for
a large sample of galaxies due to the limited number of
high-f particles. (And, of course, in practice nature may
have difficulties in making such selections at all, even
though the particles with the highest occupation numbers
also have the lowest momenta, and as such will play an
important part in structure formation. In fact, as dis-
cussed in Ref. [17], the low-momentum bosons may play
a decisive role in a hot dark-matter boson scenario.)

Figures 6 and 7 show the value of
Q,hET5 38 3%, n8 v i6ar14? for the minimum parti-
cle mass obeying the Tremaine-Gunn constraint if f,,,
in Eq. (2) is substituted by the (lower) f value correspond-
ing to the fraction of particles N(f) having occupation
numbers between f and f., [18]. Figures 8 and 9 give
the values of m_;,. The exact limits presented in previ-
ous sections correspond to the fraction of particles going
to 0. Figures 6-9 assume p /T, =0, and curves are given
for a series of m /T, values.

Notice that the statistical mass limits for fermions are
only slightly different from the exact limits. For bosons
the situation is quite different. For instance, relativisti-

logyo

4 2 (0} |og1o _'rn_o

FIG. 5. Minimum boson mass (in wunits of eV
oi0*rio'/*g ~'/*) obeying Eq. (2) for the parameters used in
Fig. 3. Values for u/Tp are —10, —1, —107!, —1072, — 1073,
—10740, 1074 1073, 1072, 1071,1,10 from upper to lower
curve.
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&

-2

(0] 0.2 04

FIG. 6. Minimum value of , (in units of £ 2T3 1583/*g s € %500

0.6 0.8 N(f) 1.0

100”4r 10172 for fermions with u /T, =0 as a function of the parti-

cle fraction N (f) with occupation numbers between f and f ., assuming the minimum mass to be given by the lowest occupation
number in the interval. m /T takes values from O to 10 in steps of 2 (upper to lower curve).

cally decoupling bosons have very low exact m;, limits,
and for m /Tp—0 no exact limit exists. The statistical
limits are dramatically higher. If one assumes that 10 or
20% of all particles should be used in galaxy halos, sta-
tistical mass limits for bosons are not much smaller than
corresponding values for fermions.

VI. CONCLUSION

The present paper has been devoted to the derivation
of minimum mass limits for dissipationless particles con-

stituting the dark matter in galaxies and other bound
structures. The coarse-grained distribution of dark-
matter particles was supposed to be an isothermal sphere,
and limits were derived by comparing the maximum
phase-space density of such a coarse-grained distribution
with the maximal fine-grained phase-space density of the
particle distribution (so-called exact limits), or with the
characteristic fine-grained density of a given fraction of
particles (statistical limits).

From the mass limit, chemical potential, and decou-
pling temperature, the minimal contribution to the cosm-

1 ey r

log,o Q

Ot

——v—rvrrrT + T

-1t 1
-21 J
}
26 ' a ' T2 ' o
B log,, N(f)

FIG. 7. As Fig. 6, but for bosons with m /T, =1,10"',10"2,10"%0, 10 (upper to lower curve).
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10g16] Mmin
3 L

1

o 0.2 0.4

FIG. 8. m,, in units of eV o 56”*r 0!

curve).

/2, =1/

4

density parameter was derived. To be a realistic dark-
matter candidate, a given particle type should not con-
tribute more than Q h2~1 for particle mass equal to
m . If the minimal contribution derived is much small-
er than this value, it means that the particle is allowed to
be much more massive than m_;, , thereby contributing
the necessary density without violating the phase-space
constraints. Good dark-matter candidates in this respect
are therefore particles decoupling in the strongly nonrela-

0.6 0.8 N(F) 10

“ as a function of the fermion fraction N(f). Parameters as for Fig. 6 (lower to upper

tivistic regime, particles with negative chemical potential
and relativistic decoupling (provided that they do not
have antiparticles with equal but positive chemical poten-
tial), and bosons with (m —u)/T,—0. However, in par-
ticular limits for bosons are strengthened if one considers
the statistical limits described in Sec. V, rather than the
exact limits. This is because the few low-momentum bo-
sons have much higher (in some cases divergent) occupa-
tion numbers than is typical for the distribution in gen-

4 —r —

10g40[ Mmin

-2 log,, N(f) Y

FIG. 9. As Fig. 8, but for bosons with m /T, =0,1073,1072,10" 1,1, 10 (lower to upper curve).
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eral.

To use the limits in practice, one should be aware of
the potential loopholes described in Sec. II. First of all,
the galaxies to be used must be very well modeled, and
the luminous contribution to the density properly sub-
tracted. Second, the core radius and velocity dispersion
of the dark matter must be inferred. And finally, one
must remember that the coarse-grained distribution of
dark matter is not necessarily isothermal, or even isotro-
pic. Therefore the phase-space limits derived should
merely be used as an order-of-magnitude estimate.
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On the particle physics side it is crucial to remember
that limits apply only to particles that were once in kinet-
ic equilibrium (e.g., not to nonthermal axions). One also
needs independent information on the chemical potential
and decoupling temperature of the particle in question (it
is implicit in the derivations that decoupling takes place
over a fairly restricted time interval).

But apart from the reservations mentioned in the
preceding paragraphs, the generalized Tremaine-Gunn
constraints derived in this paper should be obeyed by any
particle candidates for the dark matter.
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