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Direct CP violation in lt = 3m. decay: Addendum on CP-violating effects in charged-IC decay
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Contrary to a recent claim that CP asymmetry in the slope parameter of E-+- —+m —m+m is as large as
of order 10,our calculation shows that, within the framework of the 1/N, approach, its magnitude is
not likely to exceed the level of 10 ' even after including the effects of Z penguin diagrams, isospin
breaking, and higher-order weak chiral Lagrangians. Our result suggests that it is a formidable task to
observe direct CI' violation in charged %~3~ decay.

Aside from the CP-odd effects characterized by the pa-
rameters g+ 0 and oooo, CP violation in K —+3m decay
can also manifest itself in the following places: (1) charge
asymmetry measured by the slope parameter j in the Dal-
itz plot distribution of EL ~~+~ m. ,

M~ ~ 1+g (s3 —so)/m +j(s2 —s, )/m +
where s;=(k —p;) with k and p; being the four-
momenta of the kaon and pion i (the subscript 3 is as-
signed to the "odd" pion), and so=( s& +s 2+ s3)/3; (2)
partial-rate asymmetry in charged K —+3~ decay,

asymmetry is estimated to be at most of order 10
Moreover, we present a calculation in the 1/N, approach
and find that its magnitude is not substantially enhanced
by the effects of Z penguins, isospin breaking, and
higher-order weak chiral-Lagrangian terms. Our result
suggests that CP asymmetry in the linear slope g is at
least two orders of magnitude smaller than previously an-
ticipated.

Since it is necessary to include final-state interactions
in order to induce CP-violating asymmetry in the charged
K —+3~ decay, we write the ~ and ~' amplitudes in terms
of their isospin decomposition:I.(K+ 3') —I (K

— 3')
I (K+ 3sr)+ I (E 3') (2)

A (r+)=2(a&+a3)e ' —(b&+b3)Ye +b3Ye

A (r )=2(a*, +a3 )e ' (b f +b3 )
—Ye '+b'3*Ye

A (r'+)=(a, +a3)e '+(b, +b3)Ye '+b3Ye

A (r' )=(a;+a3 )e '+(b", +b3 )Ye '+b3*Ye

and (3) slope asymmetry of charged IC's,

where Y'=(s3 —so)/m, a„b, (a3, b3) arise from the
transition into the I = 1 state of three pions caused by the
b,I= —,

'
( —', ) weak interactions, and b3 comes from the

I =2 state of three pions. The phase is approximately
determined by the isospin and the permutation symmetry
of the 3~ states [3]. In Eq. (5), the isospin phase 5, is for
the amplitudes of the completely symmetric I =1 3m.

state, 52 for I = 1 3~ state with mixed symmetry, and 63
for the amplitudes of the I =2 state. For the purpose of
the present paper, it suffices to neglect the quadratic
terms in the Dalitz amplitude. It is then straightforward
to obtain CP asymmetries

bl (~—)=3.8X10, bg(r —}=1.4X10
ar(~'+-) =1.2X10-', ag(r'-+) =1.4X10-' .

(4)

This leads the authors of Ref. [1] to suggest that it is per-
tinent to search for CP asymmetry in the slope parameter
g by modern high-statistics experiments (for example, P-
factory experiment). In Ref. [2] we have studied direct
CP violation in neutral %~3~ decay. We wish to point
out in this addendum that, within the framework of
current algebra or chiral perturbation theory, the slope

g (IC ~3sr) —g (IC ~3sr)
Ag =

g(K ~3')+g(X ~3')
Recently, CP asymmetries in r (K+~m+tr+~ —

) and. —

(K ~mar vr
—

) decays .—have been calculated in Ref.
[1] to be

bI (~)=N/I4~a, +a3 +—( b, +b ~+3~b3 ~
Y ) 4Re[(a,"+a—

3 )(b, +b3)]cos(5,—52)Y]

with

N = —4YIIm[(a& +a3 }(b&+b )]s3in(5& —5z) —Im[(a& +a3 )b' ]si3(5n& —53)+—, YIm[(b& +b3 )b3]sin(52 —53)],
and

Im[(a*, +a3 )(b, +b3)]sin(5, —5z) —Im[(a*, +a3 )b3]sin(5, —53)
bg (~) —=

Re[(a*, +a3 )(b, +b3)]cos(5, —52)
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The isospin amplitudes a;, b;, and b 3 can be calculated
in chiral perturbation theory with the results [4]

Vl ~ m2 2 2 2

Ao = —g,4~3, Az = —gz74~6

1
a, = Aoh, a3= —Azh, b, =3Aohx,

2

bz = —(
—5+9z)Azhx, b3 = —(3+z)Azhx,3 ~ = 27

4 2 4 2

where

2Pl
x

Pl ~

2m

2 2 '
mz —m

1 1
2

3i/3 f~ m~ m

A o and A 2 are the EI=
2

and AI =
2

K ww ampli-
tudes, respectively:

(9b)

where g 8 and g27 are octet and 27-piet coupling con-
stants, respectively, in the effective chiral Lagrangian for
weak interactions. It should be stressed at this point that
using current algebra one also obtains the same result of
Eq. (8) except that h is replaced by ( I/3~3f ) and z =0
[5]. Therefore, there is a small discrepancy between the
effective-Lagrangian and current-algebra approaches for
the isospin amplitudes a;, b;, and b . This is ascribed to
the fact that the Dalitz-amplitude parametrization given
by Eq. (5) may contain a contribution p which vanishes
in the soft-pion limit but becomes m „when pions are on
their mass shells [4].

Substituting Eq. (8) into Eq. (6) gives

bI (r)= 27x Y(&2ReeNL)[4+9x Y —12x Ycos(5i —5z)]

X [( 1 —z)sin(5, —5z)+(3+z)sin(5, —53)——,'(3+z)x Y sin(5z —53) ]

where eNL is the CP-violating parameter given by (P, being the isospin phase of A, )

ImAO ReA2, .(„/2+p p )
e 2 0

Re A 0 Re A 0

(10)

and use of the experimental fact of Pz
—Po= vr/4 has b—een made. The subscript "NL" is utilized to emphasize that

the effect of direct CP violation in ImAz has not been included. When z -0 and x ~m /(mz —m ) are taken, the ex-
pression of the CP asymmetry in partial-rate differences given by Eq. (10) is in agreement with Ref. [6] except for the
sign of the last term in the numerator (see also Ref. [7]). Likewise, we find, for r' decay,

b I (w')= —",x Y(&2ReeNL)[1+9x Y +6x Ycos(5i —5z)]

X [
—( 1 —z)sin(5i —5z) + (3 +z)sin(5& —

5& ) +3(3+z)xY sin(5z —53)], (12)

and slope asymmetries to be

9 (1 —z)sin(5& —5z)+(3+z)sin(5& —53)bg(r)= —— ( &2ReeNL ),4 cos(5, —5z)

9 ( 1 —z)sin(5, —5z) —
( 3+z)sin(5, —53)

b,g (r') = ——
( 2ReeNL),

cos 5, —5z

(13)

in agreement with the current-algebra predictions [8] in
the limit of z =0.

Equations (10), (12), and (13) are obtained within the
framework of lowest-order chiral perturbation theory and
hence are model-independent predictions for direct CP-
violating effects in charged K~3m decay. The numerical
results of CP asymmetry in partial-rate differences de-
pend on the details of energy dependence of phase shifts.
Using the isospin phases derived by Zeldovich [3], Avilez
[6] obtained EI"(r)=0.094~@'~ after integrating over the
whole Dalitz plot, while Grinstein, Rey and Wise [7]
found the partial-rate asymmetry to be —0.04(&2ReENL)
by applying the phase shifts calculated from the absorp-
tive part of chiral loops. As to the slope asymmetry, we
see that, aside from the phase-shift terms, it is of order
ENL (which may be viewed as the upper bound of b,g ).

From Eq. (2.24) of Ref. [2], we get ~eNL~ = 1.6
X 10 X 0.057

~
e~ =2 X 10 in the Kobayashi-Maskawa

model. (Note that eNL is rather insensitive to the varia-
tion of the top-quark mass. ) Therefore, b,g and AI are
naively expected to be of order 10 and 10, respec-
tively.

Before proceeding, we notice that the term Im(a i*bi ) is
naively expected to be the dominant contribution to CP
asymmetries 6I and Ag since it is not subject to the
AI =—,

' suppression. However, to the lowest order in
chiral expansion,

Ima
&

Imb
&

ImA 0
(14)

Rea, Reb, Re A o

and hence Im(a i b, ) =0. As we shall see, the presence of
Z penguins and higher-order chiral corrections will con-
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&~+~'m'lQ, lK+) =3u'+ ', u'zI—',
where

(16)

tribute to Im(a
& b, ). However, it is very difficult to imag-

ine at this stage that the aforementioned corrections will
be able to enhance the slope asymmetry by three orders
of magnitude to the level of 10 . Nevertheless, in the
following we will study the e6'ect of the electroweak
penguins and higher-derivative weak chiral Lagrangians
in some detail. For simplicity, we will limit ourselves to
the decay K +—~~+—++m since it does not receive
isospin-breaking corrections.

We first compute the weak transitions K+~m+m+w
and ~+m m induced by the electroweak-penguin opera-
tor Qg (see Fig. 1)

Qg
= —12 g e (sr. qz )(qz dl. ) . (15)

q

Following Ref. [2] we find after some manipulation that

&~+~'~-lQ, lK+) =6u',

2I
m„(p)+ m, (p)

u(p)=
m„(p)+md(p)

2
P?l p

md(p)+m, (p)
characterizes the quark order parameter &qq ). Combin-
ing Eq. (16) with the Qg-induced K ~3m transitions [2],

&~+~ ~' QglK'&=p 9
2t/2

(18)

3 (K' rr+tr vr') =-— i5,(a, —2a, )e
2

2
(19)

~ (K' ~o~'~') =-
we obtain [9]

3 i6)
(a, —2a3)e

2

&~'~'~'lQ, lK') =0,
and noting that the K ~3m decay amplitudes are
parametrized as [4]

EWP 2U 2A ImQ EWP
U

2

EwP 0 I g EwP Imp EwP 9
U 2zm i —, m 3

—
3

—
4

(20)Imago

1—
Re~p X= Y=O

(21)

and a similar expression for Imb, /Reb „where
&Q6):—&rr+rr+vr lQ6lK+), p is a parameter defined in
Ref. [2] as the ratio of & Q6) to & Q2

—Q, ), and Q6
is the usual QCD penguin operator given by—8+q (sI qz )(qzdr ). Applying the results of Ref. [2] we
find

where A. = (G~/v'2) V d V„*,( —,'y7+yg ) (see Ref. [2] for no-

tation), and the contribution due to the penguin operator
Q7 has also been included.

We next turn to the consideration of higher-order
chiral effects. Following Sec. III D of Ref. [2], we getI, (4/P —1)&Q )
Rea i & Q &' + (4/P) & Q )"

Im(a
&

b
&

) 1 mx

Imago

(1 —9x)
Rea, Reb i 2 ReAo

(22)

(c)
FIG. 1. Diagrams contributing to K+ —+m+m+m via the

electroweak penguin interactions Q7 and Q8 denoted by a black
dot.

2 mz2

Rea P = — (1—3x)a, ,
x
2

Ho 2 mac
Rea 3

=— (1—3x)a3,
x
2

HQ 4 E
Reb, =—

2 (1+3x)b, ,
x

11—9z
2

Reb3 = (1+3x)b3,
15—27z ~2

5+z
b Ho (1+3x)b3 9+3

(23)
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with A& —1 GeV being the chiral-symmetry-breaking
scale.

It is instructive at this point to compare the relative
magnitude of Im(a

& bt) and Im(a
& b& ) . It follows

from Eq. (20) that

for

g=0.49, 0. 16, —0.30, —0.88, —2.26, —3.97

(26)

m, =75, 100, 125, 150, 200, 250 GeV,

Im(a *, b, )'"'
Rea &Reb&

Ima ] Re/Q Im/Q

ImAQ Rea& RedQ

y7+3y8 A ImAQ

2 3y, m' ReAQ
(24)

where use has been made of Eq. (8) and Imago has been
approximated by the penguin operator Q6.

' 1/2 2 2
3 mIt- m

Im'40 4 GFI ud I usy6f. U (25)

The imaginary Wilson coefficients y;, which depend on
the top quark mass, have been evaluated in Ref. [10]with
the values (at p = 1 GeV and A&cD = 100 MeV)

where g=(y7+3ys)/(3y6a), and a is the fine-structure
constant. From Eqs. (22), (24), and (26) it is clear that the
higher-order chiral effect dominates when m, (150 GeV,
but it is then overcome by the electroweak-penguin con-
tribution for m, ) 150 GeV. Therefore, the effect of
higher-order weak chiral Lagrangians in the 3m decay of
the charged K is not as dramatic as in the case of
K ~3m. (see Ref. [2]). This is attributed to the fact that
contributions due to higher chiral terms are not only sub-
ject to the chiral suppression of order mz/Az, but also
suppressed by the small phase difference of a, and bj
characterized by the factor of (1 —9x) in Eq. (22).

We are ready to consider the Z -penguin and higher
chiral effects on the CP asymmetries AI and hg. Substi-
tuting (20), (22), and (23) into (6) and (7) yields

b I (r) = x Y(+2ReeNL)[4+9x Y —12x Y cos(5& —52)]

X [(47—24ri)(1+z)sin(5t —52)+(25 —0.2g)(3+z)sin(5t —53)—(52—3. Iri)(3+z)x Y sin(52 —53)] (27)

(3.2 —1.6')(1+z)sin(6& —5z)+(1.7 —0.02')(3+z)sin(5& —63)&g(r)=- ( 2ReeNL) .
cos 5, —52

(28)

Comparing (28) and (27) with the previous uncorrected
results (13) and (10), we see that the enhancement due to
the higher-derivative weak chiral Lagrangian and elec-
troweak penguins is most significant for the coefficient of
the sin (5,—52) term, but it is at most of order 5 even
when the top-quark mass is as large as 250 GeV. We
thus conclude that the CP-violating asymmetry in the
slope parameter of K —~m +—m+~ does not likely exceed
the level of 10 . This makes the experimental observa-
tion of direct CP violation in charged K —+3~ decay prac-
tically impossible.

Since our result for the slope asymmetry Ag is about 2
orders of magnitude smaller than that given by Ref. [1],it
is of great importance to pin down the sources of
discrepancy between our calculation and Ref. [1]. How-
ever, because isospin breaking and higher derivative

chiral corrections to current-algebra predictions are not
explicitly displayed by authors of Ref. [1] (effects of the
Z -penguin diagram on the imaginary Wilson coefficients
were also not taken into account by them), it is very
difficult to identify the underlying reasons for disagree-
ment. At any rate, given the fact that the current-algebra
expectation of the slope asymmetry is of order 10, it
seems to us that an enhancement of Ag from 10 to the
level of 10 by aforementioned corrections is very un-
likely.

I wish to thank Harry Nelson for the suggestion of a
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by the National Science Council of the Republic of Chi-
na.
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