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Quark and lepton masses in technicolor theories can be enhanced if the high-energy, extended tech-
nicolor (ETC) interactions play an important role in electroweak symmetry breaking. This happens
when the ETC coupling and the technicolor gauge coupling at high energies lie close to a certain critical
line. The enhancement has been associated with the existence of composite scalars made mainly of tech-
nifermions, with masses small compared to the ETC scale. The initial study of these states was carried
out with the technicolor gauge coupling neglected. In this paper we investigate the properties of such
scalars including the technicolor gauge interactions. We find that for realistic values of the gauge cou-
pling, the scalars will not be narrow resonances. Mass and width estimates are made and some com-
ments about the phenomenology of these states are included.

The recent revival of interest in technicolor theories of
electroweak symmetry breaking has been stimulated part-
ly by the observation that these theories should not
necessarily be viewed as scaled-up versions of QCD.
Momentum components well above the confinement scale
A„canplay a more important role than they do in QCD,
with important consequences such as the generation of
very large fermion masses. Walking technicolor [1] is
one example of this phenomenon. Another possibility is
that the higher-energy extended technicolor (ETC) in-
teractions, which must be present to generate the masses
of ordinary fermions, can play an important direct role,
along with the technicolor interactions, in electroweak
breaking, leading to even larger fermion masses [2,3].
This can take place only if the combination of the ETC
coupling and the technicolor coupling at the ETC scale is
sufficiently close to a certain critical curve [4].

It has recently been suggested that this ETC-driven
enhancement is associated with the appearance of com-
posite scalars that are light compared to the ETC scale
[5]. The enhanced fermion mass then arises from an
effective Yukawa coupling of the fermion to the scalar,
which develops a vacuum value from the technicolor in-
teractions. Here we summarize a study of the light com-
posite scalars generated by near-critical high-energy in-
teractions. We conclude that unless the technicolor cou-
pling at the ETC scale is unrealistically weak and the
ETC coupling is very close to the critical curve, these
light states will have large widths.

We consider a single doublet of technifermions
4=( U, D) subject to a confining technicolor force and an
additional, higher-energy, attractive ETC interaction.
The latter is approximated by an effective
SU(2)L X U(1)-invariant, four-fermion coupling [6]:

Sm A,
+4f = ( +i. UR )( UR +I. )

N„A

+x f ' "",x(k)+ . (2)

where a —=a(A), C2(R) is the quadratic Casimir constant

where i is a summed SU(2)L index, X„is the number of
technicolors, A is the ETC mass scale, and X is the in-
teraction strength of the ETC interactions. Implicit tech-
nicolor indices are also summed in each fermion bilinear.

Only the U~ and not the D~ has been included in the
ETC interaction, assuming that terms involving the latter
will be weaker. Thus, while the technicolor interactions
will generate a dynamical mass for both the U and D, the
above ETC interaction will contribute only to the U
mass. This anticipates that when ETC couplings to ordi-
nary fermions are included, the mechanism being ex-
plored here will be especially important for the genera-
tion of the t-quark mass.

We begin by recalling some features of dynamical
chiral-symmetry breaking driven by the combination of a
gauge interaction and a high-energy, ETC, four-fermion
interaction. Suppose that the physics of interest takes
place at energies well above the confinement scale A„.It
should be possible to describe this physics in terms. of A,

and a(A) (the technicolor coupling at the ETC scale),
with technicolor running neglected to first approxima-
tion. The running of the technicolor coupling can then
be included perturbatively. We will adopt this procedure
and return later to a discussion of the conditions under
which the approach is reliable.

With running neglected, dynamical mass generation
can be studied in the linearized ladder approximation
[4,7]. In the Landau gauge [8], the gap equation for the
dynamical mass X(p) of the U takes the following form
after angular integration:

3aC2(R)
&(p) = X(k)4~ M
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of the technifermion representation R, M is the max-
imum of p or k, and the ellipsis represents terms of order
a, aA, , and higher.

Analysis of this equation in the a, A, plane [4] reveals
that a critical curve separates the broken phase (TWO)
from the symmetric phase (2=0). For A, &

—,', the broken
phase exists only for a) a, =sr/3C2(R). For A, )—' the
critical curve separating the two phases is defined by

2
(3)

where i)=+I—a/a, . The broken phase then exists
only for A, ) A, .

When the running of the technicolor gauge coupling is
reintroduced, this distinction between broken and sym-
metric phases is blurred. The growth of the coupling at
momenta near A„will in fact always break the chiral
symmetry at these lower scales. The critical curve in A,

and a is therefore, loosely speaking, the dividing line be-
tween the regime where the high-energy interactions
(four-fermion and technicolor combined) are able to
break the symmetry, and the regime where they are too
weak. With A, and cz in the weak "symmetric'* regime,
the low-energy breaking of the symmetry by the growth
of the technicolor coupling near A„will typically lead to
X(0)-A„«A.

It is this regime, where the spontaneous breaking is
dominated by the "low-energy" technicolor interaction,
that is of principal interest in this paper. To set the
stage, however, we first suppose that a and A, lie in the
"broken" phase. The behavior of X(p), as the critical
curve is approached, can be derived from the gap equa-
tion. Since in a realistic theory a & n„wesummarize the
critical behavior only for this case. As X—+A, with n
fixed, one finds that [4]

(4)
A

Thus the critical behavior involves a (gauge-independent)
[8] anomalous dimension that depends on the strength of
the long-range interaction. With technicolor running
reinstated, this behavior will persist as long as A, /A, —1 is
such that X(0)))A„.

We now return to the regime A, & A, , where X(0)-A„.
There it has been shown that for a range of A, near A, , the
high-energy mass of the technifermion X(A) takes the
form [3]

&~=oX(A)- (5)
A (1 —A, /A, )

H«e (gg)2 o is the technifermion condensate in a pure
technicolor theory normalized at A and g =4m A, . If an
ordinary fermion (quark or lepton) is coupled to the tech-
nifermion by an ETC interaction with strength of order
g /A, then its mass is also given by Eq. (5). This expres-
sion exhibits the ETC-driven mass enhancement as

It will break down once A(1 —
A, /A, )' —A„.

In Ref. [5] it was suggested that this enhancement can
be attributed to the existence of a light scalar particle of
mass M-A(1 —

A, /X )' [9]. It couples to the technifer-
mion and then develops a vacuum value due to the tech-

nicolor interactions, producing a "tadpole" diagram and
leading to the result (5). This estimate is reliable as long
as A,

—A, is large enough that M &)A„.The discussion of
scalar formation in Ref. [5] was restricted to a pure four-
fermion theory [9], i.e. , a Nambu —Jona-Lasinio (NJL)
model [10]. Here we include the technicolor gauge in-
teractions and specifically address the issue of the ex-
istence of a light physical scalar.

To get an idea of what to expect, recall that in the re-
gime outside the critical curve, the high-energy interac-
tions are strong enough to break the chiral symmetry and
produce three massless scalar Goldstone bosons. They
will also produce a massive scalar whose mass vanishes as
the critical curve is approached. Since the phase transi-
tion in the nonrunning theory is second order [4], corre-
sponding scalar resonances produced by the high-energy
interactions are also expected on the weak side of the
critical curve, whose masses approach zero as the critical
curve is approached. In this phase, still neglecting run-
ning, chiral symmetry ensures that the scalar resonances
are degenerate. To explore the region of this phase near
the critical curve, auxiliary fields are introduced for these
light scalar degrees of freedom.

Four auxiliary fields are introduced by replacing the
effective four-fermion interaction in Eq. (1) by

UR
VLM

QN„
+H. c. — TrM M,A

4

FIG. 1. Quantum corrections to the quadratic efFective ac-
tion. The wavy lines are techni-gauge bosons, the solid lines are
technifermions, and the dashed lines represent the scalar field.

where M=rr+iv n The .SU. (2)I X U(1) symmetry is

manifest in this Lagrangian. These fields do not. in gen-
eral, have definite parity, since the original interaction
[Eq. (1)] is parity violating. We will refer to all of these
fields as scalars. The study of critical behavior in terms
of the auxiliary fields begins with the quadratic term in
the effective potential. The classical piece can be read off
from X,„„andthe quantum piece can be computed in

ladder approximation by evaluating the graphs depicted
in Fig. 1 at zero external momentum [11,8]. The sum of
graphs can be written as

'+ ', f d k I (k)
ladder 2 g J (~ )4 k2

where I (k) is the full ladder approximation to the one-
particle-irreducible (1PI) rr UU vertex with zero momen-
tum fiowing along the scalar line. I (k) can be evaluated

by solving the Dyson-Schwinger equation, which gives [8]
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kI (k)=,1+ 1~
2 2

' —1/2+ q/2 p+k

Substituting this expression into Eq. (7) and combining
the result with the classical term then gives the full qua-
dratic effective potential

Ay.(2)— (9)
2

(o+.rr ) .(1+ 1~)2

The stability of this potential at the origin is determined
by the sign of the coeflicient of —,'(o +m. ). The critical
curve [Eq. (3)] is determined by setting this coefficient to
zero.

In the regime A, (A, of special interest here, the quad-
ratic effective potential gives the zero-momentum limit of
the scalar inverse propagator, that is the "zero-
momentum mass:"

M(0)=A(1 —
A, /k )' (10)

M(0) will be small compared to A if nature provides us
with a A. close to A, . Recalling that the scalar o will de-
velop a small vacuum value, we recover the fermion mass
enhancement formula [Eq. (5)] [3], together with its tad-
pole interpretation [5].

To explore the new physics at scales well below A gen-
erated by near-critical high-energy interactions, it is
necessary to move beyond zero momentum. This
amounts to the construction of the effective action of the
low-energy theory. The question of whether the light
scalars exist as narrow or even broad resonances can be
addressed by constructing the quadratic term in the
effective action of the scalar fields. For the o. field, for ex-
ample, it can be written in the Euclidean-space form

4

II "'[a ]= —f,—~ '(p )a(p)a( —p ),
(2ir) 2

where 0.(p) is the momentum-space field and b, '(p)
is the inverse scalar propagator at momentum p.

To compute b '(p), one must evaluate the graphs
shown in Fig. 1 with some nonzero external momentum p
in the scalar legs [12]. This requires knowledge of
I (p, k), the full ladder approximation to the 1PI o UU
vertex with momentum p Aowing along the scalar line. A
complete computation of I (p, k) is difficult, but an ap-
proximation will be adequate for our purposes. We begin
by considering a Taylor-series expansion about p =0 of

'(p). In the ladder approximation one can show, by
use of the Dyson-Schwinger equation for I (p, k), that
two terms contribute to the second derivative (with
respect to p") of the graphs in question (see Fig. 2). One
term has two derivatives on a fermion propagator and a
I (p, k) at each scalar vertex; the other term has one
derivative on a propagator, a I (p, k) at one vertex and a
derivative of I (p, k) at the other vertex. The derivative
of I (p, k) is higher order in a than I (p, k). By solving
the Dyson-Schwinger equation for the partial derivative
of I (p, k) with respect to p, evaluated at p =0, one can
show that the second term is also numerically smaller
than the first (evaluated at p =0 [13])for a ~ a, .

p+k

FIG. 2. Second derivative of 6 '(p). The external momen-
tum p Bows through the upper lines, and the slashes indicate a
derivative with respect to p„.

Higher derivatives of b, '(p) will also contain terms
with and without derivatives of I (p, k). In what follows
we will drop all terms involving derivatives of I (p, k), as-
suming their sum is numerically smaller than the sum of
terms with no derivatives of I (p, k). These terms in the
Taylor expansion contain only graphs with derivatives on
the fermion propagator. They can easily be summed.

This resummation gives a graph with a I (k) at each
scalar vertex and the external momentum p Aowing
through one fermion line. Performing the trace and the
angular integrations, we obtain

2 2 k~-'(p) —~-'(0)= f ' dk'r'(k) " —2
8~2 p

2 g &' 21 k
p 8~2 p2 k2

(12)

(13)

where

2A, (1—r))
(14)

b=
X i)(1—i) )

(15)

Recall that we are restricting our attention to the case
(a (a, ). Before proceeding further with the ques-

tion of the possible existence of narrow resonances for

Combining the result for the efFective potential [Eq. (9)]
with the above kinetic term (and Wick rotating so that p
is positive for a timelike Minkowski momentum), we find

2 2 "I

'(p) = —A a + b [cos(ilier) i sin(r)ir)]-
A A
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realistic values of the coupling constants, we examine Eq.
(13) in some simple limiting cases.

In the NJL limit (a —+0), we find
(22)

~NJL(p) =P—1 2~
2

(16)

Poles of b, NJL(p) occur for complex p . We parametrize
the location of the pole nearest the physical region by a
mass and a width; i.e., the pole occurs at
p =[MNJL (l/2)rNJL] . For A, close to 1, this yields
(keeping only leading terms in I NJL/MNJL) the physical
mass

It can be seen from this condition that the scaling behav-
ior sets in more rapidly as a is increased toward o,

We next consider under what conditions the scalar res-
onance will be narrow. With a pole located at
p =poexp( —i8), A(p) will describe a narrow resonance
if 0 is small. In that case it is reasonable to parametrize
the location of the pole by a mass and a width. That is,
we set poexp( —i8) = [M —(i/2)I ],which yields

I NJL

~NJL In[A, /2( I —
A, ) ]

2(1 —
A, )

A, In[A, /2( I —X) ]

and narrow width

(17)

(18)

1/2
1+cos(8)

2
=po ~

2 sin(8)
1+cos(8)

(23)

(24)

Thus the familiar NJL results are recovered in this limit.
To obtain Eq. (16) from Eq. (13), an expansion in
(a/2a, )ln(A /p ) and a/2a, has been made, keeping
only the zeroth-order term. Note that this means drop-
ping a term of order A,a/2a, relative to the 1 —A, term.
To obtain Eqs. (17) and (18), we have assumed that
In[A, /2(1 —

A, )]))1. Therefore, these equations should
give good approximations for the mass and width only
when

cx 1 A, 1
— (( «1 .

2a, A, in[A. /2(1 —1,)]

' 1/2q
1 —A, /k

b
(20)

{1—g)/g
a sin[ [(I—rl)/i)]~] 1 ~/~a

bg b
(21)

where m is an odd integer. We expect the physical pole
to correspond to I= 1, since it is the closest pole to the
physical region. Equation (20) describes how the mass
scale of the pole position vanishes as k is tuned toward
the critical curve. It is interesting to note that this scal-
ing law is different from that of the zero-momentum mass
of the scalar [Eq. (10)]. It is, however, the same scaling
law as exhibited by X(0) in the broken phase [Eq. (4)].
We expect the same scaling behavior for the mass of the
scalar in the broken phase. Equations (20) and (21) give a
reliable description of the pole position of b, (p) only when

For the more realistic case of finite a, we examine the
location of the poles of the propagator as A, approaches

The poles again occur for complex p, and so we set

p =poexp( —i8). For i) (1 and k very close to A. , we
can neglect p /A relative to (p /A )" in the real part of

'(p). We then find zeros of b, '(p) at

When is 0 in fact small? We first observe that for finite o.
(rj (1), 8 [Eq. (21)] does not approach zero as A, ~A, .
Therefore, the width-to-mass ratio is not suppressed (as
in the NJL case, a=0) as the critical curve is ap-
proached. For small but nonzero o., this expression gives
8~(a/2a, )m as k~A. . Thus, as the mass scale of the
scalar state is made small by approaching the critical
curve, it is not described by a narrow Breit-Wigner reso-
nance unless a is quite small.

Having considered these special limiting cases, we now
consider more generic values of the coupling constants.
A description of the resonance structure of the theory is
provided by a plot of Imb, (p). We do this by evaluating
the general expression for h(p) [Eq. (13)] and plotting
Imb, (p) vs p/M(0) (in Fig. 3) for various values of A, /A,

and a/a, . Each figure corresponds to a different (small)
value of M(0)/A=(1 —

A, /A, )'~ . In each case a resonant
curve exists for the smallest value of a/a„peaked at a
momentum smaller than M(0). The curve then shifts
down [relative to M(0)] and broadens (relative to the po-
sition of the peak) as n/a, is increased. Both the shifting
down of the peak and the broadening are consistent with
the limiting cases discussed above.

As a specific example, consider the case in which A, is
tuned to within 1% of X [Fig. 3(b)], giving M(0)/A= —,'0.

The likely value of a [ =a(A)] depends on the details of
the technicolor theory. If A is in a rangle between, say,
30 and 1000 TeV and if the technicolor coupling either
runs normally or walks at a rate attainable in a realistic
theory, n/o. , will be somewhere between roughly 0.2 and
0.5. This range within which a broad Breit-Wigner curve
exists, peaked roughly around 0.3M(0). With A=100
TeV, for example, the peak would be around 3 TeV, with
a full width at half maximum of roughly the same order.
With less fine-tuning [Fig. 3(a)], the resonance is broad
even in the NJL limit. With a great deal of fine-tuning
[Fig. 3(d)], the resonance is narrow for very small a, but
becomes broad once a/a, is as large as, say, 0.2.

The curves of Fig. 3 show clearly that the tightly
bound light scalar objects produced by near-critical
high-energy interactions will not in general be narrow
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to the U in the determination of critical behavior and the
enhancement of fermion mass. Even though its coupling
to the scalar channels will be strong at the ETC scale, it
will be much more weakly coupled than the U at the scale
associated with the resonances. This can be seen directly
from the above discussion. The Z factor of the scalar is
large (as described above) in the region of the resonance.
We are assuming here that only one set of parameters is
tuned close to critical and that there is therefore only one
set of light scalars. Since the t has no technicolor interac-
tions, however, there is no vertex correction to compen-
sate this factor.

For any of our conclusions to be useful in a technicolor
theory, it is important to discuss the effect on the light
physics of reinstating the running of the technicolor cou-
pling. We have already pointed out that the running
turns what we have been calling the "symmetric" phase
into a broken phase with the breaking taking place on the
order of the confinement scale A„.This produces the fer-
mion mass enhancement formula of Eq. (5) with its tad-
pole interpretation.

What eff'ect does the running have on the resonance
spectrum just discussed and other features of the low-
energy physics? First of all, the technifermions and the
techni-gauge bosons will be confined at scales on the or-
der of 1/A„. If the light scales discussed above (those
appearing in the graphs of Fig. 3) are large compared to
A„,the confinement can be expected to have little eff'ect

on the mass and total width. The ladder computations
for the total width reported above will remain reliable in
analogy to the way QCD can be used to describe R in
e+e annihilation. The dominant decay products of the
scalar resonances will be the technicolor-singlet tech-
nihadrons, including the longitudinally polarized 8"s and
Z's. The various partial decay rates will depend in detail
on the confinement dynamics as they do in QCD.

If these resonances are not too far above A„,they may
be accessible at the Superconducting Super Collider (SSC)
or at a very-high-energy e e collider. Since their
strongest couplings are likely to be to the U-type techni-
quark, the dominant production mechanism will prob-
ably involve UU production followed by emission of the
resonant state from one of these heavy fermions. Wheth-
er the resonances can be detected will depend on the par-
tial and full widths, as well as detector capabilities, back-
grounds, etc.

Whether the resonances lie enough above A„sothat
our estimates neglecting the running are reliable depends
on a/n, and the smallness of k —X . Suppose first that
a/a, =—a(A)/a, is small, say, =0.1. If A is in the range
from 100 to 1000 TeV, this corresponds to a normally
running theory. If A. —A, is not too small, the resonance
mass will then sit well above A„,where the running cou-
pling remains quite close to a(A). In this case it can also
be seen that the small a expansion of b, '(p) should be
reasonably convergent. The use of the zeroth-order term
[Eq. (16)] should give a good first approximation.
Higher-order corrections involving both ladder exchange
and running coupling corrections could then be comput-

ed simultaneously.
If o;/e, is larger, then the anomalous dimension in

I (k) is large and the full form of b, '(p) must be re-
tained. Still, the neglect of running can be a good first
approximation. Suppose that a/a, =0.5. With A in the
range between 100 and 1000 TeV, this corresponds to a
rather slowly running theory. With A,

—A, small but not
too small, the resonance mass will be small compared to
A, but well above A„.In this case it is walking that
justifies the use of a constant technicolor coupling as a
first approximation. Computations showing the effect of
running in diff'erent cases will be reported in a future pub-
lication.

If the parameters are such that the resonance curves
are centered at energies of order A„,then the computa-
tion of b, (p) described above will not be quantitatively re-
liable. The zero-momentum mass M(0) may still be
above A„and the estimate of Eq. (10) still reliable.
Confinement effects, however, could become important in
the description of the resonances which then could mix
with the technicolor states. Disentangling the experi-
mental signals in the case may be difficult.

An important question is whether the light scalar reso-
nances are able to mediate Aavor-changing neutral
currents. If we restrict our attention to CP-conserving
interactions, then possible off-diagonal couplings of ordi-
nary fermions to these resonances will not produce unac-
ceptable Aavor-changing neutral currents if the zero-
momentum boson masses M(0) are above 1.5 TeV [14].
The contribution of the scalars to Aavor-changing
neutral-current processes involving the t quark may be
much larger. This could be of immediate interest if the t
is discovered in the next few years.

Finally, it is worth pointing out that the results de-
scribed here will not be qualitatively changed if the
effective four-fermion interaction is replaced by a realistic
interaction such as the exchange of a heavy spin-one bo-
son [6]. The low-energy physics does not depend on the
details of the high-energy physics, but only on the sym-
metries and whether the couplings are tuned relatively
close to criticality.

To conclude, we have studied the properties of light
composite scalars which are present in technicolor
theories with near-critical ETC interactions. We have
shown that these scalars (which can enhance quark and
lepton masses) will not be narrow resonances for realistic
values of the technicolor gauge coupling. In addition, we
have pointed out some phenomenological consequences
of these resonances.
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