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Generalized Tremaine-Gunn limits for bosons and fermions
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The Tremaine-Gunn phase-space constraint giving lower limits on the mass of dark-rnatter particles
that were once in kinetic equilibrium is generalized to arbitrary decoupling temperatures and chemical
potentials for ferrnions as well as bosons. It is stressed that even in the cases where no exact limit exists
(e.g., for bosons with a chemical potential approaching the mass) a statistical limit can be obtained. In
most cases particle masses of several eV or more are necessary to explain the dark matter in galaxy
halos.

I. INTRODUCTION

One of the methods often used for constraining the
mass of elementary-particle candidates for the dark
matter in galaxies is the phase-space constraint due to
Tremaine and Gunn [1]. Originally the method was con-
structed with the aim of placing lower limits on the mass
of neutrino candidates for dark matter, but the method
was generally applicable to relativistically decoupling fer-
mions with a zero chemical potential. Madsen [2] gen-
eralized the limits to bosons, realizing the statistical na-
ture of the method for bosons with mass equal to chemi-
cal potential. A few comments on nonrelativistic decou-
pling were included in the latter investigation as well.

The present paper is devoted to a general derivation of
lower mass limits from conservation of fine-grained
phase-space density for bosons as well as fermions with
arbitrary masses, chemical potentials, and decoupling
temperatures. The classical Tremaine-Gunn limit is the
special case of fermions with a zero chemical potential
and relativistic decoupling. Other analytical limits are
derived as well, and the general cases are illustrated in
the figures.

The paper is organized as follows. Section II contains
a derivation of the Tremaine-Gunn limit for a general
distribution function and comments on the possible loop
holes in the method related to the assumption of iso-
thermality of the final state. Section III summarizes the
general mass constraints from phase-space conservation,
and gives some analytical limits. Section IV is devoted to
the relation between the mass limits derived and the
cosmic density parameter. Section V shows how statisti-
cal limits can be obtained in cases where no exact limits
exist, and how statistical limits in general are stronger
than the exact limits. Section VI contains the conclusion.

II. THE TREMAINE-GUNN LIMIT AND
ITS LIMITATIONS

Consider an isotropic gas with a distribution function
given so that 4m' n (p)dp is the number density of parti-
cles with momenta between p and p+dp. The occupation
number is then given as f(p)=h n(p) g/, where h is
Planck's constant and g is the number of helicity states.

For a particle species in kinetic equilibrium the occupa-
tion number is given by a Fermi-Dirac or Bose-Einstein
distribution,

m +mmin=
9A

2(2m. )
~ f,„gGo.r,2

=38 V 1/4 1/2 1/ P 1/4100 10 g & max (2)

Here o&oo=o/100 kms ' and r,o=r, /10 kiloparsecs
(kpc).

Equation (2) has been applied to a number of galaxies
by a number of authors for placing lower bounds on the
mass of dark-matter neutrinos (effectively f,„=1 for

f(p)= [exp[(E —p)/T]+1]
with p being the chemical potential, and the energy relat-
ed to momentum and mass via E =p +m (unless oth-
erwise noted we work in units where c =ks = 1).

Denote by N(f) the fraction of particles with an occu-
pation number exceeding f. Using a method introduced
by Tremaine, Henon, and Lynden-Bell [3], Madsen [2]
utilized conservation of fine-grained phase-space density
during dissipationless evolution to calculate the distribu-
tion of the maximal fraction of particles, N(y), that can
be arranged to have a coarse-grained phase-space density
exceeding p. Whereas N(q&) is general exceeds N(f), a
crucial observation is that y cannot exceed an eventual
maximum value of f.

This observation was the basis of the Tremaine-Gunn
argument [1], which in its simplest version says that the
coarse-grained phase-space density of neutrinos in galaxy
halos cannot exceed the maximum value of the initial
fine-grained density, which in the case of one type of rela-
tivistically decoupling neutrino with zero chemical poten-
tial equals g/2h (in the subsequent derivation we shall
use f,„g/h for the maximal fine-grained phase-space
density). Assuming the dark-matter distribution to be an
isothermal sphere with core radius r, =(9cr /4trGp, )'
where p, is the central density and o. is the Maxwellian
one-dimensional velocity dispersion, the corresponding
maximum phase-space density is p, m (2m o )

where m is the particle mass. Requiring this maximum
to be less than f,„glh leads to
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neutrino plus antineutrino with @=0). "Typical" neutri-
no mass limits derived for spiral galaxies are in the range
5 —40 eV, whereas the presence of dark matter in dwarf
spheroidals (still a somewhat controversial issue on the
observational side) would correspond to limits in the
range 100-300 eV. For comparison the upper cosmolog-
ical bound for a single stable Savor is [4] m, &91.5 eV
Qhog ' (0 is the present mean density in units of the
critical density, and hp is the Hubble parameter in units
of 100 kms 'Mpc ', with 0.4&ho&1), and the experi-
mental limit on the mass of the electron antineutrino is
close to 10 eV [5]. Different authors have drawn different
conclusions on the viability of neutrino dark matter from
these numbers [1,6—13].

Before continuing with a generalization of the
Tremaine-Gunn limit it should be emphasized that the
application of Eq. (2) and the more general results below
is subject to a number of problems, which means that one
should regard the limits as order-of-magnitude estimates,
rather than precise values.

(1) It is very difficult to subtract the luminous contribu-
tion from most rotation curves, thereby isolating the
dark-matter contribution. Only a quite small number of
galaxies are modeled in such detail, that it makes sense to
extract well-defined parameters for the dark halo. Better
observations and detailed modeling have shown that
many of the galaxies for which neutrino mass limits have
been published (including some used by the present au-
thor) are unsuited for that purpose [14,10].

(2) The dark matter is (by definition) not directly ob-
servable. The actual coarse-grained phase-space distribu-
tion cannot be seen, and there is no guarantee that the as-
sumption of an isothermal sphere, which is a basis of Eq.
(2), is correct. In fact, it is not even known whether the
dark matter has an isotropic velocity distribution. As
discussed in Refs. [7,9,12,13], deviations from isotropy
may significantly change mass limits, thereby weakening
the Tremaine-Gunn constraint.

(3) If an isothermal sphere is assumed for the dark
matter, there are still problems related to the determina-
tion of the core radius and velocity dispersion. Using
measured values for the luminous component is not
necessarily correct. In fact, there are good reasons for
believing that the dark matter is more extended than the
luminous matter, so use of the luminous core radius
makes the neutrino mass limits too strong. Similar prob-
lems relate to the velocity dispersion. For instance, the
neutrino mass determined from dwarf spheroidals may be
reduced to acceptable values if the dark halos are much
more extended than the stellar components [6,8, 15].

(4) Finally one should incorporate knowledge about the
complete fine-grained distribution function, and the cor-
responding bounds on the coarse-grained distribution, in-
stead of only comparing maximum phase-space densities.
An attempt in this direction was made by Madsen and
Epstein [6], who introduced the concept of a maximally
compact sphere of neutrinos consistent with the neutrino
distribution function at decoupling and the spherical Je-
ans equation (the construction is not a steady-state solu-
tion, but nevertheless gives useful instantaneous limits).
In Section V we shall return to the importance of the fact

that in some cases a large fraction of particles have occu-
pation numbers much below f,„,so that at least statisti-
cally mass limits increase relative to Eq. (2).

In the rest of this paper we shall compare the fine-

grained phase-space distribution of dark-matter particles
with the isothermal sphere, and therefore neglect the pos-
sible consequences of anisotropy and other deviations
from isothermality [item (2) above]. We shall not com-
ment further on the observational problems discussed as
items (1) and (3), whereas some consequences of consider-
ing the complete distribution of f rather than just f,„
[item (4)] will be described in Sec. V. But the reader
should be aware of the problems described and not use
the generalized Tremaine-Gunn mass limits uncritically.

III. MAXIMUM OCCUPATION AND MINIMUM MASS
The distribution of fine-grained occupation numbers

for a species in kinetic equilibrium is given by Eq. (1) at
the temperature of decoupling, TD. In particular, since
the particle energy is at least equal to the mass, the max-
imum occupation number is given by

f,„=[exp[(m p) ITp ]—+1] (3)

For ferrnions, there are no a priori restrictions on the
chemical potentials. For bosons, p~m, and for bosons
and antibosons annihilating into photons (P= —p),—m ~p~m to avoid negative occupation numbers for
particles as well as antiparticles. (Sometimes one works
in terms of the kinetic chemical potential, pk —=p —m. In
the present paper we shall not use pk, but note that the
chemical potential used in Ref. [2] is in fact pk. )

Some useful limits can be extracted from Eq. (3). For
example, for bosons,

[(m p)l Tp ]
' —if (m p)ITp ~0—,

max~ '

exp [ —(m —p ) /Tp ] if (m —p )/Tp ~ oo,
so that the minimum mass goes like

(4)

f,„~ . —,
' if (m p)ITp~O, —

exp[ —(m —p)ITp] if (m p)ITp ~~ ~—
(6)

with
—i /4 —1 /2 —1/4

,.„—+38 eV o )pp r)p g

1 if (m p)ITp~ —~, —

x 2'~ if (m p)/Tp ~0, —
exp[(m p)I4Tp] if (m —p)ITp ~~ . —

Note that fermions and bosons, as expected, behave
similarly in the nonrelativistic limit [(m p)ITp~ ~], —
that the boson mass limits diverge for (m p, )ITp~0, —

38 V 1/4 —1/2 —1/4mmin~ e o &pp r &p

[(m IJ, ) ITp ]'~ i—f (m p)/Tp ~0, —
x . (5)exp[(m —p)I4Tp] if (m p)ITp~ ~ . —

For fermions,

1 if (m —p)/Tp~ —~~
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and that the fermion mass limits only depend very weakly
on (m p—)ITD in the degenerate limit. The original
Tremaine-Gunn limit [1] (for one fiavor without antipar-
ticles) corresponds to Eq. (7) for (m IJ, )—ITD~O (p=O
and m/TD « 1). The general results for m;„as given
by Eqs. (2) and (3) are illustrated in Fig. 1.

IV. CONTRIBUTION TO THE COSMIC DENSITY

The present contribution to the mean mass density of
the Universe from a particle species decoupling at tem-

I

perature TD is given by p =m(p /+0) f4~p~n(p)dp
where the integral over the distribution is to be calculated
at decoupling, and RD and Ro are the scale factors at
decoupling and the present, respectively. Using entropy
conservation on the form g~, T R = constant, where
g„=gb„,„g;(T,/T) .+ ,'gr„—;,„~;(T;/T), and intro-
ducing the density parameter Q„=p„/p„;, (p„,,=8.099h 0 X 10 GeV ), one finds

gg„[(x+plT ) —(m IT ) ]' (x+plT )

xpcrit m
2 0 f (m —p)/TD exp(x)+1277 gesa

The integral can be evaluated analytically in certain limits, and takes the following values:

2g( 3 ), boson, TD »m, p,
3g(3)/2, ferrnion, TD »m, p,
(p m) —/3TD, fermion, TD «p, —m,
2 exp( p ITD ), ferrnion and boson, p & 0; ~ p ~

» T»m,
2' (m /2m. T~) exp[ —(m p)ITD], fe—rmion and boson, m, m —p&&TD,

where Riemann's function is g(3) = 1.202.
For a present temperature To =2.75 K T2 75 one gets the limits

(8)

(9)

2.00X

1.50X
Q h *"= 277X
gg es0 2.75T'.

1.66X

1.04X

10 2m.v

0 'm. v

10 m (p —m ) /T

10 ,mexvp(p/T )D,

10 m, v(m/TD) exp[ —(m p)ITD], —

(10)

-1-8 0
~ ~ ~ ~ ~ ~ ~ ~

~r —i/4p. —i/ ' js lotted as aFIG. 1. Generalized Tremaine-Gunn mass limits as given by Eqs. (2) and (3). m;„ in units of e' o.
F00 ri0 g

'
p

function of (m —p)/TD for fermions (upper curve) and bosons (lower curve).
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eral.
To use the limits in practice, one should be aware of

the potential loopholes described in Sec. II. First of all,
the galaxies to be used must be very well modeled, and
the luminous contribution to the density properly sub-
tracted. Second, the core radius and velocity dispersion
of the dark matter must be inferred. And finally, one
must remember that the coarse-grained distribution of
dark matter is not necessarily isothermal, or even isotro-
pic. Therefore the phase-space limits derived should
merely be used as an order-of-magnitude estimate.

On the particle physics side it is crucial to remember
that limits apply only to particles that were once in kinet-
ic equilibrium (e.g., not to nonthermal axions). One also
needs independent information on the chemical potential
and decoupling temperature of the particle in question (it
is implicit in the derivations that decoupling takes place
over a fairly restricted time interval).

But apart from the reservations mentioned in the
preceding paragraphs, the generalized Tremaine-Gunn
constraints derived in this paper should be obeyed by any
particle candidates for the dark matter.
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