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We construct a mass formula for the stringlike properties of gg mesons, based on the spectrum-
generating algebra U(4)® SU,(2)® SU (n)®SU.(3), with U(4) DSO(4) dynamic symmetry. We determine
the parameters appearing in this mass formula from fits to 57 well-established mesons in the Particle
Data Group summary table. The average deviation for the mass squared of these mesons is 5.7% for our
fit of all meson families combined. The mass formula allows us to distinguish meson states which are not

qq type, such as a((980).

I. INTRODUCTION

Hadronic structure is characterized by an interplay of
phenomena arising from the complicated nature of the
strong interaction. It encompasses dynamical situations
ranging from highly relativistic to nonrelativistic. In the
last decade, quantum chromodynamics (QCD) has
emerged as the theory of strong interaction. In this
theory, all hadronic properties (masses, decay widths,
form factors,. . .) should be calculable in terms of a few
parameters such as the QCD coupling constant «a,, quark
masses M;, and charges e; (in the standard model, the
flavor index i runs from one to six). Unfortunately, only
partial analytic solutions of QCD are currently available
[1] in 1+ 1 dimensions, for the nonperturbative domain.
Although considerable progress has been made by lattice
calculations [2], this program of study is far from com-
plete. As an alternative to solving directly the dynamical
equations of QCD, several modes of hadronic structure
have been constructed. Some of these emphasize the
“collective” hadronic aspect: examples of this class are
the bag model [3] and the string model [4]; others stress
the “‘single-particle” nature of hadronic structure, as in
the case of the nonrelativistic [5] or semirelativistic [6]
quark model. In the latter, a Schrodinger-type equation
is solved, with potentials that are suggested by QCD.

In 1965, Dothan, Gell-Mann and Ne’eman [7] and, in-
dependently, Barut and Bohm [8] suggested a different
approach to hadron spectroscopy. In this approach, an
algebra @ [called spectrum-generating algebra SGA] is
chosen, and all operators relevant to hadron structure are
expanded onto elements of §. In the special case in
which the operators appearing in the expansion are in-
variant (Casimir) operators of the algebra ¢ and its
subalgebras ¢',9",..., one has a dynamic symmetry
(DS). One can then solve the problem analytically in
closed form. In the particular case of the energy opera-
tor, mass formulas, characteristic of the DS, arise. By
acting with the transition operator T on the states (repre-
sentations of D¢’ D - - +), one can also obtain, in closed
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form, transition matrix elements and thus decay widths.
The method is quite general, and can be applied to both
nonrelativistic and relativistic situations, though the ex-
pansion of the operators in terms of elements of the alge-
bras is different in the two cases.

Recently, it has been suggested [9, 10] that SGA’s for
any combination of quarks, antiquarks and gluons can be
constructed by taking products of appropriate space and
internal algebras. In the simple case [10] of a quark and
antiquark bound in a meson, the suggested space algebra
is U(3,1), originating from the fact that one wants to in-
clude within the same representation of § all states, cor-
responding to rotations and vibrations of a string with
quarks at its ends. In view of the difficulty in dealing
with noncompact algebras, we prefer to use, in this arti-
cle, the compact form U(4). There is a correspondence
between the infinite-dimensional discrete representations
of U(3,1) and those of U(4) when the dimension of the
representations of U(4) goes to infinity. Thus, U(3,1) [or
its compact form U(4)] describes the quantized geometric
excitations of the string. With this article, we begin a
systematic investigation of hadronic properties in terms
of the SGA

§=U(4)®SU,(2)®SU,(6)®SU.(3) , (1

for gg mesons, and its generalizations to multiquark and
multigluon configurations, subscripts s, f,c¢ in (1) standing
for spin, flavor, and color, respectively.

Although the application of the SGA to the gg mesons
appears, on the face of it, somewhat trivial, we do it for
at least two reasons: (1) to set the stage for more complex
calculations, such as the case of qqq baryons, and of
strong, electromagnetic and weak decay widths [11] of
hadrons, for which the use of an SGA is of crucial impor-
tance; (2) to emphasize the fact that the method simply
becomes an expansion in terms of quantum numbers
defining the representations of SGA and its subalgebras,
thus producing simple formulas that can be easily com-
pared with experiments. In other words, the presence of
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a symmetry gives relations between properties of hadron-
ic states, which are, to a great extent, independent of the
particular values of the model parameters. This formula-
tion of the hadronic structure problem in terms of alge-
bras allows one to test in a straightforward way features
of QCD, without numerical solutions of equations of
Schrodinger or Bethe-Salpeter type. Despite the compli-
cations of the basic strong interaction in the nonperturba-
tive QCD domain, the spectra of gg mesons display sim-
ple features, which we can discern in the present ap-
proach, at a level of accuracy better than what one would
expect at the outset. Thus, the entire phenomenology of
qq mesons can be described in the present approach in
terms of a few parameters. In this paper, we discuss
meson masses. Decay widths will be presented in a
separate paper [11].

An outline of the remainder of this article is the follow-
ing. We start with a brief review of the properties of &
(Sec. II), and apply the method of SGA to the construc-
tion of a mass formula for the gg mesons (Sec. III). This
formula is then used to analyze the experimental mass
spectrum of mesons, both light and heavy (Sec. IV). A
summary of our conclusions is presented in Sec. V.

II. MODELS FOR STRINGLIKE MESONS

We begin with a brief outline of the model on which we
base our study. The Fock-space representation of a
meson M can be written as

|M)=lqg)+|qgqg) + - +lqgg)+ -~ +lgg)+ -,
o)

where g (g) denotes a quark (antiquark) and g a gluon.
The stringlike configuration of the first two components
of the state |M) is shown in Fig. 1. The quarks and
gluons in (2) must be combined in such a way as to give
the appropriate form quantum numbers of the meson
M ). In the schematic form (2), we have suppressed the
amplitudes for each component, as we are going to ana-
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FIG. 1. Illustration of the stringlike configurations of the gg
and gg gq mesons.
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FIG. 2. Rotational and vibrational degrees of freedom of the
qq string configuration.

lyze only the gg configuration in this article. We shall re-
turn to more complex configurations in subsequent arti-
cles.

The ¢g configuration can perform rotations and vibra-
tions (Fig. 2) characterized by the quantum numbers L
and v. We do not consider here bending and twisting vi-
brations, since these are expected to lie at higher ener-
gies. The relatively simple geometric problem of Fig. 2 is
somewhat complicated by the fact that quarks have
“internal” degrees of freedom, color, spin (s =1/2) and
flavor (i=1,...,6). Here we apply the method of SGA
to study both geometric and internal excitations of the gg
configurations.

A. Spectrum-generating algebra of geometric excitations

Since the purpose of this article is to present a detailed
analysis of meson masses, we describe here only briefly
the method of SGA. More details can be found in Ref.
[9]. The SGA ¢ is the one in terms of which all operators
are expanded. Denoting generically the elements of § by
G, one writes all operators O as

0=£(G,), G,ES. (3)

In this article, we consider only the mass-squared opera-
tors M?% The transition operators are treated in Ref.
[11]. If the M? operator contains only particular com-
binations of the operators G, and their powers, those of
the invariant Casimir operators of § and its subalgebras
§D29'D58"D - -+, denoted here generally by C,, i.e., if

M*=f(C;), 4)

one has a dynamic symmetry (DS) and the eigenvalues of
M? can be written in closed form, yielding mass formulas.
The properties of & are (a) it must contain, in a single
representation, all states of the systems and (b) all ha-
dronic operators must be expressible in terms of its ele-
ments. For hadrons, the algebra § must describe both
geometric and internal degrees of freedom. We write &
as

§=ReG 09, , (5)
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where R denotes the geometric part of the algebra
describing the string excitations, §,, represents the inter-
nal spin-flavor part, and §, the color degree of freedom.
Since color does not play any nontrivial role in the
classification scheme for the gg mesons, we shall hence-
forth delete it. It has been suggested [9] that U(4) be tak-
en as the SGA of geometric excitations and all states of
the g7 mesons belong to a single irreducible representa-
tion of U(4), characterized by the Young tableau

[N]=[N,0,0,0]=000--- , (6)

where there are N boxes on the right. The meaning of
the quantum number N will become apparent in Sec. III.
The representation (6) is totally symmetric, correspond-
ing to the fact that the string excitations (rotations and
vibrations) are bosonic in nature.

We now summarize properties of U(4) and its represen-
tations relevant to the construction of the mass formula
for mesons. The algebra of U(4) can be split in two ways
that contain the angular momentum algebra SO(3):

~U(3)DS0(3)DS0(2) (I),
4)\,S0(4)DS0(3)250(2) (IT) .
If we consider the totally symmetric representations (6),

states in the chain (I) are characterized by the quantum
numbers

(7

U(4)D U(3)D SO(3)D SO(2)
) l ! ) > (1) (8)
N n L M,

The allowed values of n,L,M; are given by the reduction
of the representation [N,0,0,0] into those of subalgebras
of §. One obtains, n=N,N—1,...,0,L=n—2,...,1o0r
0 (n=o0dd or even) and —L =M; < +L. Here L and M,
denote the orbital angular momentum and its third com-
ponent, respectively. For the chain (II) we have instead

U(4)D SO(4)D SO(3) SO(2)
l l l l > (II) . 9)
N (0] L ML
The allowed values of w,L,M; are given by
o=N,N—2,...,1 or O (N =o0dd or even);

L=w,0—1,...,0,and —L=M; <+1L.

We now briefly mention the connection between the
two classification schemes (I) and (II), admitted by the
SGA of U(4), and the nonrelativistic quark model [5, 6].
If states of mesons were generated directly by the solu-

J

tion of nonrelativistic Schrodinger-type equations, the
chain (I) would be appropriate to problems involving har-
monic oscillator potentials, since the degeneracy group of
the three-dimensional (3D) harmonic oscillator is U(3).
On the other hand, the chain (II) would be appropriate to
Coulomb-like problems or those with a linear potential,
since the exact degeneracy group of the 3D Coulomb
problems is SO(4) and numerical solutions of the
Schrodinger equation with a linear potential have ap-
proximate degeneracy pattern of SO(4). Indeed, QCD
suggests a linear plus Coulomb-like gg potential of the
form

V(r)z—iixi+ar , (10)

3 r

where «; is the strong coupling constant, and o the string
tension. Most importantly, the observation of rotational
trajectories for mesons can be easily accommodated
within a single representation of SO(4), but not of U(3)
(see Sec. III). We therefore, use in this article the SO(4)
basis as one for developing the method of SGA for
mesons. We should mention here that we have investi-
gated the possibility of using the U(3) basis, and/or com-
binations of U(3) and SO(4). Indeed, power of the alge-
braic method lies at the ease in analyzing all possible situ-
ations that might occur. Both U(3) and SO(4) basis have
been used in the past [12-14]. Our analysis is closer to
those of Barut et al. [13] and Bohm et al. [14], than to
that of Bowler et al. [12]. By assuming a dynamic SO(4)
symmetry for the space part of the gg wave functions, we
build in, from the outset, some constraints of the QCD
nature of the quark interaction. In contrast, the same re-
sult is only obtained by delicate interplay of several
dynamical effects in solutions of Schrodinger-type equa-
tions with a suitable interquark potential.

B. Spectrum-generating algebra of internal excitations

The SGA for the internal hadronic degrees of freedom
has been known for years, and is the basis upon which
QCD is built. In addition to the color part §,=SU.(3),
one has the spin-flavor part §,,. Following Gell-Mann
[15] and Ne’eman [16], and Giirsey and Radicati [17], we
take for n =6 flavors of quarks in the standard model,
Gr=SU(2)®SU/(6). In view of the nonobservation of
the top quark up to now, a large mass for this quark in
the range 100 to 200 GeV is indicated. This suggests, for
our purpose, a decomposition of the SU;(6) of the type

SU/(6)DSU(5)8 Uy(1)DSU;(2)8 Uy(1)@U (1)@ Uy (1)@ Uyul1) , an

where I is the isospin quantum number representing the
symmetry of the (u,d) quark flavors, and Y,Y’,Y",Y""
are hypercharges associated with additional quark flavors
(s,¢,b,t). In view of the fact the strange quark has a mass

comparable to that of the u,d quarks, we also insert, be-
tween SU,(5) and SU;(2)®8Uy(1)®Uy(1)®Uy.(1), an
intermediate  step, SU/(3)®@Uy(1)®Uy.(1), where
SU,(3) is the Gell-Mann-Ne’eman SU(3)-flavor symme-
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try [15, 16]. Whether there is a further intermediate step
combining the (c,b) quarks into a new SU(2) symmetry
is an interesting question that we do not address here.
Also we do not consider here splitting of the isospin mul-
tiplets of SU,;(2). Finally, since the major contribution to
the splittings of the flavor symmetry arises from the
quark masses, we use the quark basis for flavor degrees of
freedom, which we label by attaching a subscript g or g to
SU,(6). This basis [18] is conveniently written as

lg:,3;), i,j =1,...,6.
C. Total classification scheme

Combining Secs. IIB and IIC, we write the meson
state vectors |gg ), with SO(4) “space” symmetry, as

|qq)=|qi’qj;N7v’LyS)J;M_]> . (12)

Here the group quantum number o has been converted to
a quantum number v having the physical meaning of a vi-
brational quantum number (see Sec. I1I) by

N—w
v I (13)
and the orbital L and S have been coupled to total angu-
lar momentum J. We note that all quantum numbers in
(12), apart from N, have a straightforward physical inter-
pretation, and include all possible degrees of freedom of
(qq) mesons. Since N is related to the dimension of the
representation (9), it has the meaning of the maximum
number of states that can be accommodated within one
representation.

It is possible to construct states (12) by acting with
creation and annihilation operators on a vacuum state.
This is done by introducing a bosonic realization of U(4)
in terms of four boson operators bl,ba (a=1,...,4), di-
vided into a scalar O'T,O' (with JP=0%) and a vector
w7, p=0,%1 (with JP=17). The generators of U(4)
can be written explicitly in terms of o and 7 operators
[11]. The boson operators b, represent the string quanta.
The internal part can also be realized in terms of creation
and annihilation of operators of fermionic type. Denot-
ing by al’,- (a, ;) and EL (@, ;) the creation operators for
quarks and antiquarks with spin component « and flavor
I, one can write the state (12) as

qu>= 2 <%3Ky'%"K’|S:MS)<L’ML’S,MS|J1MJ)

Mg, M,

1 -—
X bkl - NPal ay ;l0) (14)

i.e., a state with one quark and one antiquark and a cer-
tain number of quanta of string excitations. The bosonic
operators are coupled in such a way as to produce repre-
sentations of SO(4), and explicit formulas are known for
their construction.

III. MASS FORMULA

We now construct a mass formula consistent with the
spectrum-generating algebra and dynamic symmetry dis-
cussed in the previous section.

A. Mass formula for geometric excitations

If we assume a dynamic U(4)DSO(4) symmetry, the
mass formula for geometric excitations must be con-
structed in terms of the Casimir operators of (9). The
Casimir operators of U(4) are not relevant, since they
contribute a constant term. The algebra of SO(4) has two
invariants. Denoting the generators of SO(4) by L and D,
the two invariants are [11, 19]

@G(SO(4))=L>+D? €'(SO(4))=L-D . (15)
The eigenvalues of (15) in the representation (9) are
(@C)=wlw+2), (C@')=0. (16)

We introduce the vibrational quantum number v, Eq.
(13), and subtract, for convenience, a constant term
N (N +2) from €. We then have

(G—N(N+2))=wlw+2)—N(N +2)

1 >

=—4(N +1) N+1v

(17)

v—

The algebra of SO(3) has only one invariant:
@(SO(3))=L7?, (18)

with eigenvalues L (L +1). We do not break the L de-
generacy by introducing invariants of SO(2). Thus the
mass formula must be a functional only of (15) and (18).

In contrasting the mass formula, we consider the mass
squared operator M2, which is more appropriate for rela-
tivistic situations. Johnson and Thorn [20] and Bars and
Hanson [20] have suggested that one expects a linear
dependence of M2 on L. This is very different from the
usual nonrelativistic rigid string, for which the rotational
energy grows [21] as L(L +1), and is a crucial property
of soft QCD strings. It implies that the string elongates,
as it rotates. The elongation of the string is proportional
to VL. Also, 't Hooft has shown, by explicit calculation
[1] in 1+1 dimensions, that one expects a linear depen-
dence of M? on v. In order to reproduce these QCD re-
sults within the SGA approach, we write the M? operator
as

M*=M3+ A'[C(SO(4))—N (N +2)]
+B{[C(SO(3))+ 1112 —1} . (19)

[STE

We emphasize here that dynamic-symmetric arguments
do not fix uniquely the functional form of M? in terms of
the relevant Casimir invariants. The functional form
used in (19) is motivated by QCD arguments, and its use-
fulness is tested by the quality of the fit to the experimen-
tally determined meson masses. The eigenvalues of (19)
are
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M*v,L)=M3—4(N+1)4" |v

+B{[L(L+1)+1]"2—1} | (20)

Here the value of (V/2) represents the total number of
vibrational states in the representation [N]. In view of
confinement, as expressed, for example, by the potential
(10), the total number of bound states is infinite. We thus
must take in our description N— . In practice it is
sufficient to take N large enough to include all known and
unknown states up to a maximum value of L and v. The
maximum v is from (9), v, =N /2 or (N —1)/2, while
the maximum L in each SO(4) representation is N —2v.
The observed maximum number of L is ~5, and the ob-
served maximum value of v is ~4. We take N=100. In
the limit of large N, Eq. (20) reduces to

M*v,L)=M3}+ Av+BL , 21
with 4 =—4A4'(N +1).

B. Mass formula for excitations
involving internal degrees of freedom

For internal excitations, we have two parts, the spin
part and the flavor part. The Casimir operator of SU(2)
is

C@(SU,(2))=8?, 2)

with eigenvalues S (S +1). The spin and orbital momen-
tum must then be coupled to J=L+S8, as in (12). Denot-
ing by SU,(2) the combined algebra

SU(2)®S0,(3)DSU,(2), (23)
we have
C(SU,(2))=J?, 24

with eigenvalues J (J+1). There is no simple QCD argu-
ment to tell whether the dependence on S and J is linear
on quadratic. Perturbation arguments involving one-
gluon exchange suggest that the spin part appears in the
potential approach, for a quark and antiquark of equal
mass, with three terms: a spin-spin term of the type

Vs=Vs(ri§, S, , (25)
a spin-orbit term of the type

VSOZVSO(r)(SquSq)*L , (26)
and a tensor interaction

Vr=Vr(r)S;(q,q) . (27)

With exception of the tensor interaction, which is nondi-
agonal in the L,S,J basis, the other two terms can be
written in terms of the Casimir operators of total SUg(2)
and SU,(2) as

Vs=vgC(SU4(2)) ,
Vso =vso[ C(SU,(2

(28)
))— C(SU4(2))—C(SO(3))],

FS

with eigenvalues
(Vg)=vgS(S+1), (29)
and

(Vso ) =vsolJ(J+1)—=S(S+1)—L(L+1)], (30

Thus, these perturbations arguments suggest a quadratic
dependence on S and J. Unfortunately, experiments can-
not tell whether the dependence on S is linear or quadra-
tic, since there are only two possible values for S for (¢g)
mesons, S=0 and S=1. The test for the J term in the
meson mass squared is difficult, particularly for light
mesons, since the error on the mass determinations for
the relevant mesons is rather large. However, there are
indications that the nonrelativistic J(J+1) rule is not a
good one for them. In the analysis of the following sec-
tion, we take, in analogy with (17) a linear dependence on
the quantum numbers, i.e.,

MZ—M(2,+A [@G(SO(4))—N (N +2)]
B{[C(SO(3))+1]'2—1}

2

+C{[@(SUS(2))+%]1/2_%}
D{[E(sU;2D+12—1} (31)
with eigenvalues

M?(,L,S,J)=M3%+ Av+BL+CS+DJ . (32)

We shall return to the question of the dependence on S
and J in discussing baryons. Finally, we do not consider
here effects of the tensor interaction. The QCD-inspired
arguments of Giirsey [22] suggest this term to be rather
small, at least for light mesons.

The mass spectrum (32) is extremely simple, as shown
in Fig. 3. Each SO(4) representation v provides a Regge
trajectory with L =0,1,2,. . .. There are an infinite num-
ber of such trajectories corresponding to v=0,1,.. ..
The slopes of the trajectories are directly related to the
coefficient 4,B,C,D in (32).

We now come to the flavor part. In the basis of (12),
the mass formula is in general, a matrix

(Mz)ij,i’j’z<Qiqj|Mz|qi’qj') (33)

that we take, for simplicity, to be real (36 X36 real sym-
metry matrix for six flavors) [we have suppressed from
(33) other quantum numbers, v,L,S,J,M,]. If a dynamic
symmetry corresponding to (11) exists, the matrix must
be diagonal and of the type

M?(i,j;v,L,S,J)=(M3); + A,v+B,L

+CyS+D,J . (34)

Following common usage, we shall call a combination ij a
family (Table I). Analysis of the experimental situation
can be done either for each individual family or simul-
taneously for all families.

If we attempt a simultaneous fitting of masses for all
families, we have to face two problems: quark masses M;
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FIG. 3. Mass spectrum, represented by Eq. (32), for $=0 and S =1 mesons. Trajectories for v =0 and v =1 are separately shown.

(i=1,...,6) are widely different; light mesons behave re-
lativistically, while heavy mesons are nonrelativistic. In
order to take into account these effects, we must assume a
phenomenological dependence of the coefficient in Eq.
(33) on the quark masses. In the spirit of a simple expan-
sion of M? in terms of quantum numbers, we introduce
the quantity M;;=M,+M;, where M; and M; are the
constituent masses of quark i and antiquark j and expand

all coefficients in M;;, keeping only the first-order term:

Aj;=a+a'M; B;=b +b’M,-j ,
Cj=c+c'M;, D;=d+d'M,;, (35)

(M3),;=eM;+(M;)* .

This simple parametrization should allow us to go from
relativistic to nonrelativistic situations in a simple
manner. The rationale is that we should use the mass
operator itself, rather than M2, for nonrelativistic situa-
tions. If we then add to M, an interaction term U, we
obtain

M=M,+U, M*=M3+2M,U+U?. (36)

If M, is small, we are in a relativistic situation; if M is
large, we are in a nonrelativistic domain. Both can be ap-
proximately covered by the parametrization of (35).

C. Improvements of the mass formula

The mass formula (34), with the flavor dependence
parametrized as in (35), describes the experimental situa-
tion quite accurately, with the exception of the pseudo-
scalar nonet, 7, K, i, and n’. In order to provide a pre-
cise description of this nonet, we need additional correc-
tion terms. We introduce the first of these two terms in a
purely phenomenological way. This one relates to the
fact that the 7, K and octet combination of 77 and %’ have
unusually low masses (see Figs. 4-7). We include this ob-
servation by adding to the M2 matrix a term of the type

TABLE I. Meson families.

Name Notation Quark content

Light unflavored (I=1) m family ud,(uii —dd) /V'2,da
Light unflavored (I =0) 7 family ci(usi +dd)+c,(s5)
Strange K family us,5u,sd,ds
Charmed D family cd,cii,cu,cd
Charmed strange D, family cs,Cs

Bottom B family ub,db,db,ub

cc ¢¢ or 1 family cc

bb bb or Y family bb
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7 Famil ] Subfamil ) 16(2510
M* g 7 (1)ag(2450) — M? g 77 Publamly o2510) ]
(GeVz) : (Gevz) - 4
- - - 4
4 N ,(2040) N 4 1,(2050) ]
+ (1670, R .
- 3 p3(1690) e w3(1670) 1
2 [b,(1235 ] 2 ]
L, ] 1
L/ p(770) ] ]
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0 2 4 6 8 0 2 4 6 8
J J
FIG. 4. Mass spectrum, Eq. (32), for the 7 family for v =0.
The upper curve is for S =0 mesons and the lower curve is for
the S=1 mesons. The dashed line indicates the straight trajec-
tory from which 7 meson deviates. Experimental values of FIG. 6. Same as in Fig. 4, for the 7 subfamily. The deviation
masses are indicated, and uncertain states are shown in of the 17 meson from the straight trajectory is not significant
parentheses. here.

(q,4;;v,L,S,JIM"?|q;g;5v",L',S",J' ) = = [8,08 08508708108 0857080 $0:;18sla,,) i L)1) =udys,

0 otherwise , 37

where 84 restricts this term to the ground-state octet of SU +(3).

The second correction term arises from the fact that the quark-antiquark pair can annihilate into gluons and reap-
pear as another ¢g pair [23]. This correction term arises directly from QCD and it can be calculated in perturbation
theory. In order to account for this effect, we introduce a term

(q;q;30,L,S,J | M"?|q;q;0",L',S", ' Y =8, 8558 178188, Hip(0, L, S,J) (38)

where H;; is, in general, a 6 X6 matrix, for six flavors, depending on v, L, S, and J. We take, in this article, a simple
form for the above, corresponding to the fact that annihilation mostly occurs in v =0,L =0,S =0 states, and it is par-

M2 K Family

(GeV?) (D k,"(2380)

K,"(2045)

K4*(1780) 8

FIG. 5. Same as in Fig. 4, for the K family. The dashed line
shows the continuation of the straight trajectory from which the
K meson deviates. FIG. 7. Same as in Fig. 6. The %’ subfamily.
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ticularly important for light mesons:

(qiqj;U,L,S,JIM”Zlq,-:ﬁj';v',L',S',J' > = 18,681.08568 105,05 1 D505 0 88y if i,4,i',j' =u,d,s , 39)
0 otherwise .

The terms (38) and (39) greatly improve the quality of our fit to the low-lying meson masses.

IV. ANALYSIS OF EXPERIMENTAL DATA

The main purpose of the present article is to analyze the experimental data on meson masses and assess the extent to
which the QCD-based mass formula of the previous section describes the data. Large deviations from it would be con-
sidered an indication of new physics coming in (for example, intrusion of more complex quark and/or gluon
configurations beyond the gg one that we have considered thus far). It may also indicate a failure of the parametriza-
tion discussed above. We base our analysis on the 1990 compilation of masses of the Particle Data Group (PDG), as

given in their summary table [24]. We divide the data set into families, as done by the PDG (Table I).
Summarizing our earlier discussion, our mass formula has the form

(qiqj|M2|qi,c7j')=8,~,~'8jj' l(M,-,- )2+eM,-j +(a+a'M;w

+(d +d'M;)J | +{(M"?)

ij,

where the last two terms are given by Egs. (37) and (39),
respectively. Thus, we have fifteen parameters to be
determined from a fit to the masses of mesons: (1) the
constituent quark masses M, =M,;, M, M_, and M, (we
do not consider isospin splitting); (2) the slopes of the
mass trajectories, a, a’, b, b’, ¢, ¢’, d, d’, and e; (3) correc-
tion terms f and A. We select 57 well-established states
from the Particle Data Group (PDG) meson summary
table, assign quantum numbers (v,L,S) to these states
and use their masses as experimental inputs to determine
the parameters defining Eq. (40). We precede the discus-
sion of the fit by some remarks concerning our general
procedure.

A. Choice of meson data for fitting

In the PDG summary table [24], there are 86 mesons
listed. Of these, members of a given isospin multiplet are
considered only once in our fit, since we are ignoring iso-
spin splittings. Altogether, we select 57 well-established
states as inputs for fitting of the parameters of Eq. (40).
These states are indicated in tables for all families. Below
we discuss reasons for our specific exclusions of states,
appearing in the PDG meson summary table (MST), from
our fits.

(a) We exclude 7(1300) which has relatively large error
on its mass determination. It has an uncertainty of 15%
in the mass squared, compared to accuracy of better than
8% for others we use.

(b) We exclude states which have questionable ggq
configuration. Examples of this category are the 0%+
states, a,(980), [f(975), and f,(1240). Likewise
f1(1420), and f,(1720) do not fit in well as qg states. By
forcing a fit including this class of states worsens the fit
considerably. This is our best criterion of exclusion.

(c) We eliminate from our fits those states for which
quantum number assignments are uncertain. Thus, in the
D and Dg families, we remove D,(2420)° and

1___

v [+(b+b"M)L+(c +c'M;)S

N+1

it MY s (40)

v

Dg,(2556)%, because we cannot make unique spin assign-
ments for these states.

(d) We reject states above DD and BB thresholds in the
¥ and Y families, since there are substantial coupled-
channel effects which make gg description of these states
inaccurate in a simple fashion such as ours.

B. Assignment of quantum numbers and fitting procedure

Quantum numbers JC, where P,C are parity and
charge-conjugation quantum numbers, are assigned in the
PDG tables from experiments. We consider masses, de-
cay modes and experimentally given JFC to fix the quan-
tum numbers S, L, and v. States with uncertain quantum
numbers are excluded from the fit.

In the PDG meson summary table, there are some
mesons with very precise masses, while others have
masses known to have much less precision. In order not
to overbias our fit by the former, we define a function

(Mlih )2_ (M;xpt)2
(MPFP?

, (41)

X'=3
k

and use the CERN routine MINUIT [25] to minimize it.
This routine provides us a variety of procedures to search
for minima in a multidimensional parameter space. We
take care that the parameters have fitted values not over-
ly sensitive to their initial values at the beginning of the
search.

Fit A. We divide mesons into light (7,7,K families)
and heavy mesons (D,Dg,B,¥, and Y families) and per-
form separate fits to their masses. The correction terms
(36) and (37) apply mostly to the light mesons and are
omitted in the heavy-meson fit. For the latter, we fix M,
and M, from the fit to light mesons. The values of the
parameters obtained are shown in Table II, and the re-
sulting masses in Tables III-X, column marked M%( 4 A).
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TABLE II. Parameters of the mass formula (40), as determined from our fits to meson masses. In
the fit B, ranges of parameters M, and M, are restricted to be 0.22-0.30 and 0.40-0.48 GeV, respective-
ly. See the text for other details of these fits.

Parameter Fit A for light Mesons Fit A for heavy mesons Fit B
M, 0.271 GeV 0.271 GeV 0.250 GeV
M, 0.454 GeV 0.454 GeV 0.400 GeV
M, 1.434 GeV 1.468 GeV
M, 4.719 GeV 4.706 GeV
a 1.374 GeV? 2.612 GeV? 0.933 GeV?
a’ 0.513 GeV 0.730 GeV
b 1.092 GeV? 0.934 GeV? 0.827 GeV?
b’ 0.560 GeV 0.445 GeV
c 0.118 GeV? 0.113 GeV? 0.076 GeV?
¢’ 0.000 GeV 0.017 GeV
d 0.052 GeV? 0.311 GeV? —0.034 GeV?
d’ 0.010 GeV 0.131 GeV
e 0.261 GeV 0.274 GeV
f 0.274 GeV? 0.366 GeV?
g 0.132 GeV? 0.115 GeV?

TABLE III. Quality of fit of our mass formula (40), as judged by masses of mesons in the 7 family.
In Tables III through X, category (a) represents mesons with gg structure from the Particle Data Group
(PDG) meson summary table, included in our fit; category (b) represents mesons with gg structure, pre-
dicted by our mass formula, and corresponding candidates from experimental studies, where available.
Category (c), if applicable, are meson states which are excluded from our fits, as being plausible non-gg
candidates. Quantum numbers v,L,S,J are our model assignments. States marked with daggers appear
in the meson full listings of the PDG tables, but not in the summary table. The column marked M*(Q)
represents the quark-model predictions of Godfrey and Isgur [6]. The columns marked M?*( 4 A) and
M?( AB) represent our results from fits A and B, respectively.

Meson M? (expt) M?*(Q) M*A44) M?*(AB) v L N Jre
(a)
- 0.019+0.000 0.023 0.020 0.021 0 0 0 0+
p(770) 0.590+0.001 0.593 0.581 0.589 0 0 1 1=
b,(1235) 1.52040.025 1.488 1.437 1.468 0 1 0 1
a,(1260) 1.588+0.076 1.538 1.673 1.638 0 1 1 1+
a,(1320) 1.738+0.002 1.716 1.725 1.670 0 1 1 2t
p(1450) 2.10340.023 2.103 1.941 1.873 1 0 1 1=
7,(1670) 2.77240.067 2.822 2.581 2.550 0 2 0 2=t
p3(1690) 2.859+0.017 2.822 2.869 2.751 0 2 1 37-
p(1700) 2.890+0.068 2.756 2.765 2.688 0 2 1 1=
(b)
m(1300) 1.690+0.260 1.690 1.654 1.672 1 0 0 (Vg
T7(1770) 3.133+0.106 3.534 2.986 2.931 2 0 0 o+
1a,(2040) 4.149+0.106 4.040 4.012 3.833 0 3 1 4++
Ta;(2050) 4.326+0.166 4.203 3.961 3.801 0 3 1 3+
7,(2100) 4.410%0.630 4.537 3.941 3.835 1 2 0 2=
5.273 5.094 2 2 0 2=
Ta4(2450) 6.003+0.637 6.300 5.996 0 5 1 6+
Ta0(1320) ~1.742 1.188 1.621 1.606 0 1 1 ot+
1p(2150) ~4.623 4.000 3.274 3.133 2 0 1 1=
4.623 4.125 3.973 1 2 1 |
4.580 4.366 3 0 1 17~
1p3(2250) ~5.063 4.537 4.229 4.036 1 2 1 37
5.617 5.052 4.850 0 4 1 37-
5.562 5.296 2 2 1 37~
1ps(2350) ~5.523 5.290 5.156 4914 0 4 1 57~
6.516 6.199 1 4 1 57

(c)
a,(980) 0.967+0.005 Decay modes: 77, KK seen ot+

b
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TABLE IV. Mesons of the 1 family. In the last column, our assumed flavor mixing types are explic-
itly indicated.

Meson M? (expt) MAQ) M*AA) M?* AB) v L S JP¢ Mixing type

(a)
7 0.301+0.001 0.240 0.269 0.257 0 0 0 01" B4 ,=—23
7'(958) 0.917+0.000 0.865 0.970 0.967 0 0 0 0t Ogp=—19
w(783) 0.611+0.000 0.608 0.581 0.589 0 0 1 1 ull
$(1020) 1.039+0.000 1.040 1.111 1.110 0 0 1 17 S5
h,(1170) 1.369+0.049, 1.488 1.437 1.468 0 1 o 1% uu
f»(1270)  1.623+0.013  1.638 1.725 1.670 0 1 1 2+t uu
f1(1285)  1.644+0.013  1.538 1.673 1.638 0 1 1 | s uu
7(1295) 1.677£0.010 1.613 1.654 1.672 1 0 o ot uu
@(1390) 1.935+£0.050 2.132 1.941 1.873 1 0 1 1=~ 7173
f1(1510) 2.286+0.012  2.190 2.203 2.293 0 1 1 1+t 55
f3(1525) 2.326+0.015 2.341 2.255 2.364 0 1 | S5
w(1600) 2.541+0.038 2.756 2.765 2.688 0 2 1 17~ ui
w,(1670)  2.782+0.017 2.822 2.869 2.751 0 2 1 377 uu
$(1680) 2.822+0.168 2.856 2.471 2.612 1 0 1 1=~ S5
¢3(1850)  3.437+0.026 3.610 3.399 3.619 0 2 1 37~ S5
f4(2050) 4.198+0.041 4.040 4.012 3.833 0 3 1 4%* uil

(b)
T£,(2220) 4.951+0.027 4.840 4.542 4.873 0 3 1 4%* S5
T£6(2510) 6.300+0.151 6.300 5.996 0 5 1 6%t ul
'h,(1380) 1.904+0.055 2.161 1.967 2.113 0 1 o 1t S5
218, 2.403 2.183 2.361 1 0 0 o0 * S5
318, 2.986 2.931 2 0 0o o0 * ur
318, 3.516 3.832 2 0 o ot S5
418, 4.292 4.165 3 0 0 o * uu
418, 4.822 5.274 3 0 o o0 * ¥
D, 3.534 3.295 3.476 0 2 1 1= S5
2P, 3.168 2.797 2.753 1 1 0 1% u
2'p, 4.040 3.327 3.615 1 1 0 1t S5
3P, 1.188 1.621 1.606 0 1 1 ottt uil
3P, 1.850 2.151 2.222 0 1 1 ott S5
23P, 3.168 2.981 2.891 1 1 1 ottt ua
23P, 3.960 3.511 3.724 1 1 1 ott s§
33P, 4.314 4.150 2 1 1 ottt u
33pP, 4.844 5.195 2 1 1 ott S5
23p, 3.312 3.033 2.923 1 1 1 1+t ui
23pP, 4.121 3.563 3.795 1 1 1 1*t s
33p, 4.366 4.182 2 1 1 1+t ui
33p, 4.896 5.267 2 1 1 1+t S5
23p, 3.312 3.085 2.955 1 1 | ui
23p, 4.162 3.615 3.866 1 1 1 2+t 55
3’F, 4.203 3.909 3.769 0 3 1 2%t ui
’F, 5.018 4.439 4.730 0 3 1 2%t 5§
33p, 4418 4214 2 1 1 2t+f ud
33p, 4.948 5.338 2 1 1 2+t S5
'D, 2.822 2.581 2.550 0 2 o 27t uu
'D, 3.572 3.111 3.367 0 2 o 2t S§
’D, 2.890 2.817 2.719 0 2 1 27~ uu
’D, 3.648 3.347 3.547 0 2 1 27 S5
fo(975) 0.952+0.006 Decay modes: 7, then KK dominant ot+
f1(1420)  2.031+0.004 Decay modes: KK dominant R
T£,(1240) 1.538+0.074 Decay modes: KK seen ot+

T£,(1430) ~2.045 Decay modes: KK and 7 seen 2t
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In these tables, states included in the fit are shown, to-
gether with states predicted, and a comparison with
semirelativistic quark-model (QM) calculation of Godfrey
and Isgur [6], thus far the best accounting of meson
masses.

Fit B. In the spirit of our earlier report [10], we have
here a global fit of all mesons—Ilight and heavy. We re-
strict M, and M, in the range 0.22-0.30 and 0.40-0.48
GeV, respectively. The results are shown in Tables
III-X, in the column M*( AB).

C. Analysis of the results

We find that the quality of both fits A and B are such
that they can be used to assess the nature of the unknown
states in meson spectra. The average deviation is 5.8% in
the light-meson sector and 2.4% in the heavy-meson sec-
tor for fit A; the average deviation is 5.7% for fit B. For
light mesons, our results are comparable to, or better
than, the semirelativistic quark-model results [6], while
they are worse for heavy mesons. This is largely due to
the fact that we are parameterizing the mass dependence
of M? in a simple linear form, Eq. (40). Better descrip-

44

expansions.

We use as a criterion for assessing the nature of un-
known meson states, their deviation from the fit. If a
state deviates by more than four average deviations, we
question its assignment as a ¢g state. From this conserva-
tive measure, three states in the 7 and 7 family, a,(980),
S0(975), and f,(1240), cannot be assigned ¢q status: the
first two have been suggested to be KK molecules [26]. In
the m family, the fact that ay(1320), a,(1260), and
a,(1320) are quite close, in experiment and in our fit, in-
dicates that the spin-orbit interaction, between ¢ and § is
very weak, a point that should be explored further. For
the newly reported state ay(1320) (Ref. [27]), our predic-
tion is much closer to experiment than that of QM. For
the states p(2150), p;(2250), and ps(2350), our predic-
tions are quite different from those of QM. In the 7 fami-
ly, we cannot accommodate f(1420) and f,(1720) as
17" and 2%" states, in agreement with similar con-
clusions from the QM. We cannot take f(1240) to be
55 3Pg, £l 1430) cannot be gg, and f,(1565) is too low to
be the (1/V2)ui+dd)23P, state. For the heavy
mesons, our inclusion of a quark-mass decoupling term

tions of heavy mesons can be obtained by more elaborate improves the fit.

TABLE V. Mesons of the K family.

Meson M? (expt) M?(Q) M*AA) M?*AB) v L S JP
(a)

K 0.246+0.000 0.221 0.251 0.235 0 0 0 0~

K*(892) 0.795+0.000 0.810 0.813 0.827 0 0 1 1~

K ,(1270) 1.613£0.025 1.796 1.669 1.768 0 1 0 1t

K*(1370) 1.869+0. 148 2.496 2.173 2.220 1 0 1 1

K ,(1400) 1.966+0.020 1.904 1.905 1.943 0 1 1 1t

KS‘ (1430) 2.042+0.017 1.538 1.853 1.892 0 1 1 ot

K3 (1430) 2.032+0.004 2.045 1.957 1.995 0 1 1 2%

K*(1680) 2.816+0.215 3.168 2.997 3.059 0 2 1 1~

K,(1770) 3.126+0.050 3.276 3.048 3.111 0 2 1 2°

K3*(1780) 3.147+0.028 3.204 3.100 3.163 0 2 1 3

K §(2045) 4.182+0.037 4.452 4.244 4.330 0 3 1 4+
(b)

TK(’,"( 1950) 3.783+0.117 3.572 3.213 3.285 1 1 1 o*

TK;,‘ (1980) 3.912+0.158 3.764 3.317 3.388 1 1 1 2+

) 4.623 4.140 4.227 0 3 1 2t

K ¥(2380) 5.674+0.157 5.712 5.388 5.498 0 4 1 5~

TK( 1460) ~2.132 2.103 1.885 1.994 1 0 0 0~

1‘LK2(1580) ~2.496 3.168 2.812 2.936 0 2 0 2

*Kl (1650) 2.723+0.165 3.610 3.029 3.162 1 1 0 1t

3.725 3.265 3.336 1 1 1 1t

TK( 1830) ~3.349 4.080 3.218 3.359 2 0 0 0~

TK2(2250) 5.049+0.076 4.973 4.172 4.330 1 2 0 2-

5.108 4.408 4.504 1 2 1 2

TK3(2320) 5.401+0.112 4.494 3.956 4.104 0 3 0 3+

4.623 4.192 4.279 0 3 1 3t

5.316 5.497 1 3 0 3*

5.552 5.672 1 3 1 3t

TK4(2500) 6.200+0.100 5.808 5.100 5.272 0 4 0 4~

5.954 5.336 5.447 0 4 1 4~

6.460 6.665 1 4 0 4~

6.696 6.840 1 4 1 4~
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TABLE VI. Mesons of the D family.
Meson M? (expt) M*Q) M?*(AA4) M?*(AB) v L s JP
(a)
D 3.48510.002 3.534 3.354 3.422 0 0 0 0~
D* 4.034+0.006 4.162 3.907 3.825 0 0 1 1
D3 (2460)° 6.049+0.011 6.250 6.123 5.608 0 1 1 2%
(b)
D, (2420)° 5.876+0.029 5.954 5.570 5.205 0 1 0 1t
6.200 5.795 5.417 0 1 1 1
In order to emphasize the considerable accuracy of our a'=0.87 GeV ™2, (1/a’)=1.15 GeV?, (45)
mass formula for light mesons, we plot in Figs. 4-7, the ) ith (43
experimental M 2 values for states in the 7, K, and 7 fami- n &%reelmen;: W"f ;: )- h .
lies, as a function of J, along with our theoretical curves. e also plot, in Fig. 8, the quantity
The linearity of the Regge trajectories is clearly seen, AL (M)=MXL=1)—M*L=0), (46)

especially for the ¢, K*, and o trajectories. We also see
the role of the first-correction term in the 7 and K
masses. If this term would not have been included we
would have obtained masses given by the dashed lines in
Figs. 4 and 5.

If we write

1

’

M*=M;+

J, (42)

the slopes (1/a’) of the “rotational” Regge trajectories
we obtain, from fit B, are

7r,P§aL:1.081 GeV?, K,K*: L 1168 GeV?2 . (43)

’ a’
These slopes are slightly different from each other, be-
cause of the dependence of the coefficients of Eq. (35) on
quark masses, and of the fact that p and K* have spin
S =1, while 7 and K have S =0.
Johnson and Thorn [20] give the slope of the Regge
trajectories in the bag model as

172
1 1

Va, VB’
where B is the bag pressure, and «a; the strong coupling

constant. With B!/4=0.146 GeV, a,=0.55, Eq. (44)
gives

.
167T3/2

3
2

[ —

(44)

as a function of M;;. From this figure one can see that
the linear dependence of the coefficients 4,B,C,D of Eq.
(35) is approximately verified over a large range of values.
We find here no difference between the physics of light
quarks and that of heavy quarks. The slopes of rotational
Regge trajectories at the latter scale are, from fit B

¥ $=2.48 GeV?, T 7117=6.21 GeV? . 47)

Similarly we plot, in Figs. 9-12, the M? values for
states in the 7, K, and 7 families as a function of v. The
linearity of the “vibrational” Regge trajectories appears
to be there, although not as clearly as for ‘“rotational”
Regge trajectories. We also see once again the role of the
first-correction term in the 7 and K masses. If we write

1
BI

we obtain the slope of the ‘“‘vibrational” Regge trajec-
tories, from fit B,

M?=M3+ v, (48)

,p: §=1.298 GeV% K,K*: 7}=1.408 GeV?.

’

(49)

From ’t Hooft’s calculations [1], one can reasonably infer

TABLE VII. Mesons of the D, family.

Meson M? (expt) M*Q)  MXAA4)  M*A4B) v L S JP
(a)

D* 3.876+0.003 3.920 4.059 4.001 0 0 0 0~

DX 4.453+0.008 4.537 4.614 4.429 0 0 1 1
(b)

D51(2536)J—r 6.434+0.004 6.401 6.379 5.870 0 1 0 1t

6.605 6.605 6.087 0 1 1 1t
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TABLE VIII. Mesons of the B family.
Meson M? (expt) M*Q) M?*(44) M?*(AB) v L S Jr
(a)
B 27.861+0.02 28.20 26.20 25.92 0 0 0 0~
(b)
B* 28.42+0.05 28.84 26.79 26.86 0 0 1 1~
that 1/’ be proportional to the strong coupling constant 2 2 1
Miv)=M?2— 1y, — 2
a, and some quark-mass squared scale m 2, (W)=M;—4N+1)4 N+1°2 |- (51

L a2
Bl

(50)

Using a,=0.55 and m2=(M,)*~(0.25 GeV)?, one esti-
mates 1/8'=1.36 GeV?, which is the same order of mag-
nitude as that in (48).

We next plot, in Figs. 13 and 14, the ‘vibrational”
Regge trajectories for the ¥ and Y families. We note that
experimental masses no longer fall exactly linear on tra-
jectories, but their trajectories are slightly bent, a feature
also anticipated in the ’t Hooft calculation [1]. The
departure of the trajectories from linearity may indicate a
breaking of the SO(4) symmetry. Another possible ex-
planation is that the effective value of N, in our formula,
appropriate for heavy mesons, is not N— oo (N =100
used in Figs. 13 and 14), but much smaller. This may be
due to coupling with break-up channels that effectively
terminate the rotational and vibrational bands. The
U(4)DO0(4) gives the following dependence on N [Eq.
(20)]:

with N ~20, we find the ‘“vibrational” trajectories to be
significantly bent [29], so as to actually describe the vi-
brational spectra of i and Y observed so far. More ex-
perimental work is needed to extend these studies of the
excited vibrational states, to clarify the picture.

Finally we comment on the dependence of the spin
splittings on quark flavors. We do this by plotting, in
Fig. 15, the observed spin splittings

Ag(M*)=M*S=1)—M*S=0), (52)

as a function of M;, together with the results of fits A
and B. The dependence of Ag on M;; is rather complex,
since it emerges from the interplay of two effects: the
correction in term f which affects the 7 and K splittings,
and the change from a relativistic to a nonrelativistic re-
gime, which we parametrize in a linear fashion. One can

see, from Fig. 15, that the only spin splittings that we do

TABLE IX. Mesons of the c¢ family.

Meson M’ (expt) M*(Q) M*(44) M?*(AB) v L S Jr
(a)
7.(18) 8.87840.010 8.821 8.979 9.424 0 0 0 o "
J/9(1S) 9.59140.001 9.610 9.544 10.03 0 0 1 1~
Xeol1P) 11.66+0.01 11.83 11.74 11.81 0 1 1 o++
Xai(1P) 12.32+0.00 12.32 12.08 12.16 0 1 1 1+t
X 1P) 12.65+0.00 12.60 12.42 12.51 0 1 1 2t
»(2S) 13.59+0.00 13.54 13.59 13.07 1 0 1 1=~
(b)
%(3770) 14.21+0.02 14.59 14.62 14.30 0 2 1 1=
1%(4040) 16.3240.08 16.81 17.55 16.06 2 0 1 1=~
%(4160) 17.30+0.17 17.56 18.67 17.34 1 2 1 1=~
¢(4415) 19.49+0.05 19.80 21.43 18.98 3 0 1 1=
1.(28) 12.92+0.04 13.10 13.02 12.47 1 0 0 0~ *
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TABLE X. Mesons of the bb family.

Meson M? (expt) M*(Q) M?*(AA) M?*(AB) v L N Jre
(a)
Y(1S) 89.50+0.00 89.49 92.17 92.84 0 0 1 1=~
Xbo( 1P) 97.22+0.03 97.02 97.98 96.65 0 1 1 0t
Xn(1P) 97.85+0.01 97.61 98.38 97.85 0 1 1 1+
Xb2(1P) 98.27+0.01 98.01 98.79 99.05 0 1 1 2+
Y(2S) 100.47+0.01 100.00 99.54 100.56 1 0 1 1=~
Xbo(2P) 104.76+0.02 104.65 105.35 104.38 1 1 1 ot
X(2P) 105.17+0.01 105.06 105.76 105.58 1 1 1 1
X52(2P) 105.45+0.01 105.27 106.16 106.78 1 1 1 2%+
Y(3S) 107.23+0.01 107.12 106.77 108.13 2 0 1 17"
(b)
Y(4S) 111.94+0.07 113.00 113.85 115.55 3 0 1 17"
Y(10860) 118.05+0.17 118.37 120.79 122.81 4 0 1 17~
Y(11020) 121.42+0.18 123.21 127.57 129.92 5 0 1 1~

not account for well enough are those of the B and v
mesons. It could well be that the coefficient C is not de-
scribed by a linear dependence on M;;, while the other
coefficients A4, B, and D are.

ijs

D. Predictions

The fact that the mass formula (34) and (35), or (40) ac-
counts for the observed meson states well, allows one to
make reliable predictions for unobserved states. For ex-
ample, we have

2 g2 ag2 _ aq2
M2 —M2=M2 —M? . (53)
1.2 L T T T 7T | T T T 7T ! T T 1 1 ’ T T T T I T T T 7T T l_
% 10— D=Fit A, X=Fit B, I=Expt. Value —]
> r ]
) C ]
~ g o]
7 u T ]
- r ]
S r ]
A e —
& C x ]
& C ]
= 4 — —]
C & ]
I X p—
T B o :
[ % DD b
l pK* ]
0 pl 1 1 | 11 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1
0 2 4 6 8 10

M,; (GeV)

FIG. 8. The plot of A, (M?)=MXL=1)—M*L=0) as a
function of M;;=M;+M;. Fits A and B are described in the
text.

Inserting the values from Table III, we find that the left-
hand side of (53) is (1.15£0.00) GeV?, while the right-
hand side is (1.12£0.02) GeV?, i.e., the dynamic SO(4)
symmetry is, for all purposes, unbroken in the light
mesons. Using the mass formula, we can predict

Mf,5 =(5.16+0.08) GeV? (54)

where ps is the unknown state with v =0, S=1, L =4,
JP€=5""_ A complete list of all predicted states can be
obtained from us upon request. We estimate our error to
be rather small for light mesons, but to increase some-
what for heavy mesons.

5 T T T T | T T T T I T T T 7T ] T T T T T T T T _4
2 B ]
M L m Family i
(GeV®) 4~ ]
3 o w(1770) 7
L p(1450) ]
2 W —
L (1300) ]
- Vi -
- V. -
1 = // |
(% ]
_/ —
O V 1 1 1 [ 1 1 1 1 1 1 1 1 1 I 1 1 1 1 ] 1 1 1 1 ]
0 1 2 3 4 5
v

FIG. 9. M? for the 7 family as functions of v, for $=0 and
S =1 states. The dashed line is the straight trajectory.
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L ]

M? 5 . ]
(GeV®) [ ]
4 ]

3~ =

2 [ K(1460) i

o
[
oY)
w
£
[}

FIG. 10. Same as in Fig. 9. The K family.

As an example, we show, in Fig. 16, our predicted
spectrum of D and D, families (based on fit A), with
states plotted from the lowest state of each family. We
estimate our error here to be of the order =100 MeV in
the masses.

V. CONCLUSIONS

We have presented here an analysis of meson masses
based on stringlike (¢gg) configurations, described by the

LIRS S B AU SR E B A H SO SR N N N S BN B B H BN B B |

7 Subfamily

n(1295)

|I|\II]7||KII|||I|I|I!I

1|1l1x||1|!|1111111[1|1|||

0 L l T B | T I T R | L1
0 1 2 3 4
v

9]

FIG. 11. Same as in Fig. 9. The 5 subfamily.

4
: T 1T T 7 T T T T i T T T T T T T T T T T T :
s -
(Gev®) T 1
L 7' Subfamily 4
41— -
3 s(1680) | ]
N in(1440) =
C ]
g ]
1 §Z#(1020) 7
v ]
O C 11 11 I 1 1 1 1 l 1 1 1 1 I | S | 1 ‘ 11 1 1
0 1 2 3 4 5
v
FIG. 12. Same as in Fig. 9. The 7’ subfamily.
spectrum-generating algebra U@)eSU,(2)SU,(6)

®SU,(3), with U(4)DSO(4) dynamic symmetry. For the
problem described here, viz., masses of gg mesons, the
main role of the SGA is to construct states and to pro-
vide the quantum numbers, onto which the mass formula
is expanded; it also produces a simple, and yet reasonably
accurate, classification scheme within which well-
established gg mesons can be accommodated. Particular-
ly important is the evidence for a dynamic SO(4) symme-
try. The observed mesons state do, indeed, fall into
Regge trajectories, representations of SO(4), linearity of

25 T T T T T T T T T T T T T T T T T T T T
M? - 1
v? — i
(Gev™) cc Family b
=0 B = 4(4415) ]
L = ¥(4040) 4
15 [— -
10 71 /9(3097) —

c_1 1 1 1 I 1 1 1 1 l 1 1 1 1 1 1 1 1 1 I 1 1 1 1
0 1 2 3 4 5

v

FIG. 13. M? for the c¢ family as function of v. Notice the de-
viations from the straight theoretical trajectory.
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1 T T T T T T T T T T T T T T T T LU L LB T T 177 LR L

v or | | ] [ r | I l | ]
2 | bb Family ] P - O=Fit A, X=Fit B, ¥ =Expt. Value -
(Gev®) L = 1(11020) ] = 1.00 1 ]
120 [— —] & i x i

L = T(10860) E ~ L .

. i ~ i 1

L ] L 075 (— i ]

e _:_ ] c\IEI : DD :

C ] ~ [ w8 & <T) B

C . & 050 — —

100 [— . B i X% i

- 4 - -

L ] 0.25 [— —

90 £1(185) — i ]

C__t L 1 1 I 1 1 1 1 | 1 1 1 1 l | L] 0,00 C [ | I | I L1 0 I Ll 11 I T | ]

0 2 4 6 0 1 2 3 4 5 6

v M;; (GeV)

FIG. 14. Same as in Fig. 13. The bb family.

which is satisfied to a high accuracy for light mesons.
The goodness of the SO(4) symmetry for this space part
of the hadron wave functions seems comparable to that of
the internal part of the wave functions (Gell-
Mann-Ne’eman and Gilirsey-Radicati symmetries). The
accuracy of the mass formula of Sec. III implies that one
can safely use it as a testing ground for future experimen-
tal predictions, and as a starting point for more elaborate
analysis of the (¢q) configuration, and, indeed, of all the
configurations of Fig. 1. From this point of view, the
mass formula (34) and (35) can be viewed in the same
manner as the Weizsacker mass formula of nuclear phys-
ics, or, as a Landau expansion [28] in terms of the quan-
tum numbers.

A major difference between the situation described

5
L
r X=Expt. Value D Family
o =Fit A
M 4
(Gev) [
3 2's4(2 82)’1),(2.77)
L (2.62) o
N 2’5,(2.72)’?,(234)’P-(“l) ’w
L p
2l tsi189) %s,(1.98) P,(2.36)
[ 207
11—
L
0 0~ 1~ o 1+ o+
JP

FIG. 15. Hyperfine splittings as functions of M;;.

here and that encountered in other systems in physics is
the fact that the M? operator, in the present case, is
linear in the quantum numbers, rather than quadratic.
This is a peculiar feature, which has its physical origin in
the fact that gg meson of QCD stretches, as it rotates. As
described in Sec. III, this feature can be incorporated
easily in the SGA approach, while it must arise from
some complicated numerical interplay of various effects
in models based on the Schrodinger-type equations. We
thus think that the method discussed here provides a
much simpler framework for attacking hadron spectros-
copy, than methods based on Schrddinger-type equations
with residual “potentials.”

Finally, the classification scheme of this paper can be
used to calculate other properties of mesons, in particu-

5 —
L X=Expt. Value Dg Family
- =Fit A
M 4
(GeV) +
-
B *p,(2.93)
3 2'542.75) —
L - 2551(2.86)3Po(2-51)’P'(2'57) P<(2.63)
L syzon) %s,(2.15) 'p,(2.53)
2 — X
14—
0 0~ 1~ o* 1* 2*

FIG. 16. Our predicted spectrum of D and D; meson families, based on the fit A.
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lar, strong, electromagnetic and weak decay widths,
which will be reported in a parallel paper [11]. The
recognition of the potentially important role of
spectrum-generating algebra and dynamic symmetries for
the space part of the hadronic wave functions opens the
way for a simple, yet accurate, description of hadronic
problems.
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