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Bubble free energy at the quark-hadron phase transition
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We calculate the free energy of finite droplets of quark-gluon plasma, and of finite hadronic bubbles in
the bulk plasma, near the confinement phase transition. We sum over free quark and gluon energy levels
in the presence of MIT bag boundary conditions. We find that the curvature term in the free energy,
proportional to the radius of the droplet or bubble, is far more important than the contribution of the
surface tension, proportional to the radius squared. This a6ects the critical radius for nucleation of plas-
ma droplets in the superheated hadron gas, and seems to lead to instability of the plasma (even when not
supercooled) against nucleation of hadron gas bubbles.

I. INTRODUCTION

First-order phase transitions generally begin with su-
percooling (or superheating) followed by the nucleation
and growth of bubbles of the equilibrium phase [1]. This
kind of dynamics in the transition from quark-gluon plas-
ma to hadron gas should have observable consequences,
be it in the early Universe or in relativistic heavy-ion col-
lisions. In the former, bubble formation and growth may
affect the mass distribution [2—4] and the process of nu-
cleosynthesis [4], and might lead to the formation of
strange matter [3]; in the latter, evaporating droplets of
plasma may lead to large fluctuations in multiplicity [5]
or to structures visible in pion interferometry [6].

The calculation of the nucleation rate [1] of bubbles of
the equilibrium phase begins with knowledge of the free
energy I' of a finite bubble as a function of its radius R.
Usually, one assumes that the bubble is very large com-
pared to the correlation length, and one therefore ex-
pands the free energy about R = ~:

librium phase. Consideration of the fluctuation spectrum
in the metastable phase yields the nucleation rate.

At the quark-hadron phase transition, things are some-
what more complicated. The critical radius should be on
the order of 1 fm, which is the scale of the strong interac-
tions and also the scale given by the transition tempera-
ture. The gluons and light quarks are approximately
massless; even if one takes dynamical mass generation
into account, their Compton wavelengths will not be
much less than 1 fm. Thus the expansion (1.1) of F(R)
may not legitimately be truncated after the area term,
and the full form of the function should be considered.

We present below a calculation [7] of F(R) in the MIT
bag model [8], both for plasma droplets in the hadron gas
and for "vacuum bubbles" in the plasma. The plasma is
populated with massless gluons, massless u and d quarks,

F(R)=AP —4~R +o 4~R +

where we have retained the terms proportional to the
volume and surface area of the bubble, denoting the
difference between the pressures of the two phases by hP
and the surface tension by o. . Terms of higher order in
1/R are expected to be insignificant. Both hP and o. are
functions of temperature, with AP vanishing at the tran-
sition temperature To.

Consider boiling water. When the system is in equilib-
rium below To, both the volume and the surface terms
act to suppress the formation of bubbles (see Fig. 1);
when the system is superheated above To, the volume
term encourages growth of bubbles, while the surface
term creates an energy barrier. Let us denote by R, the
critical radius, that is, the radius which maximizes F(R)
when T ) To. Bubbles are created continually by Auctua-
tions in the free energy. Those which are too small,
R &R„will shrink and vanish. Those which reach R,
will grow until the entire system is converted to the equi-

R,

Bubble Radius

FIG-. 1. Schematic representation of bubble free energy in
boiling water, retaining only volume and area terms, for T( To
(solid) and T & To (dashed).
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and massive s quarks. Their wave functions obey bag
boundary conditions at the interface. The hadron gas is
populated with pions, for which only the bulk free energy
(the volume term) is taken into account. We reach a
surprising conclusion: that the area term in F(R) is
insignificant compared to the "curvature term" propor-
tional to R. The reason for this is that neither the light
quarks nor the gluons contribute to the surface term,
while they do contribute to the other terms. (This fact
was noted in Ref. [9].) Thus the surface tension is "ac-
cidentally" small.

For plasma droplets in the hadron gas, the volume and
curvature terms determine the critical radius and dom-
inate F(R) in its neighborhood. Several other calcula-
tions of F(R) have stopped at the area term [10,11]; a
calculation which includes the linear term and certain
other finite-size effects may be found in Ref. [12]. Our re-
sults should lead to reconsideration of various phenome-
nological calculations that have used the more limited
formulas.

The consequences for hadronic bubbles in the plasma
are strange and unexpected. Here the curvature term has
the same magnitude but the opposite sign as for the plas-
ma droplets, meaning it acts to make bubbles grow.
Hence for T (T, there is no restoring force on the bub-
ble radius, and hence no barrier —the critical radius is
zero. Stranger still, for T) TD we will have spontaneous
nucleation of bubbles which will grow to an equilibrium
size R, )0 before they are checked by the volume term.
Our calculation thus implies that the quark-gluon plasma
is unstable against bubble creation, even above TD.

In the next section we calculate the free energy of a
spherical plasma droplet in the hadron gas. We solve the
Dirac and Maxwell equations for the quark and gluon en-
ergy levels, respectively, inside an MIT bag, and then per-
form the partition sum directly to obtain the free energy
as a function of the radius. We demonstrate the strong
influence of the massless quarks and gluons on F(R) and
list asymptotic approximations for their contributions.
We also display graphs of R, and F(R, ) for superheated
plasma droplets.

In Sec. III we deal with hadron bubbles in the plasma.
We calculate the phase shifts for the quarks and gluons
outside the bubble and thence obtain the density of states,
whereupon integration yields F(R). After displaying nu-
merical results which show the dominance of a negative
curvature coefFicient over the positive surface tension, we
argue that such behavior is to be expected in view of the
results of Sec. II.

For both the plasma droplet and the hadron bubble,
our calculation closely parallels that of Vepstas and Jack-
son [13] for T=0. For other calculations of zero-point
energy in the MIT bag model, see Refs. [14—17]. We
adopt the point of view [15,17] that the various diver-
gences in the zero-point energy may be eliminated by in-
clusion of explicit volume, area, curvature, etc. , terms in
the bag Hamiltonian and suitable renormalization of the
couplings; we assume likewise that the finite parts of
these couplings at T=O may be freely adjusted. Since
area and curvature terms appear to be unnecessary for
fitting the hadron spectrum [9] we assume that these

terms are zero at T=O. We take even greater liberty
with the bag constant, which we fix at B ' =221 MeV in
order to have a confinement phase transition at To = 150
MeV.

Finally, in Sec. IV we discuss the limitations of our
model calculation and how it might be extended and
corrected. Even if our physical results do not survive fur-
ther scrutiny, we expect that more care will be taken in
applying bag models to the quark-hadron interface.

II. FREE ENERGY OF A PLASMA DROPLET

We calculate in turn the contributions of the quarks
and gluons inside the droplet, and the pions outside. We
obtain numerically the quark and gluon energy levels and
then perform the partition sum:

F(T)= -+yT g ln(1+e '
) . (2.1)

In (2.1) the upper sign is for fermions and the lower for
bosons; y is a degeneracy factor. We deal only with the
case of zero chemical potential, and choose the strange
quark mass to be rn, = 150 MeV.

A. Quarks

The eigenvalue equation to be solved for the quark en-
ergy E is the time-independent Dirac equation

(iy V+y E —m )/=0,
along with the MIT bag boundary condition

in. yitj=g, r =R,

(2.2)

(2.3)

g(r) (0), (2.4)

we obtain the radial equations

dg (r) +(1+1~) =(E+m)f (r),g(r)
dI" r

df (r) f (r)+(1—~) = —(E —m)g (r),
dI r

(2.6)

where for each value of j the parameter ~ takes the values

a.=+(j + —,
'

) (2.7)

in accordance with I =j+—,'. Combining (2.5) and (2.6) to
eliminate f (r) yields the second-order equation

d g(r) 2 dg(r)
d, ~ d.

~(i~+ 1)g(r)+k g(r)=0,
r2

(2.8)

where k:E —m . Equatio—n (2.8) is solved by a linear
combination of spherical Bessel functions

g(r)=Aj (kr)+Bn, (kr),

whereupon (2.5) gives

(2.9)

where n is the inward-pointing unit vector normal to the
spherical surface, n= —r. (We suppress the color and
flavor indices, and sum over them later. ) Upon fixing the
quantum numbers j, l, and m according to [18]
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f(r)= [Aj, &(kr)+Bn, &(kr)] .k
e+m (2.10)

The MIT boundary condition (2.3), along with the
decomposition (2.4), gives the condition

respectively, where
1/2

(r, 0)= — [Cj i(kr)+Dnl(kr)]I'i (0) .
2

(2.19)

f (R)= —g(R) . (2.11)
The MIT bag boundary conditions are those of a dual su-
perconductor,

Since we are solving for wave functions inside the
spherical droplet, we demand that the solutions (2.9) and
(2.10) be regular at r =0. For «) 0, that is, for l =j+—,',
this means setting 8 =0 to eliminate the n functions.
[1~=0 is impossible by (2.7).] Thus (2.11) gives the quant-
ization condition

n E=nXB=O,
and when applied to (2.17) and (2.18) they yield

Cj ((kR )+Dna(kR ) =0 (TE)

(2.20)

(2.21)

k
ji(kR) = — j1,(kR), l =j + —,

'
E+m (2.12)

[Crj i(kr)+Drni(kr)]d =0 (TM), (2.22)

kj,(kR)= j,+,(kR), l =j —
—,
' . (2.13)

For «. (0, or l =j —
—,', we use the relation n, (x)

=( —)'+'j i, (x) to make all the indices in (2.9) and
(2.10) positive, and only then eliminate the n functions.
We then obtain, from (2.11),

jI(kR) =0 (TE) (2.23)

respectively. In solving the problem of gluons inside a
spherical bag, we demand the fields be regular at r =0.
This forces us to set D =0 in both (2.21) and (2.22), giv-
ing us the quantization conditions

Denoting by E„ I the nth solution of (2.12) or (2.13) (ac-
cording to l =j+—,

' ), the quark free energy is given by (l + 1j)I ( kR ) =kRj I +,(kR ) (TM ) . (2.24)

F (R, T)= —6T g (2j+1) g g ln(l+e "" ),
j=1/2 I =j+1/2 n

(2.14)

F (R, T)~ P(T)V, — (2.15)

where we have fixed the degeneracy factor y to reflect the
presence of three colors and of both particle and antipar-
ticle (i.e., positive- and negative-energy) states. There is
one such contribution for each flavor of quark.

When R ~ co, the free energy (2.14) must reduce to

The gluon contribution to the free energy is a sum over
solutions k„'I of (2.23) and (2.24), where a stands for TE or
TM:

Fg(R, T)=+8T g (2l+1)
1=1

—k /Tg ln(1 —e "' ),
a =TETM n

(2.25)

where 8 is the color factor for SU(3) gluons.
In the R ~ oo limit, we have Fs(R, T)~ Pg(T)V, —

with

P ( T) q dk k2ln( 1+ co(k)/T)
2~2

(2.16)
P (T)= — f dk k ln(1 —e "

)
o

In this formula y =2X2X3=12 for each flavor, and
co(k)=Qk +m . The degeneracy factor y =2 X 8 = 16.

(2.26)

B. Gluons

We treat the gluon field as eight copies of an Abelian
gauge field, and are thus led to the conventional vector
multipole expansion [19] for solutions of Maxwell's equa-
tions. The separation of variables in spherical coordi-
nates gives for each value of l a transverse-electric and a
transverse-magnetic solution:

C. Pions and the bag pressure

F (R, T) = P( V —Vd„pi„—), (2.27)

For the pion gas outside the plasma droplet, we ignore
boundary effects. This means that we take into account
only the volume term stemming from the excluded
volume of the droplet:

E( =V X V X (r~l ),
8I = ikV X(r~i ),—

(2.17)
where V is a fixed large volume and Vd«~1«= —3~R
We evaluate P„as usual:

and P (T)= — dk k ln(1 —e "'"'
)

'V~~

2m
(2.28)

Ei =ikV X(r~i ),
8( =VXVX(r~, ),

(2.18) where co(k) =Qk +m and the pion degeneracy factor
y =3. Dropping the R-independent term from (2.27),
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we are left with

F (R, T)= P„(T)R (2.29)

Since we keep only the volume term in the pion free ener-

gy, it affects only the transition temperature To [see (2.31)
below] and not F (R ) at To. While one would indeed ex-
pect the pions to contribute to the various surface terms
as well, their effect on the overall picture should be small
because the quarks and gluons have so many more de-
grees of freedom.

The final ingredient is the confining bag pressure B act-
ing on the outside of the droplet, giving

k V
p'„d(k, R)= 1 R, (2.33)

for massive quarks [20],

for temperatures above, at, and below Tp. The curves are
qualitatively similar to those in Fig. 1, but with impor-
tant differences.

Let us examine the asymptotic (large R) forms of the
various contributions to F (R, T). Asymptotic expres-
sions for the density of states of quarks and gluons in the
MIT bag have appeared in the literature. For massless
quarks [12],

F = BRbag (2.30)
k V k 2

p,"(k,R ) = — 1 ——arctan
Sm m,

S; (2.34)

P„d(TO)+P, (TO)+P (To)=P (To)+B, (2.31)

We relate B to the transition temperature Tp by balanc-
ing the pressures of the two phases:

and, for gluons [21],
O'V

p"(k, R) = R .4 (2.35)

where P„d =2P (I =0) comes from the light quarks and

P, =P (m =m, ) comes from strange quarks. B is a phe-
nomenological parameter, not necessarily the same as the
bag constant used in hadron spectroscopy. We hence-
forth assume a transition temperature Tp = 150 MeV,
which implies via (2.31) that B = (221 MeV) =313
MeV/fm .

D. Results

Here V is the volume of the droplet, S its surface area,
and R its radius. The free energy of each species for large
R is then given by

F;"(R,T)=+y;T J dk p'(k, R)ln(1+e '"'~ ),
(2.36)

yielding the formulas

We show in Fig. 2 the free energy of a droplet of plas-
ma

F(R, T)= F„d(R, T)+F,(R, T)

7 2F"(R T)= — T V+ T Rud ' Vud 36

2

F"(R,T)= — T4V+
90

(2.37)

(2.38)

+F (R, T)+[B+P (T)] R (2.32)

10

(plasma droplet)

—10
0

I I I I I I I I I I I I I I I

2 4
Radius R (fm)

FIG. 2. Free energy of a plasma droplet in the hadron gas for
temperatures near TO=150 MeV. Top to bottom: T =147
MeV, 150 MeV ( = To ), 152 MeV, 154 MeV.

The volume term of F (R, T) is the same as that in (2.37);
the area term can be obtained numerically. Note that the
massless particles do not contribute area terms to the free
energy. The massive quarks of course contribute a curva-
ture term as well, but we have not found an analytic ex-
pression for the corresponding term in (2.34).

While the asymptotic expressions serve as checks on
the numerical calculation, they also provide a framework
for description of the final results. Consider Fig. 3, which
shows the contributions of the various species to F(R, T)
at T = To, with the volume terms (which cancel against
the external pressure at To) subtracted. The gluons are
responsible for half the free energy for radii as large as 6
fm; likewise, the light quarks dominate the quark contri-
bution as far as R =2 fm. Asymptotically, the massless
particles contribute only to the linear term, and thus the
strange quarks grow in importance for larger radii be-
cause of their R dependence. Still, the massless particles
largely dictate the behavior of F(R, T) in the range
shown. Thus we conclude that the curvature term dom-
inates the surface piece of the droplet free energy for
these radii. Analysis of nucleation based on (1.1) is there-
fore not justified.

Finally, we present in Fig. 4 plots of the critical radius
R, and the free energy F(R, ) as functions of the degree
of superheating T —Tp ~ We display curves for various
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10—

I I I I

I

I I I

I

I I I It is convenient to integrate (3.2) by parts to obtain

F;(R,T)= ——I dk —5;(k)
1 k 1

0 ~ e~'+ l
(3.3)

Again, we deal with the quarks and the gluons in turn.

A. Quarks

Once more we consider solutions of the Dirac equation
(2.2) with the bag boundary condition (2.3). This time,
since we are outside the bag boundary, we have n=r.
The new boundary condition replaces (2.11) with

6 I I

I

I I I I

0
0 2

Radius R (fm)

FICx. 3. Surface free energy at T= To=150 MeV, with
volume term subtracted. Bottom to top: strange quark contri-
bution, total quark contribution, total of quarks and gluons.

choices of TQ, adjusted by varying B. Were I, to be
zero, the only dimensionful parameter in the theory
would be B or, equivalently, TO. Then we would have

and

R, (T)=TO 'g

F(R, )= Tog

TO

TO

T TQ

TO

(2.39)

(2.40)

0
0

10

I i s s s I

2 4
T—TD (MeV)

I I I I

I

I I I I

I

I

This scaling is broken by the strange quark mass.

III. FREE ENERGY OF A VACUUM BUBBLE

The "vacuum bubble" is a spherical surface of radius R
with quarks and gluons outside it obeying bag boundary
conditions. Inside the bubble we have the bag pressure B
along with a gas of pions (for which we again take into
account only the bulk pressure term). The quark and
gluon wave functions experience phase shifts 5, (k), where
i denotes species, angular momentum, etc. These phase
shifts change the density of states according to

4
C4

d5;(k)bp;(k)=-
dk

(3.1)

For each i there is a contribution to the free energy of the
form

0 I

0
I I I I I l «& I

4 6 8
T—TD (MeV)

F, (R, T)=+Tf dk .bp, (k)ln(1+e "'"'~
) .

0
(3.2)

Evidently the phase shifts and Ap; are zero in the absence
of the bubble, so that g, F, (R, T) is just the exterior piece
of the free energy of the bubble.

FIG. 4. (a) Critical radius R, and (b) free energy F(R, ) for
plasma droplets in a superheated hadron gas, as functions of the
degree of superheating. Curves are for choices of To = 125, 175,
225 MeV. To increases from top curve to bottom curve in (a),
and from bottom curve to top curve in (b).
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f (R)=g(R) . (3.4)

A j (kR) — j i(kR)

Given solutions to the radial equations of the form (2.9)
and (2.10), we have

5&
=arctan

j,(kr)

ni(kr)

The gluons' contribution to the free energy is

F (R, T)

(3.13)

kBn—(kR) — n i(kR)E+m (3.5)
(2l +1) g f dk —5I(k)8 k, 1

O e '—1

(3.14)
The ratio A /B gives the phase shift of the wave func-

tion at infinity. For the case x.=+(j+—,')=l, (2.9) may
be approximated for large r as

C. Results

1 . m lm
g (r) — A sin kr —l——B cos kr-

kr 2 2
(3.6)

Corresponding to (2.32) for the plasma droplet, we
have, for the vacuum bubble,

F(R, T)= F„d(R, T)+F,(R, T)

C sin kr — +5.1 . I m.

kr
(3.7) +Fg(R, T) [B +P—„(T)] R (3.15)

where (3.7) defines the phase shift 5'. Thus we identify

5' j+ ' =.arctanJ (3.8)

5'=~ '/ =arctan + A
J B

(3.9)

Combining (3.5) with (3.8) and (3.9) gives

JI(kR)+ E+ Jlyi(kR)
5' + ' =arctan

E+m

n&(kR )+ ni+ i(kR )

(3.10)

When ~= —(j+—,
'

) = —l —1, we replace the Bessel func-
tions in (2.9) by functions with positive index before tak-
ing the large-r limit as in (3.6). The result is

where the sign of the last term reAects the fact that the
pion gas is inside the bubble, pushing it to expand. We
plot F(R, T) in Fig. 5 for temperatures near TD, and we
see immediately that the general forms expected from
Fig. 1 are not reproduced. The outstanding feature of the
curves in Fig. 5 is that their slopes near R =0 are nega-
tive. This reffects the facts that (i) the area coefficient,
while positive, is very small, and (ii) the curvature
coefticient is negative and gives a large term proportiona1
to —R. We shall argue shortly that these properties are
consistent with the results of Sec. II. First, however, let
us discuss the implications for the physics of the phase
transition.

Consider nucleation of a vacuum bubble in a super-
cooled plasma, T ( To (solid curve in Fig. 5). The critical

I I I I

i

I I I I

i

I I I I

[
I I I I

i

I

/

Each species of quark thus contributes

F (R, T)

(2j + 1) g f dk 5'(k)—
j=1/2 1=j+I/2 ~ + 1

(3.11)

to the free energy of the bubble.

B. Gluons

For the gluon modes, we have the boundary conditions
(2.21) and (2.22). A procedure similar to that used for the
quarks gives the phase shifts

[rji(kr)]d

ATE
d

(3.12)

„[rn,(kr)]
dr r=R

2
Radius R {fm)

FICx. 5. Free energy of a hadron gas bubble in the plasma for
temperatures near TO=150 MeV. Top to bottom: T=155
MeV, 150 MeV ( = To), 147 MeV.
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radius R, is zero, and so is the free energy F(R, ) neces-
sary for creation of a growing bubble. This means that
supercooling of the plasma is impossible —the hadronic
phase begins to appear immediately as T descends past
TO'

Above To, it is clear from the dash-dotted curve in Fig.
5 that the plasma is still unstable against the formation of
bubbles. The system can lower its free energy by nucleat-
ing bubbles and letting them grow to the radius Rq
which minimizes F(R). This picture persists even for
temperatures well above To. As can be seen in Fig. 6,
both the size and free energy of "equilibrium" bubbles
appear to approach finite limits as T grows.

The situation at To (dashed curve) is similar to that

above To. Here, however, there is no volume term to
drive F(R) to co as R ~~. (This is precisely the condi-
tion fixing To.) Still, the leading term, the area term, has
a positive coefficient, so the curve must turn upwards for
sufficiently large R. We can thus lump this case with the
T) To case. The dashed curve in Fig. 5 shows how small
the area coefficient is. [As T~TO+ in Fig. 6, both R,
and F(R, ) approach large but finite limits correspond-
ing to the minimum of the dashed curve in Fig. 5.]

To connect these results to those of Sec. II, consider a
formal expansion of F(R) about R = ~. Such an expan-
sion might be a result of using the multiple reAection ex-
pansion [22,23] to calculate the density of states:

p(k)= z
k +cik J dS+cz f dS + +V 1 1

2~' R) R~

1.5

(a)

(3.16)

The expansion (3.16) applies to a surface of any shape. V
is the enclosed volume; the integral in the second term is
the surface area, the integrand in the third term is the ex-
trinsic curvature, expressed in terms of the principal radii
of curvature; and c, and cz depend on the type of field
and on the boundary conditions, and are functions of
k /m. For the interior of a sphere we have

p(k)= R k +ci4zR k+c)8vrR+ . , (3.17)
2

3~

0.0 I I I I
I

I I I I

I

I I I I

I

I

(b)

—0.6

0..0 r « I I I I I I I I I I I I I I I I I I r I

140 160 180 200 220
v (Mev)

240

and (3.16) is evidently an expansion in powers of (kR)
[Equations (2.33)—(2.35) provide examples. ] Inserting
p(k) into an integral of the form (2.36) gives F(R) as an
expansion in R . Equation (3.16), incidentally, explains
why the term proportional to R is called the curvature
term.

For the case of the plasma droplet, the sign of each
term in (3.17) may be inferred from the results of Sec. II.
The volume term is of course positive. The area term,
which rejects the surface tension due to the strange
quarks, is positive. The curvature term, due largely to
the massless particles, is also positive.

Now compare the vacuum bubble. The surface is the
same as that of the droplet, but it is viewed from the out-
side. This means that we must change the sign of R in
(3.17). In the first place, the volume term changes sign.
The meaning of this is obvious: The fields that were
confined in Vd„„&„before are now to be found in
V —Vb„bb&„and —', ~R represents an excluded volume.

When we change the sign of R, the area term remains
the same, reAecting a positive surface tension, irrespec-
tive of which phase is on which side of the boundary.
The curvature term, however, changes sign, which is con-
sistent with the fact that the extrinsic curvature is a
signed quantity.

To summarize: If we expand

I, , I I I I I I I I I I I I I I I I I I

180 200 220
T (Mev)

F(R) =bP 4zR +o 4rrR +a 8rrR + (3.18)
140 160 240

FIG. 6. (a) Radius R,q
and (b) free energy F(R&q) of stable

hadron gas bubbles in the plasma for T) To = 150 MeV.

while defining R to be positive, AP changes sign at the
phase transition as appropriate; cr, the surface tension, is
always positive; and a, the curvature coefficient, is posi-
tive for the droplet but negative for the bubble. In fact,
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according to the multiple reAection expansion o. and a
should be the same for the two cases at any given temper-
ature. Our numerical results show this to be the case
[24].

For sufficiently small R, a negative linear term in (3.18)
should lead to a negative slope in F(R), unless terms of
higher order in 1/R contribute strongly as well. Our nu-
merical results for the vacuum bubble show that a regime
with negative slope indeed exists.

IV. DISCUSSION

To say that our results are model dependent is an un-
derstatement. Nevertheless, it is amusing to contemplate
their implications for a picture of the quark-gluon plas-
ma. The ordinary, weakly coupled plasma is apparently
unstable against the nucleation of vacuum bubbles. One
can always lower the free energy of the plasma by insert-
ing a bubble of radius R, ; presumably the state of lowest
overall free energy possesses a certain density of such
bubbles, where the density is fixed by the bubble-bubble
interaction which we have not calculated.

This does not imply that the plasma phase does not ex-
ist, but rather that it possesses a complex structure in-
volving the admixture of vacuum bubbles. Certainly it is
different from the low-temperature phase, which is a gas
of pions with no sign of plasma. Consider the dynamics
of the "hadronization" phase transition. One can imag-
ine starting with a high-temperature plasma, with its
population of bubbles of radius R, (T). As one cools the
system, R, grows. Bubbles will grow, meet, and
coalesce, causing reheating, but equilibrium at any tem-
perature will consist of a Quid of bubbles. Once Tp is
passed, however, the bubbles will grow without restraint
until the plasma disappears.

Going in the other direction, production of the plasma
by heating the hadron gas will proceed as follows. For
T ( Tp any plasma droplets which form will vanish
quickly. Above TQ, droplets nucleated with R )R, (see
Fig. 4) will grow, meet, and coalesce, leading eventually
to the inverted picture, a bulk plasma with shrinking vac-
uum bubbles. Unlike a conventional phase transition,
however, the bubbles will not shrink away to nothing, but
will stop shrinking when they reach R, , leaving us with
the inhomogeneous phase described above.

Many things are plainly missing in our calculation.
Just as interactions among bubbles pose an interesting
question, so do interactions inside the bubbles. After all,
these "vacuum bubbles" are full of pions. At Tp=150
MeV, a free pion gas has 0.15 pions/fm, which, with a
pion radius of 0.6 fm, gives —', mr p =0.14. This is not a
very dilute system, and ideal-gas considerations may be
inadequate.

The surface energy of this pion gas merits attention. If
we were simply to give the pions some definite linear
boundary condition at the bag surface, they would pro-
duce a surface tension, a curvature term, etc. Recall,
however, that the pions comprise only three degrees of
freedom, and thus their contribution is perhaps negligible

next to that of the quarks and gluons.
A more consistent way to include pion effects, in any

case, is via a chiral bag model [25]. The chiral bag
boundary condition

a a

in yg=e 'P, r =R (4.1)
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couples the quark fields on one side of the boundary with
the pion field on the other side in a highly nonliner
manner. It may be possible to calculate effects of this
coupling in perturbation theory in the pion field [26].
Even so, the gluon boundary condition is unchanged, and
the gluon contribution to the surface energy will still con-
sist of a large curvature term and no surface tension.

As noted above, the absence of an area term is charac-
teristic of massless quarks and gluons. Just as the strange
quarks contribute a surface tension, so may the light
quarks if their thermal masses are taken into account.
The question here is, first, how to do this consistently,
and, second, what value to take for this mass near the
phase transition. The same applies to gluons and their
dynamical plasmon mass.

Can our result be changed by adjusting the parameters
of the bag model? One might be tempted to add a
temperature-independent curvature term to cancel the
finite-temperature term near Tp. Not only is this idea un-
natural, but it leads to disaster for the hadronic phase.
Write the curvature coefficient as a=a0+a&(T), where
a, is the result of our calculation and ep is independent of
temperature. In order to stabilize the plasma against vac-
uum bubbles, the term proportional to ap must be posi-
tive for bubbles, and hence negative for plasma droplets.
As one lowers the temperature into the hadronic phase,
a&(T) disappears, leaving a negative curvature term
which will spontaneously nucleate plasma droplets in the
vacuum. One thus trades instability of the plasma for in-
stability of the low-temperature vacuum.

Apparently, it is not very easy to make the effect go
away in the context of the bag model. One must consider
the possibility that the bag is just not a very good model
for the quark-hadron interface. After all, is it reasonable
to demand that all the dynamics of the interface be dic-
tated by the boundary conditions of the fields on either
side? A more realistic picture is offered by soliton bag
models [27], where surface tension is due to the variation
of an effective scalar field as it interpolates between the
free-quark interior of the bag and the quark-excluding ex-
terior. This seems to offer the most promising arena for
future attempts to address this problem. Perhaps lattice
methods for calculating the interface free energy [28]
may also be applied here.
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