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We derive a proper expression for the power spectrum of baryon-number fluctuations arising from de-

cay of a heavy Majorana lepton with space-dependent CP violation due to a spatially varying Majoron
Beld. The spectrum is explicitly calculated in a power-law inflation model and found to be almost scale
invariant on small scales and white noise on large scales. Under reasonable assumptions, we present a
natural particle-physics model which provides an appropriate initial condition for the minimal isocurva-

ture scenario of large-scale structure formation.

I. INTRODUCTION

One of the primary purposes of cosmology is to explain
how the observed large-scale structures were formed in
the course of cosmic evolution. Though several compet-
ing scenarios have been proposed so far, too-large obser-
vational uncertainties make it impossible for us to single
out the right one. Indeed we do not know yet even what
kind of matter dominates our Universe, nor do we know
precise values of fundamental parameters such as the
Hubble constant, density parameter, or cosmological con-
stant. In this situation Peebles and Silk listed various ob-
servational constraints that a successful scenario should
satisfy and made a cosmic book [1], in which they con-
cluded that the canonical cold-dark-matter (CDM)
scenario in the inflationary cosmology [2] and the
minimal baryon isocurvature scenario in a low-density
universe [3—6] surpass other candidates at present.

The cold-dark-matter scenario is attractive in that its
initial condition is based on a rather definite prediction of
inflationary cosmology, that is, adiabatic fluctuations
with a scale-invariant (Harrison-Zel dovich) spectrum [7]
in a spatially flat universe. Unfortunately, however, quite
a few serious difficulties have been revealed for the
scenario recently [8]. In particular it seems incapable of
explaining very large-scale structures on scales over 100
Mpc whose existence has been claimed by a number of re-
cent observations [9]. Another uninteresting feature is

that, in spite of intensive efforts by experimentalists, we
have not seen any evidence for the existence of an ele-
mentary particle which may serve as cold dark matter.

On the other hand, the minimal isocurvature scenario,
which has been proposed by Peebles [3], attempts to ex-
plain'the large-scale structure formation in terms of a
very difFerent philosophy, or on a purely phenomenologi-
cal basis. A nice feature of this scenario is that it as-
sumes as the material ingredients only those that we
know exist, namely, baryons and radiation (photons and

massless neutrinos). However, as is well known, it is very
difFicult in general to account for galaxy formation only
with baryonic matter without violating the observed isot-
ropy of the cosmic-microwave-background (CMB) radia-
tion [10]. Hence it is necessary to assume a very ad hoc
type of primordial density fluctuations as the initial con-
dition, namely, isocurvature fluctuations with a steep
spectrum. Having less power on larger scales, one may
avoid a generic difficulty of models with isocurvature
fluctuations so that the scenario can be consistent with
the large-angle isotropy of CMB. On the other hand, the
large initial amplitude of fluctuations on smaller scales al-
lows early star formation soon after the recombination.
Stars then reionize the medium and baryons recouple
with photons, erasing small-angle anisotropies of CMB
through difFusion in the plasma. Thus once we admit this
seemingly unnatural initial condition, the scenario does
not contradict with the isotropy of CMB. In addition it
has some attractive features which are absent in CDM
scenarios: for example, galaxies may be formed much
earlier and large-scale coherence can be obtained [3,11].

Recently Yokoyama and Suto [11] proposed a new
mechanism to produce baryon isocurvature fluctuations
which may provide an appropriate spectrum for the
minimal isocurvature scenario. They considered a baryo-
genesis model with both hard and soft CP violation. The
former is responsible for the homogeneous part of the
baryon/entropy ratio, nb/s =10 ', and the latter for its
spatial fluctuations. To be more specific, in their model
the soft CP violation is induced by a spatially varying
Majoron field associated with a heavy Majorana lepton
field which decays into three quarks or three antiquarks
and thereby violates baryon-number conservation. In the
chaotic inflation model [12] they have shown that the
resultant spectrum of baryon-number fluctuations has
less power on larger scales, using an intuitive approach
by Kofman and Linde [13], and that the amplitude may
be large enough to provide the necessary initial condition
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for the minimal isocurvature scenario if the Majorana
leptons are produced maximally in the reheating phase.

In the present paper we improve the previous intuitive
calculation [13] to formulate a more proper expression
for the power spectrum of baryon-number fluctuations
and apply it to power-law inflation, keeping in mind that
many viable inflationary universe models such as extend-
ed infiation [14] or soft infiation [15] predict power-law
[16,17] rather than exponential [18] infiation. We find
that the resultant spectrum is almost scale invariant on
small scales and white noise on large scales and that it
may be obtained from a much more natural particle-
physics model than the one needed in the chaotic
inflation model.

The rest of the paper is organized as follows. In Sec.
II, we review particle-physics aspects of our model. In
Sec. III we present a generic formula for the power spec-
trum of baryon-number fluctuations and explicitly evalu-
ate it in a power-law inAation background. In Sec. IV we
consider a specific class of inAation models which realize
our purpose and discuss cosmological constraints on it.
Astrophysical constraints on model parameters of parti-
cle physics are studied in Sec. V. Finally, Sec. VI is de-
voted to discussion and conclusion.

II. BARYON-NUMBER FLUCTUATION FROM SOi 1
CP VIOLATION

We consider baryon-number violation due to a heavy
Majorana lepton N, which is supposed to generate tiny
neutrino masses via the seesaw mechanism [19]. Baryo-
genesis through N decay has been considered by a num-
ber of authors [20], although their analyses were focused
only on hard CP violation. The coupling between N and
the Nambu-Goldstone boson (called Majoron, which
arises when the lepton number is spontaneously broken),
however, naturally leads to soft CP violation as well.
Therefore an appreciable amount of baryon-number pro-
duction is expected if a coherent Majoron field is spatially
varying so that its complex coupling cannot be removed
by a global transformation. Yoshimura [21] proposed a
mechanism to generate isothermal baryon-number per-
turbations on the basis of the above soft CP violation but
did not give the spectrum of resultant Auctuations. For a
di6'erent mechanism of generation of baryon-number Auc-
tuations, see [22].

Let us first describe the particle contents of our model
using, for simplicity, the SU(5) representation. The Yu-
kawa coupling between fermions and Higgs bosons is
given as

r=[h, p'~(10)Q L(1 0) +h$21(1 0)g~( 5)+ h$3~( 5) NL(l)]S(5)+h N4(~l)CN~(1)S (01) +H. c. , (2.1)

where h, through h4 denote Yukawa coupling matrices
whose generation indices are suppressed throughout the
paper, L,R =(1+y~)/2 are chiral projections, and C is
the charge-conjugation matrix. Here f(5) and f(10) are
ordinary fermion fields in the 5, and 10 representations of
SU(5), and S(5) denotes Higgs bosons in the 5 represen-
tation whose color-triplet components S3 violate baryon-
number conservation. So(1) is a complex scalar field in
the 1 representation which generates Majorana mass to
Nz and spontaneously breaks lepton-number conserva-
tion when it acquires a vacuum expectation value
(So) =f. Then a Nambu-Goldstone boson, called Majo-
ron A (x), appears and it interacts with N through

I

as well as on coupling constants. In the case these masses
are of the same order of magnitude, we find B~ =a2a3,
where u;—:h; /4m [20]. Note that the mass of S3,Ms,
should be larger than = 10"GeV in order to meet the ex-
perimental bound on the proton lifetime [23]. Thus there
may appear spatial Auctuations of the baryon-number as-
sociated with that of a coherent Majoron field.

On the other hand, there are a number of possible
mechanisms to explain the homogeneous part of the
baryon-to-entropy ratio, nbls =10 . For example, if
appropriate hard CP violation is also present in Fig. 1,
that decay process can account for it as well. Decays of

2M~N+(1)CN~(1)exp i +H. c.T . A(x)

From this coupling CP violation arises even if the mass
matrix Mz is real. The Majorana lepton N violates
baryon number through three-body decays such as

N~qqq, qqq .

Through the above-mentioned CP violation, the space-
dependent net baryon number

NR

S

NR

8 (x)=B, sin (2.2)
dR

is generated from decay of a pair of N through the dia-
gram shown in Fig. 1. The coeKcient B~ depends criti-
cally on the masses of decaying N, exchanged N, and S3

FICx. 1. Interference diagram of Majorana-lepton decay pro-
ducing space-dependent baryon asymmetry.



972 MISAO SASAKI AND JUN'ICHI YOKOYAMA

S3 may also generate the right magnitude of the observed
asymmetry, if they are adequately produced in the
reheating phase [24]. Since we are interested in its fiuc-
tuations, here we simply assume that one of these mecha-
nisms is responsible for the homogeneous part.

III. POWER SPECTRUM OF BARYON-NUMBER
FLUCTUATIONS

and y are spatially separated. This means we have

i—G„(x,y) =G(x,y) =G(y, x)—= ( A (y) A (x) ) . (3.3)

That is, we may neglect the presence of the time-ordered
product and assume the symmetry in the arguments.

Then choosing the source density j as

(B(x)B(y)) =B (ein
A (x)

sin
d(y)

)
2

l

2
Reexp —A x —Ay

Here we consider the power spectrum of baryon-
number fluctuations (2.2). We assume the Majoron field
A (x) can be regarded as a free minimally coupled mass-
less scalar field in inflating spacetime. In reality, the sca-
lar field Sp suffers from fluctuations in the radial direc-
tion as well. In order that these radial fluctuations are
negligible and A (x) can be regarded as a free field, we as-
sume that Sp has a steep potential with a self-coupling of
order of unity or larger.

First note that the two-point correlation function of
B (x) is expressed as

and inserting it into Eq. (3.2), one readily obtains

exp —(d (x)+B (y)] )~

=exp (3.4)

—exp —
2 [G(r, t)+G(O, t)]1

where we have assumed the homogeneity and isotropy of
the vacuum state and set t =x =y and r =

~y
—x~. Thus

the spatial autocorrelation function of B is given by

(B(x)B(y) ) = exp
2

—exp —[ A (x)+ A (y)]

exp — d xd y j x GF xy j y (3.2)

where GF(x,y) is the Feynman propagator defined by
GF(x,y) =i ( TA (x ) A (y) ) with T representing the time-
ordered product. Since what we are interested in is the
spatial autocorrelation of A, we may assume the points x

I

(3.1)

Hence we need to evaluate ( e ' ' ' "' ' ) . In order to
do so, let us consider the generating functional of the
Green function for A:

Z(j)=(T exp iidxx d (xj)(x)

(3.5)

Before we proceed, we note that the general n-point auto-
correlation function can be straightforwardly calculated
by setting j in Eq. (3.2) to be

j(z)= g (
—1) '5 (z —x, ),

for all possible choices of o.; =0, 1.
In the above, we tacitly assumed that 8O:—( A (x) )/f

=0. However, in a region of space which corresponds to
our observable Universe it may well be nonvanishing
since 8o may take an arbitrary value (modulo 2m. ) when
the spontaneous breakdown occurs. The effect of a non-
vanishing 80 can be easily seen by replacing A (x) with
f80+ A (x) in Eq. (3.1). Then instead of Eq. (3.5) we
have

(B(x)B(y))= exp
2

1
[G (r, t) G(0, t) ]

—cos28o—exp — [G (r, t)+ G (0, t) ]
1 (3.6)

Thus the change brought about by a nonzero initial Op is
the appearance of a nontrivial coefficient in the second
term. It will be shown below, however, that this Op

dependence turns out to be unimportant.
Let us now calculate the correlation function G (r, t) in

a power-law inflation background. The spacetime metric
is assumed to be spatially fIat:

(3.8)

In terms of the conformal time g ~ —t " the scale factor
a ( g) and the Hubble parameter H ( g ) are expressed as

a(g)= 1

( H )]+]/n

(3.9)
ds = dt +a (t)dx =a (—7))( —dg +dx ),

with a (t) being a power-law solution:

(3.7)
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where H, is a constant.
As usual, we decompose the scalar field as

A (x)= 3/z &l, A(, (ll)e'"'"+&),A),'(g)ed k

(3.10)

e eA~
d AI —A~ AI
dpi dg a2(g)

A), (g) =

The solution is given by
' 1/2

H~+' "(—g) [c(,)H"'( —kg)

(3.12)

d2

dn'
1+—— +k A), (g) =0,1 2 d

n 'Q d'g
(3.1 1)

with the normalization

where 8& and && are annihilation and creation operators,
respectively, for a suitably chosen vacuum state, and
A), (g) is the corresponding positive-frequency mode
function. From the field equation and the canonical com-
mutation relations, the mode function A), (g) satisfies the
equation

+c),~H' '( —kq)],
where ~c(„~ —(c),z~ =1,v= —', +1/n, and H',J'(z) is the
Hankel function of the jth kind. We consider the case
cI„=1and c&2=0 since it corresponds to the usual Min-
kowski vacuum at g~ —~ and it is natural to assume
that any k mode is in this vacuum when —k g
=k/aH )&1, i.e., when the effect of cosmic expansion
can be neglected.

Then the symmetric two-point function G'"(x,x')
—:( A (x) A (x')+ A (x') A (x) ) is given by

d kG'"(x,x')= f [A), (g)A(, (ri')+ A), (g')A(,*(g)]e' '
(H2 )1/2 H2 ( )3/2f [H(l)( k~)H(2)( k~ )+c c ]e

'&.rd k
4

=(H qq')'/"G'"(x, x'),

where r=x —x'. Here G(ds'(x, x') is formally equivalent
to the symmetric two-point function of a scalar field in de
Sitter spacetime with the Hubble parameter H, , whose
mass squared m ~ is negative and given as

1/2
3 1 9 m~

V ——+—= or m~=—
2 n 4

1 3
n2 n

(3.13)

Here Gdso(Z) is the symmetric two-point function for the
Euclidean vacuum with m ~ analytically continued from a
positive value to negative:

H
G (Z)= I 3+—I(1) 1 1

8 2 n n

1 1 1+ZXF ——,3+—,2,n' n' ' 2
(3.15)

with I' being the hypergeometric function. Gd's'(gq') is
given by

This implies that a massless minimally coupled field in a
power-law background is manifestly infrared unstable,
while it is only marginally unstable in an exactly de Sitter
background.

The regularization of this infrared instability has been
explicitly done by Nambu and Sasaki [25] with a method
appropriate to the inAationary universe. They find

2+ ~2 2

Gd(ls)(x, x )=Gd(ls)0(Z)+6d(s)(m ), Z-= "+", "
2nn'

(3.14)

1/n
—(1) n~e l 0G.s (m') =

4~' 4gq'
(3.16)

where r0 is the comoving length of infrared cutoff which
should be chosen much larger than that of the present
horizon.

Since we are interested in the behavior of Gds'(x, x')
with x and x' being spacelike separated much further
than the Hubble length, we may expand Gdso(Z) assum-
ing Z ((—1 to get

2 1/n
I (3+2/n)I ( —1/n) 1 —Z

Gdso(Z) =
glr2 I (2+ 1/n) 2

1/n
nHe r2

4~2 4qq'
(3.17)

where the last approximation is good for n )& 1 which we
assume hereafter. Thus we finally obtain the following
spatial correlation function:

G(r, l)) =—,'G"'(r, g)

nH (g)
8m.

1/n
r

1/n
r0

(3.18)

Note that scales of our interest are in the range
)g( «r «ro.

The bare G (O, l) ) = ( A (x) ) is also a divergent quanti-
ty and should be regularized. However, in this case it is a
usual ultraviolet divergence and the renormalized G (0,g)
may be estimated by introducing an ultraviolet cutoff at
the horizon scale r =

~ q ~:
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(3 19)

1/n

G(O, rj) = — 1—nH (r/) "0

8m

which is in agreement with Sahni [26] and Pathinayake

and Ford [27] at the large-n limit.
Now we turn to the evaluation of the spatial correla-

tion of 8(x), Eq. (3.6). From Eqs. (3.18) and (3.19), we
have

Be nH (2))(B(x,g)8(x+r, g)) = exp 1—
8' f

1/n
I'

1 —cos200 exp —2
nH (q)

Sm f
1/n

Tp
1/n

r

(3.20)

Since scales of our interest are in the range ~r/~ ((r &(ro,
we see the term proportional to cos2I90 is negligible.
Thus both the unwanted initial-value dependence and the
cuto6'dependence disappear as it is desired.

If we identify gk with the epoch when the k mode
leaves the horizon, the correlation function then reads

(8( 0, 2)) 8(r, rI) ) = expI n/3k [(k2)) /" (kr) /"—]I,

I

=—n/3ks ", we find

k) (&p )
—3n/2

&
—I+3n/2 —ud

2 0

=—(nPk )
" I —'n

2 2

1/2 ' —3n /2
n m. 2e/3

k ~YIf ~, n/3k )& 1

H (r/k)

8 2 2
(3.21) (3.25)

We define the power spectrum Pii(k) of the baryon-
number Auctuation as

Pii ( k, r/) =Id r ( 8 (0, r) )8 ( r, 2) ) )e (3.22)

From Eqs. (3.21) and (3.22), the power spectrum at the
end of inflation, g=gf, is expressed as

Ps(k, r/f ) =4mfdr r . (B(0,2)f )8 (r, gf ))

2~B~ 2/n

k
exp[nPk(kr)f ) "]

X ds s sins exp —n &s

~B~ „p

k
e fJ(n, k), (3.23)

= n/3k I (2+2/n)sin(m. /n)

=m./3k=sr/3f(kr/f) /", npk «1 . (3.24)

In the latter case, introducing a new variable u

where we have used the relation /3k =/3f(kr)f) " and
assumed n/3f & 1. We note that the lower bound of the
integral in the second line of Eq. (3.23) is actually k ~2/f ~,

corresponding to the cutoA'at the horizon scale. The as-
sumption n/3f ( 1 enables us to put the lower bound zero.
Of course one may consider the case n/3f ))1. In fact,
the result for this case coincides with that for a pure de
Sitter background (n ~ oo ). However, it turns out to
give either the amplitude too small or the spectrum too
fiat for cosmological interests [28].

The integral J(n, k) may be analytically estimated in
two extreme cases; for n/3k «1 and nPk »1. In the
former case, the leading-order contribution reads

J(n, k)= n/3k J ds s' —/" sins
0

The resultant power spectrum in the two asymptotic re-
gions takes the form,

n Pf —2/n

~2B 2 for k»k, ,
nk

Pii(k)= '
nPfB,e nm

k,

' 1/2 ' 3n/2
3n

(3.26)

for k «k, ,

where k, is the comoving wave number corresponding to
n/3k = 1 and given explicitly by

C

/3 )n/2

k, =
~ ~

=(n/3f)" H(qf)a(2If) .
gf

(3.27)

We can interpret the above spectral shape as follows.
For k ))k„ the amplitude of fluctuation is so small that
we can expand 8(x) as B(x)=B,sin[A(x)/f]

J(10,k)
1O-I—

103

105—

107

109

10-»
10-8 106 104 102

k/k,

I

10o
I

102

FIG. 2. Numerical values of J(n, k) for n =10 as a function
of k/k, . The numbers indicated at several points on the line
are the values ofp,z at respective points.
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10o

102
J(20,k)

104

106
10-s

-10

10-12

10-14

-16

10-1s
10-" 10-14 10 11 10 s 10 10 10' 10'

k/k,

Z„=f d4x& g— , Z g~ —a„ya.y V(y—)
1

V(P) = Vo[cosh(A, ~Q) —1], (4.1)

where K =8~G and VQ and k are constant. The potential
has the asymptotic forms

in modified Einstein theories such as the Brans-Dicke
model or induced gravity theory [14,15,29]. In fact, the
latter class may be transformed to the former by a con-
formal transformation [30]. Hence in order to avoid un-
necessary complications we consider the following simple
model for the inflaton P [31],in which generic features of
more complicateed but viable models are maintained:

FIG. 3. The same as Fig. 2 but for n =20.

d Indi(k) 8lnJ(n, k)
dl k Bl k

(3.28)

The values of p,s-(k) for several points of k are also
shown in Figs. 2 and 3.

Thus provided that there exists a reasonable
inAationary model which implements the desirable
particle-physics contents and which yields an appropriate
transition scale k, and amplitude of Auctuations, an
adequate initial condition for the minimal isocurvature
scenario may be realized very naturally. In the next two
sections we consider these points.

IV. MODEL CONSTRUCTION AND COSMOLOGICAL
CONSIDERATION

In order to compare predictions of the present model
with observations, we must specify evolution of the
Universe from inAationary era to present. To do this we
should first specify a scenario of power-law inAation.
There are two generic classes of models which predicts
power-law inAation. One is those containing a scalar field
with an effectively exponential potential in Einstein gravi-
ty theory [17]. The other is models with an ordinary
inflation-driving (inflaton) field with a nearly flat potential

=B» A (x)jf. Hence fluctuation of B (x) has the same
spectral shape as that of A (x), which is almost scale in-
variant. On the other hand, for k «k„Auctuation of
A (x) is larger than 2rtf, so that sin[A (x)If] takes a ran-
dom value between —1 and + 1 on that scale, which im-
plies that there is no correlation in sin[A (x)lf) on such
a large scale. Thus the power spectrum becomes white
noise on large scale.

Numerical values of J (n, k) are shown in Figs. 2 and 3
for n =10 and 20, respectively. As can be seen from the
figures, the span of intermediate scales between almost
scale-invariant region and white-noise region becomes
wider as n increases. Since astrophysical consideration is
usually given to primordial Auctuation spectra of a
power-law form, it is convenient to introduce an effective
power-law index for the baryon-number Auctuation on
scale k, defined as

—,
' Voexp(A. ~P) for P))

A,K
V[0]=

—,
' Vol, 2~ P = ,'M&/ —for l(t l

(&
A,K

(4.2)

If the Universe starts classical evolution with a large
value of P as in the chaotic inflation scenario, the system
soon approaches the solution

=2—A'
a(t)=a, t'+", n =

1/2
6—A, 2

A,Kt
P(t) = ln= 2

A,K

(4.3)

Thus power-law inflation is realized for A. (V2 and
su%cient inAation to solve the horizon and Aatness prob-
lems may easily be obtained with a large initial value of P
[31]. Inflation ends when P(t) decreases to /=1 j(A,v).
We identify this epoch with the time t&(rII). Just after
t = tf, the Universe is dominated by a coherent field oscil-
lation of P and cosmic expansion law is identical to that
for a matter-dominated era. It is after P decays into light
particles when the Universe enters the radiation-
dominated era.

Denoting by Tz the reheating temperature, we find the
Hubble radius at the end of inflation, H(i)I) ':H& ', —
corresponds to the present length

lfQ —7 X 10 Hf ]Q T+7 pc (4.4)

lp
(4.5)

From Eqs. (4.3), (4.4), and (4.5), t is determined once we
specify the value of n or A, . For definiteness of the discus-
sion below we consider two specific values of n; n =10
and 20, hereafter.

The first constraint we consider is the amplitude of adi-
abatic Auctuations. It is given by

where Hflp=Hf /10' GeV and T&7= T& /10 GeV. The
time, t, when a length scale relevant to galaxy formation
or lp —1 —10 Mpc left the horizon during inAation is re-

lated to tf as

1ln
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5p H 4Kt&
' for n =10,

11KtI, ' for n =20, (4.6)

on comoving scale k ', where as usual the epoch t =t& is
when the k mode left the horizon during inflation [17].
The amplitude is larger for a larger length scale. We
demand

2 2 2
K K & T4

0
(4.13)

the total decay rate of P. Then the produced Majorana
leptons decay into lighter particles almost instantaneous-
ly to reheat the Universe up to a temperature T~. The
Majorana lepton-number density n~ and the reheating
temperature Tz are given from the relation

(4.7)

on the present horizon scale -3X10 Mpc, which is
translated to the following constraint on Hf ..

20 for n =10,
80 for n =20 . (4.8)

Then adiabatic fluctuations would be both dynamically
unimportant and harmless to the observed isotropy of
CMB. From Eq. (4.8), we obtain the following constraint
on the inflaton mass M&

..

2X10» GeV for n =10,(
8 X 10" GeV for n =20 .

2

n~-—k M~4

MPl

M~
T~ ——A,M~

Pl

' 1/2

—10 M~l lMpl l GeV

(4.14)

nb(x)
5 = 10 B (x)MI,i„. (4.15)

respectively, where M&» =Mz /10» GeV, M&»
=M&/10" GeV, and g, = 100 is the effective number of
massless degrees of freedom. Thus the magnitude of
baryon/entropy fluctuations arising from the process de-
picted in Fig. 1 reads

Next we consider reheating processes. If one assumes

P is coupled to some other specific fields, then those parti-
cles may be dominantly produced from the coherent os-
cillation of P with high efficiency [11,24]. Such an as-
sumption, however, is artificial and ad hoc. In the
present model, on the contrary, P may be naturally relat-
ed to gravity sector and interacts with a11 the other fields
with gravitational strength, as in the case of soft inflation
[15] or supergravity models [32]. A plausible form of the
interaction is

=e '~(M FF+ 'M B )—f F ~ a (4.10)

for fermion F and boson B. Then P will decay dominant-
ly into heaviest particles that are lighter than M&/2 with
a quite small decay rate,

MF
M& for fermionic two-body decay,P~FF

Pl

M~r
M MPl

for bosonic two-body decay,

(4.11)

(4.12)

where MPl stands for the Planck mass. Hence it is likely
that Majorana leptons X are dominantly produced in the
reheating stage with decay rate (4.11), provided their
mass is M& —10' " GeV &M&/2 [33]. We shall as-
sume this is the case in the present model. We mention
that the above value of Majorana mass is also appropriate
to generate a tiny neutrino mass via the seesaw mecha-
nism [19] which may solve the solar-neutrino problem
[34].

The reheating takes place when the Hubble parameter
decreases to the value H(t)-I &—- I

& &&, where I
&

is

Since the amplitude of the entropy perturbation S(x) is

5(nb(x)/s )
8 (x }= = 10'05(n„ /s ),

nb /s

its power spectrum is given by

Ps(k) =10' M~iiP~(k) =Q Pii(k) . (4.16)

We require that the amplitude of the above primordial
entropy fluctuations should not exceed unity on any
scales so that the standard primordial nucleosynthesis
scenario works [35]. Hence,

k
max (S ) =max

3 Ps(k)
(2ir)'

(QB, )',p=max e fJ(n, k) & 1 .
8~2

(4.17)

7X10 for n =10,
(OB, )e 1X10 for n =20 . (4.18)

V. ASTROPHYSICAL CONSTRAINTS ON
MODEL PARAMETERS

Starting with the initial condition (4.16) we can calcu-
late the time evolution of the isocurvature fluctuations
using linear theory [36], according to which the power
spectrum of density fluctuations at recombination,
P(k, z,«), is related to Ps(k) as

One should probably keep in mind that the above re-
quirement is not really a constraint but just imposed be-
cause we do not know precisely what would happen if the
baryon-number perturbation was large during the nu-
cleosynthesis. Using numerical values of J(n, k), the con-
dition (4.17) implies
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Ps(k), k ~ k,
P (k)(k/k

if Qh 80.05. Here z,« —-1300 and k,q=2~/[10(Qh )

Mpc] is the comoving wave number corresponding to the
horizon scale at the matter-radiation equal time, where h
is the present Hubble parameter normalized by 100
km s 'Mpc

As is seen in the previous section, there are essentially
two free parameters for each choice of n, namely, 8, ,
which determines the magnitude of density fluctuations,
and k„which determines the spectral shape on scales
relevant to galaxy formation. We are now in a position
to determine them from astrophysical requirements.

Astrophysical aspects of the minimal isocurvature
scenario is a flat Universe with a nonvanishing cosmolog-
ical constant have been extensively discussed by Yokoya-
ma and Suto [11]. Making use of their results, we specify
values of model parameters. We take a model with
Q=Qb =0. 1 and h =0.5 as an example, although various
dynamical estimates typically gives a larger value [37]
and standard nucleosynthesis predicts somewhat smaller
value [38]. Note, however, that the latter critically de-
pends on the abundance of primordial lithium. We also
assume the existence of a positive cosmological constant
to render the Universe spatially flat as predicted from
inflation. For convenience, however, we leave the h
dependence in formulas below.

In order to meet the constraints imposed by the large-
scale isotropy of CMB [39], the effective power-law index
should satisfy p, ff

~ —1.5 on a present scale lp —25h
Mpc [11]. Although this constraint has been derived
with a particular normalization scheme of density fluc-
tuations, namely the so-called J3 normalization;
J3(r =25h ' Mpc) =780h Mpc [40], a different nor-
malization scheme by mass irregularity, ((5M/M) ) = 1

on scale r =ah ' Mpc, changes the resultant amplitude
of CMB anisotropies by no more than 30%%uo [11]. Hence
for simplicity we adopt this latter scheme to normalize
the fluctuation amplitude, which reads

'2 3 '2

(
5M k„i Dp

P(k„i,z «) =1 .
r =8h Mpc

(5.2)

Here 2~k I
' is the comoving length scale corresponding

to Sh ' Mpc today, which is smaller than 2~k, ', and
Dp /D is the linear growth factor from the recombina-
tion era up to present. This growth factor depends very
much on the thermal history of the post-recombination
era.

After recombination at z„,=1300, density fluctuations
on scales larger than the Jeans mass scale Mz ——2X10
h 'Mo, which corresponds to 2mk& ' ——50h ' kpc to-
day, start to grow in proportion to the scale factor. By
the time the root mean square of fluctuations on the Je-
ans scale reaches —,', typical peaks become nonlinear and
star formation presumably takes place to reionize the
medium again [6]. Hence the redshift at this epoch, z;,„,
is given from the equality

kJ 1+z„,
P(kj, z„«)(2~)' ' "" 1+z,.„

'2
1

4
(5.3)

Evolution of fluctuations is different depending on wheth-
er z;,„~z,d —=130h =100 or not, where z =z,d is the
epoch after which the Compton drag force is no longer
effective [41]. The linear growth factor from z =z,d to
present has been calculated to be =74h ~ =56 [11].
Thus we have

and

Dp 1+z„,
rec + ion

(5.4)

Dp 1+z„,
=74h ~ =7X10 for z,d ~z;,„))I . (5.5)

Now let us show that values of model parameters
specified in terms of the above normalization scheme lie
in their plausible ranges from both astrophysics and
particle-physics points of view.

(i) n =10. In this case, star formation may start fairly
early and we may use Eq. (5.4) with large enough QB„.
From Eqs. (5.1), (5.2), and (5.4), we have
J(n, kz)/J(n, k„l)=56 /4=8X10 with kJ/k„&-—2X10.
Using these ratios we can specify the scales kJ and k„i
from Fig. 2 to find kJ-—1X10 k, and k„j-—6X10 k,
independent of QB, . Then the magnitude of the fiuctua-
tion on the Jeans scale at recombination turns out to be
about 0.15(QB„/QB, '" ), where QB, '" is the upper
bound of QB, imposed by Eq. (4.18). This in turn means

z;,„=10 (QB, /QB, '"
) from Eq. (5.3). Thus in this case

the Universe may be reionized soon after the recombina-
tion as in Peeble's original scenario [3]. Using the
definition of k, (3.27) and Eq. (4.4), we find

P =1X10 4H ' '~Tf f10 R7

hence

f= 1 X 10"H»0 GeV ~ 2 X 10' GeV,

(5.6)

(5.7)

nP
from Eq. (4.8). Since e =1.0, we have QB~'" =30, so
z;,„~z,d for QB„&3. The above argument together with
Eq. (4.9) yields

B,=(3-30)X10 M~, I ~2X10 (5.8)

If we take smaller values of B„on the other hand, kJ
and k„i must be specified by a different procedure, which
we demonstrate for n =20 below.

(ii) n =20. In this case, star formation becomes possi-
ble only after z =z,d even if we take the maximum value

QB, '". In fact if one tried to determine kJ and k„i
through the above procedure, the amplitude of J(20, kJ )

would be found too small compared with the maximum
value of J (20, k). This is because the rapid cosmic expan-
sion makes the increase of peff so slow as a function of
length scale that the amplitude of fluctuations are
suppressed too much on astrophysically interesting scales
where p,s should be large enough. Thus Eq. (5.5) applies
and from Eq. (5.2) and Fig. 3, one can specify k„i as a
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function of QB~. For example, if we adopt QB, '", we
find k„I—-8 X 10 ' k, and kJ —- 1 X 10 ' k, . The magni-
tude of Jeans-scale fIuctuations at recombination turns
out to be about 0.03, which yields z;,„=80. Following
the same steps as before, we find

pf ——8X10 Hf)0~ T„7'~

f=1X10' H»o GeV(8X10' GeV,

B+ —1 X 10 My~~ 2X 10

(5.9)

For either of the above two cases, we find the effective
power index p,~ on 25h ' Mpc is larger than —1.5,
which makes the anisotropy of CMB well below the ob-
servational upper bound, while large-scale coherence is
maintained as shown in [11]. If one adopted a different
normalization scheme of density fluctuations, values of
various parameters should be determined by a different
procedure and they might change by a factor of 2 or so
accordingly. However, we believe the physical
significance of the present model would hardly be
affected, since our model allows a wide parameter space
as discussed above.

VI. DISCUSSION

In concluding the present paper, let us consider the
naturalness of model parameters of particle physics ob-
tained above. Though the value of z;,„ turns out to be
very different in the two cases considered, we have got
similar constraints on model parameters from astrophysi-
cal consideration.

First the value f—10' GeV is quite appropriate to
generate a Majorana mass of —10' —10" GeV. Next
B~ -10 —10 is possible with natural magnitudes of
coupling constants provided the value of M~ lies near its
lower bound [20]. However, this condition on the
Higgs-boson mass may be removed if we consider a
scenario such that lepton-number fluctuations are first
generated from Majorana leptons through a lower-order
process without exchanging any Higgs particle S3 and
that they are converted to baryon-number fIuctuations at
the electroweak phase transition due to anomaly [42].

In order for the fluctuation in the Majoron field to sur-
vive until baryogenesis (or leptogenesis, if one prefers the
above scenario), the temperature should not exceed =f

so that the symmetry of So remains broken in the post-
inAationary Universe. One should note that an adequate
baryon asymmetry can be generated through gravitation-
al interaction even with a low reheating temperature
T~ &&M~.

Finally let us consider cases with n other than 10 and
20. If we decrease n, the upper bound of the inAaton
mass is lowered to avoid too-large adiabatic Auctuations.
Then M& should also be smaller so that N's are adequate-
ly produced in the reheating phase through gravitational
interaction. This may cause, however, too much decrease
in B,. On the other hand, if we increase n, the span of
intermediate scales between the almost scale-invariant re-
gion and the white-noise region in the power spectrum
becomes larger and star formation may not start until too
late an epoch as discussed in Sec. VI. Thus we conclude
neither n « 10 nor n »20 is appropriate.

In summary, we have derived a proper expression for
the power spectrum of baryon-number fluctuations aris-
ing from decay of a heavy Majorana lepton in which CP
violation is space dependent due to a spatially varying
Majoron field. %'e have constructed a natural particle-
physics model, which is implemented in a power-law
inflation model with the power-law index around
n =10-20, to provide an appropriate initial condition
for the minimal isocurvature scenario of large-scale struc-
ture formation.

Note added in proof. After submitting this manuscript,
we became aware that the Majorana lepton X should also
have an intrinsic mass term in order to guarantee CP
violation discussed here. Although a certain kind of sym-
metry is necessary to avoid harmful domain walls result-
ing from quantum corrections, other conclusions of the
present paper should remain unchanged. &e thank C.
Hill for pointing this out.
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