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We examine the predictions of the conventional SU(2)r, SU(2)& g U(1)n r, left-right-symmetric
model in the case where the minimal Higgs sector (containing one bidoublet, one L-triplet, and one
R-triplet Higgs field) and the standard lepton representations (incorporating right-handed partners
for the observed neutrinos) are adopted We. show that a complete analysis of spontaneous symmetry
breaking for the Higgs sector leads to a highly restrictive range of possibilities for global minima
that are simultaneously consistent with all experimental observations (such as lepton masses, Ixz,

Ks mixing, etc.). As a result, the possible phenomenologies for the gauge and Higgs bosons of the
model are very limited. For instance, we demonstrate that in the absence of explicit CP violation
in the Higgs potential, spontaneous CP violation does not arise and the fermion couplings exhibit
"manifest" left-right symmetry. Further, we find no entirely natural solutions other than ones in
which all of the extra (non-standard-model) gauge and Higgs bosons associated with the left-right-
symmetric extension are extremely heavy (typically, more massive than 10 GeV). Only by "fine-
tuning" certain parameters of the Higgs potential is it possible to bring these extra particles down to
an observable mass scale. Alternatively, symmetries can be introduced to eliminate the terms in the
Higgs potential associated with these parameters, but only at the sacrifice of introducing undesirable
consequences for fermion masses. Many of the pitfalls and problems are illustrated using a simplified
model. Overall, we emphasize the necessity of performing a complete minimization of the Higgs
sector before extracting phenomenology.

I. OVERVIEW

Left-right symmetry for physics at very high energy is
an extremely attractive possibility. In the conventional
SU(2)1, SU(2)lt U(1)~ I. left-right- (LR-)symmetric
model [1], implementation of LR symmetry requires the
introduction of right-handed partners for the observed
gauge bosons and neutrinos and a Higgs sector containing
at least one bidoublet, one right-handed triplet and one
left-handed triplet Higgs field. Triplet representations for
the latter Higgs fields are chosen so that they can cou-
ple to lepton-lepton channels, thereby allowing for the
generation of neutrino masses via the "seesaw" mecha-
nism. This minimal left-right-symmetric model has been
analyzed extensively [2—5], and many constraints have
been derived which restrict the character of the model
(cf. Ref. [6—ll]). In these papers, increasing attention
has been focused on the Higgs sector and the role that
spontaneous symmetry breaking plays in determining the
possible phenomenological features of the model, in par-
ticular the observability of the extra gauge and Higgs
bosons. Our paper is devoted to systematizing and ex-

tending these considerations.
We show that the simultaneous requirements of (1) a

completely self-consistent global minimum for the Higgs
sector and (2) consistency with current experimental ob-
servations for Z decays, KI.-Kp mixing, lepton masses,
etc. , are even more restrictive than previously realized.
Let us state clearly at the outset that many of the in-
dividual constraints we impose have been previously in-
vestigated in the literature; the primary contribution of
this work is to synthesize these separate pieces into a
coherent framework to determine the manifestations of
a realistic LR model. Once all such constraints are im-
posed, the phenomenological structure that emerges for
the minimal I.R model is remarkably inAexible.

The chain of choices and phenomenological branches
for the minimal LR model are summarized succinctly in
Fig. 1; our notation will become apparent as we proceed.
The reader should find it helpful to refer to this figure as
we develop the more detailed discussions.

Let us now outline in more detail the content of the
model and the organization of the paper. We review
the minimal left-right-symmetric model, including Higgs
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content, quark-Higgs-boson and lepton-Higgs-boson cou-
plings, and generation of quark and lepton masses. We
write the Higgs-boson couplings in a manner such that
the flavor-diagonal and flavor-changing couplings are ex-

plicitly displayed. The most general I R-symmetric Higgs
potential is also presented, while the minimization is car-
ried out in the Appendix. We analyze the phase degrees
of freedom, and confirm that, for a Higgs potential with-
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FIG. 1. Flow chart for the minimal JR model involving triplet Higgs fields. This diagram summarizes the chain of
choices possible, and the phenomenological constraints relevant for each choice. Note that the only phenomenologically viable
manifestations of this class of models are represented by the three cells with the heavy borders, all but one of which requires
either fine-tuning or the introduction of additional symmetries. The classifications (1)—(4) and (a)—(c) correspond to those of
Sec. IV A.
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out explicit CP violation, spontaneous CP violation does
not occur —that is, all the vacuum expectation values
(VEV's) of the Higgs fields can be chosen to be real. As
a consequence, in t, he absence of explicit CP violation,
the gauge and Higgs-boson sectors of the full model will
be CP conserving. In such a case, one can demonstrate
that the LR model must be manifestly or quasimanifestly
(as defined later) left-right symmetric, which in turn has
important consequences for the constraints on the model.

We then consider the VEV seesaw relationship which
takes the generic form pvL, v~ = PK+, where

/~K] ~2+ ~K2~z, vJ. , v~, Ki, and K2 are VEV's, aild p
and P are combinations of Higgs potential parameters
whose ratio should be of order 1 in the absence of fine-
tuning or additional symmetries. For the model to be
consistent with the observed phenomena, the symmetry-
breaking pattern that should arise is v~ && v+ && vL, .
Clearly, such a solution is consistent with the VEV see-
saw. (Without placing the LR-symmetric model in the
context of a grand-unification scheme, we cannot, how-
ever, explain why v& )) vL, .) We also derive the severe
restrictions obtained as a result of the VEV seesaw when
the lepton masses are required to agree with experiment.
The necessity of fine-tuning and/or extra symmetries in
order to satisfy such restrictions is reviewed.

The restrictions related to lepton and neutrino masses
are severe. We will see that, given the observed magni-
tude of the charged-lepton masses, small neutrino masses
are very difficult to obtain unless (a) the mass scale
of new physics is very large, (b) certain parameters of
the Higgs potential are fine-tuned, or (c) the terms in
the Higgs potential associated with these parameters are
eliminated by an additional symmetry or via embedding
the LR theory in a grand-unification scheme. Indeed,
barring possibilities (b) and (c), if we demand that the
electron-neutrino satisfy the current experimental bound
(m, & 10 eV), we are forced to require v~ ) 10 GeV,
thus raising the scale of the W~ and Z' to 10 —10 TeV.
The only observable consequences of a LR-symmetric
model with such a large value of v~ would be the ex-
istence of a Majorana neutrino mass.

A far more interesting mass range for the extra W~
and Z bosons is 1 —10 TeV; this region is accessible
to exploration by future colliders [3, 5j. (Note that this
region is also above the lower bounds arising from flavor-
changing neutral-current (FCNC) considerations in IR
models with manifest left-right symmetry [9j.) In light
of the VEV seesaw relation, we find that it is necessary
to "fine-tune" the p = P/p ratio of Higgs potential pa-
rameter combinations to high precision (p + 10 ) in
order to obtain boson masses which are observable at a
Superconducting Super Collider (SSC) type of facility.
We examine the question of whether imposing a discrete
symmetry on the Lagrangian can force p = 0 in a natural
manner. If we require realistic quark and lepton masses,
and Majorana masses for the neutrinos, then the sym-
metries we explore fail to achieve this goal. But, if we
give up having Majorana masses and the neutrino-mass.
seesaw mechanism, a symmetry that requires p = 0 can
be found.

To have complete freedom in adjusting quark masses,

we shall see (in Sec. II) that the Higgs bidoublet (4 and

4) must couple to fermions with unconstrained couplings.
If only one of these fields couples to fermions, then at the
tree level the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trices are diagonal and the up-type-quark masses are pro-
portional to the down-type-quark masses. However, we

note that avoiding a zero quark coupling for the C or 4,
while desirable, may not be absolutely essential so long
as radiative corrections generate oA-diagonal elements in
the CKM matrix and the predicted m, /mq ratio is within
the range obtained for top-quark masses between the cur-
rent experimental lower limit of about 80 GeV and the
upper limit (based on keeping deviations in pEw small)
of about 200 GeV.

Section IV is devoted to presenting the two types of
models in which the P-type Higgs potential terms are
absent. These models are obtained either by construct-
ing a simple symmetry which requires their absence (so
long as we are willing to give up the Majorana lepton
couplings) or by assuming that they are required to be
zero within the context of embedding the IR theory in
a grand-unified-theory (GUT) scheme (in which Majo-
rana couplings could in general still be allowed to be
present). The latter case will be given the most em-

phasis, since it is the only version of the minimal left-
right-symmetric model which will yield observable extra
bosons, acceptable quark masses, and Majorana neutrino
masses without resorting to fine-tuning. Removing the
P-type terms yields a model with two interesting possi-
bilities: (a) vL, = 0, and (b) vL, g 0. In the latter case,
there are (tree-level) massless bosons in the theory which
affect neutrino counting [12j.

To illustrate the very limited freedom remaining after
the phenomenological constraints have been imposed, we
consider a "toy" model. This model is closely related to
the general vL, = 0 case above (in a sense, it is a subset of
the general case), but it has the important virtue that it
is analytically solvable. One quickly discovers that, even
though we have (by hand) evaded the problems associ-
ated with the VEV seesaw and lepton masses, there are
still more experimental constraints that must be satisfied.
Unlike the standard model, the Higgs fields can mediate
flavor-changing reactions in the LR theories, and we must,
require that these interactions are suKciently suppressed.
At the same time, the Higgs boson that plays the role of
the standard-model Higgs boson must be light enough
to satisfy unitarity constraints. These constraints, as re-
viewed in Sec. II, are applied to the case of this toy model.
We find that to suppress the FCNC we must require that
either zi or e2 must be very small or equal to zero. (This
requirement is actually more general than the specific toy
model discussed. ) While this could result from standard
evolution in a GUT scheme, in the minimal LR context
it must be input by hand. The consequences of having
one of the K's small or equal to zero include the predic-
tion of small or zero WL, -W~ mixing. We also find that,
in this model, the quark, lepton and neutrino masses are
acceptable. Further detailed consequences are explored.

Finally, we turn our discussion toward general proper-
ties of the Higgs sector which are common to all of these
different branches independent of any additional symme-
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tries or special choices of the parameters; this analysis
applies to the most general case. (Additionally, much of
this discussion is qualitatively applicable to many of the
extensions of the LR models, of which this minimal I.R
model is a subset. )

Certainly there are many exciting features and poten-
tial signatures for IR models with triplet Higgs fields.
We hope that our presentation of the various scenarios
will prove sufhciently transpa. rent to a,liow the consumer
of extended electroweak models to judge for himself the
degree of skepticism that, is appropriate when considering
the phenomenology of these theories with extended and
very complicated Higgs sectors.

As a preface to our analysis, we begin by reviewing the
salient features and constraints of the minimal left-right
model. Many of these points have been addressed previ-
ously in the literature in an isolated context. The purpose
of this work is to synthesize these individual pieces into a
coherent and interdependent set of constraints, and then
impose this set of constraints upon the minimal left-right
model to determine the most, realistic phenomenology we
can expect which is consistent with current experimental
observations.

transformations, and P = iqg*i2.
The VEV v~ breaks the SU(2)~ symmet, ry and sets

the mass scale for the extra gauge bosons (W~ and Z')
and for the right-handed neutrino field (vii). The VEV's

and r2 serve the twin purpose of breaking the re-
maining SU(2)L, U(1)~ L, symmetry down to the usual
U(1)EM, thereby setting the mass scale for the observed
O'L, and Z bosons, and of providing quark and lepton
Dirac masses. Clearly, v~ must be significantly larger
than the larger of x~ and v2 in order than the W~ and

be significantly heavier than th e WL, aiid Z. AL, is
t, he LR-symmetric counterpart of the L~, vL, plays an
important role in the VEV seesaw relation which is char-
acteristic of LR models. The triplet VEV vL, must be
substantially smaller than the larger of vi and K2 in order
that pEw = mii, /(mz cos Oiv) be within 1% of unity,
as observed experimentally.

H. The Higgs potential

We now consider the most general Higgs potential
[2, 11, 3, 5]. For our theory to be left-right symmetric,
it is necessary that the Lagrangian be invariant under
the (discrete) left-right symmetry defined by

A. The Higgs content of the model

We consider the general class of left-right models which
are invariant under the SU(2)L, SU(2)RU(l)~ I. sym-
metry, with the following Higgs content [1,2, 5, 11, 13]:

p(1/2, 1/2*, 0), Al, (1,0, 2), A~(0, 1, 2), (2.1)

where the SU(2)r„SU(2)~, and U(1)ir I, quantum nurn-
bers are indicated in parentheses [1, 3]. A convenient
representation of the fields is given by the 2 x 2 matrices:

0 ) (2.2)

(2 3)

S+/~2 a++

@ —~+/~2 (2.4)

&I.0&R 4 &L, 4'&~

AL, ~ UI.AI. U~~, A~t ~ VI.A~~U~~,

&~ ~ Ua&~~~~,

(2 5)

where Vl. ~ are the general SU(2)1. and SU(2)~ unitarity

In our convention, a neutral field P is written in terms
of correctly normalized real and imaginary components
as P = (1/i/2)(P " + i.P '). These fields transform ac-
cording to the relation

/o 0)
(2.7)

In general, the VEV's can be complex. Global phase ro-
tations have already been employed to make the discrete
I R symmetry of Eq. (2.6) phase free. However, we do
still have the freedom to use an SU(2)1. and an SU(2)~ ro-
tation to remove two phases. A symmetric choice is to set
vL, and v~ real. Qr, if vL, ——0, then we can choose v~ and
r'i to be real. [Note that, in general, the relative phase
of vi and v~ is physical and cannot, be eliminated. How-
ever, mii, ——4g2(]xi~~ + [K2~~) does not depend on this
relative phase. ] Since we shall consider cases in which vl.

where VL, ~ are column vectors containing the left-
handed and right-handed fermion fields of the theory.
The global phases of the field matrices or vectors ap-
pearing in Eq. (2.6) can be chosen in such a way that
phases do not appear in Eq. (2.6) (cf. the Appendix). In
this way, the most general form of the Higgs potential V
obeying Eq. (2.6) contains mostly real parameters, and
this potential is displayed in the Appendix.

The discrete 1 R symmetry of Eq. (2.6) ensures that
all the Higgs-boson couplings are real, except for o.~. If
we assume that the potential is CP conserving, we would
then require o.2 to be real. A priori, the real potential
coeKcients can be either positive or negative; stability
conditions at the minimum will require certain combina-
tions of them to be positive. Note that the potential is
not invariant under Pi ~ P2 (Ref. [14]). (One can restore
the Pi ~ Pz symmetry by setting P2

—Ps and n2 ——0.)
The neut, ral Higgs fields b&, bl, Pi, and P2 can po-

tentially acquire VEV's, v~, vL„Kq, and z~, respectively.
Explicitly, we have
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and r~ are zero, we shall use these phase transformations
t, o set vII, zr E IR+. A further U(l)II L, transformation
cannot, be used to remove the phase of vr. without intro-
ducing a phase for vol [which transforms in the same way
R.S vr. under U(1)II r.].

For the potential t,o be at, a minixnum when all the
neutral fields are evaluated at their respective VEV's, wc
must require that

BV BV OV

BKI D Re K2 0 Re vJ

BV
0 lm ~2

Typically, the first three conditions above can be used
to eliminate the p, p&, and p& parameters of the poten-
t, ial, xespectively. As one adjusts the other parameters of
the potential, and the VEV's of the Higgs fields, these

p; 's must be altered accordingly. A basic presumption
of all attacks on this (and, indeed, any) Higgs sector is
t, hat evolution from some very-high-energy scale bound-
ary condlflons of the lal'gel' (GUT) tllcol'y, fi'onl will cll tile
I.R-syITlmctrlc lnodcl emerges, actilally dctclrnlllcs these
parameters to have definite values such that the result-
ing phenomenology of the model is acceptable. However,
delicate adjustments of the remaining parameters of the
potential are regarded as generally unlikely to be the re-
sult of a GUT scenario, and fall into the category of fine-
tuning that one hopes to avoid. In addition, at a true
local minimum all the physical Higgs bosolis must have
positive squared masses for a solution of Eq. (2.8). This
implies that various combinations of the potential para-
meters must be positive. (Detailed expressions are given
in the Appendix. ) Of the twenty real degrees of freedom
contaiIlcd lIl this Higgs scctol, six arc absolbcd in glvlng
mass to the left- and right-handed gauge bosons, W~,
W~, Z, and Z'.

The minimization conditions of Eq. (2.8), coupled with
the reality of all the coeNcients except o2 in V and our
ability to choose K~ and v~ to be real, imply additional
phase information foF K2 and 'UL, . In particular) lf wc Fc-
move explicit QP violation from the potential by taking
a2 to be real, then, barring certain types of extreme fine-
tuning, v2 and vL, must be real (but can be either positive
or negative, so long as stability conditions for the poten-
tial rninirnum are satisfied). If the P parameters of the
Higgs potential are zero (a case we shall consider) then
v~ must again be real and, in the absence of another fine-
tuning, vL, must be zero so that its phase is irrelevant.
The proof of these statements appears in the Appendix.
Horne of these same results were suggested by Masiero,
Mohapatra, and Pecci [7], and obtained by Basecq ef al.
[8]. Of course, if explicit CP invariance is demanded of
the entire Lagrangian, including the Yukawa couplings,
then this absence of spontaneous (7P violation will imply
that the theory will be CP conserving in its entirety. Fur-
ther, we will demonstrate that one implication of having
both ~I and v2 real is t;hat the model exhibits manifest
or, at least, quasimanifest left-right symmetry (MLRS or
QMLRS). That the absence of spontaneous CP violation

C. The quark-Higgs-basin cuuplings

The most general Yukawa interaction invariant sepa-
rately under SU(2)1. and SU(2)II transformations (under
which O'I, ~ U~@r. and IIIR ~ VII@II) is [ll, 4, 5]

w hcl'c

and the caret over the quark fields indicates that these are
the gauge eigenstates. j and g are the Yukawa coupling
matrices, and the i, j indices are family indices summed
over the quark Aavors. Imposing the discrete left-right, —

syrnmet, ry requirement of Eq. ('2.6) on Ll. , we find: X =
X, and g = g . Vk can rotate the gauge eigenstates
into the mass eigenstates with unitary matrices V:

gauge Ul. ,~ = ~I.~ UI. ,a
U'

eigenstates DL & —~&0~ DI & eigenstates

(2.11)

where U and D are vectors representing the up- and
down-type quarks. In terms of these matrices, the usual
Cabibbo-Kobayashi-Maskawa (C,KM) matrix in the left
sect, or, and the corresponding matrix in t,hc right sector,
are given by

CE&M U' t D (2.12)

Nate that, , a priori, there is no reason for VL to equal
~CKM

R
For the up-type quarks, we have (henceforth, we will

assume the Hermitian conjugate terms)

Ur. (&dl + 002*)UII = UI VL, (&41+Ag*)VnUIr .

(2.13)

Taking the VEV of the P fields, we can determine the
up-type-quark mass matrix:

UL, V~ f($'~I + fir~)VI UII = UL, M
2

(2.14)

where M represents the diagonal matrix of physical
quark masses. For the down-type quarks, we have, simi-
larly,

only implies QMLRS, but need not imply MLRS, seems
to have been overlooked previously, and will be dernon-
st, ra, ted shortly. If we now allow for a small amount of
O'P violation through a small phase for o2, the mini-
mization conditions allow small phases for v2 and vl. ,

Rnd theie will be R Small vlolafloll of QMLRS Bnd SIIlall

phases in the CKM matrix emerging from the Yukawa
coupllngs. HowcvcI', foI. mu ch of ouF discussion wc will
f Rkc flic VEV's fo be rcR1. Col lectlolls due fo slrlR11 CP
violation phases should be relatively minor.
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D (XP,'+ gP', *)D = D V (XP', + gP', ")V D„.
(2.15)

Again, taking the VEV of the P fields, we find

C'P violation implies that there will be no spontaneous
CP violation, and that the minimal IR model is either
MLRS or QMLRS, thereby ensuring the applicability of
the strong bound, m~„) 1.7 TeV.

DI, VL (%~2 + g~, )V~ D~ = DI.M DR,
2

(2.16)

where M represents the diagonal down-quark mass ma-
trix. We note that in our convention, M and M have
positive-definite entries.

Manifest and qnasimanifest left righ-t symmetry

Note that, in general, VL g V& since the matrix
(XKi+gK&) need not be Hermitian, and similarly, Vz g
V&. However, we have argued that zi can always be de-
fined to be real, while if there is no explicit CP violation
in the Higgs potential (i.e. , n2 real) then the minimiza-
tion conditions imply that z2 is also real. In this case, or
should one of the r's vanish, it is immediately clear that
XKi + gr2 and %~2+ Qadi, appearing in Eqs. (2.14) and
(2.16), are Hermitian (given the hermiticity of X and g)
and can each be diagonalized by a unitary transforma-
tion. If after such diagonalization in the up and down
sectors, all the entries on the diagonals are positive, then
we may take VL ——V& and VL ——V&. In this case,
one has V& ——VL, which has been referred to as
manifest left-right symmetry [1]. More generally, how-
ever, some entries on the diagonals in each sector will be
negative. In this case, we must write V& ——VI Vf and
V~ ——VL W, where W and % are diagonal matri-
ces with entries of +1 or —1 on the diagonal as required
to yield all entries in M and M positive. In this
case, we have V&~M = W~V&KMYVD. In other words,

——+VL, . To our knowledge, the fact that cor-

responding elements of V& and V& can difkr in
sign even when the up- and dawn-quark mass matrices
are Hermitian has not been previously noticed; we shall
refer to the relation V&, ——+V&, as quasimanifest
left-right symmetry. Nate that relative phases between
the V&cr~M and V&cKM matrix entiies ai.e potentially ob-
servable. For instance, suppose unitary diagonalization
leads to all positive entries except for the top quark. We
must then introduce W = diag(+1, +1,—I). In the
standard model this has no observable consequence; but
in the LRS theory we have V&„———V& ~, , so that,
for instance, W~ exchange interferes destructively with
WL, exchange in 8 ~ be+v, decay. However, for our pur-
poses, QMLRS is just as good as MLRS; in either case,
the bound on the R'~ mass of m~„) 1.7 TeV coming
from I~-I~ mixing will hold so long as the magnitude of
the CKM entries are the same in the R sector as in the I
sector and the main contribution from the mixed WL, -W~
box diagrams comes from just one choice of internal (up-)
quark lines. In fact, one finds that the box diagram with
two internal charm-quark lines always dominates [15]. To
summarize, we find that a consistent treatment of phases
and minimization conditions in a model with no explicit

8. E/amor-changing comp/ings

For (zi~ g ~r2), we can invert Eqs. (2.14) and (2.16)
to solve for j and g in terms of the physical masses of
the up and down quarks:

2 (~iV M V —Ic2VpM V )
2

K

g= „(—~2VLM V +~iVI M V )
2

K

(2.17)

where we define

K~ = /~i/' + /~2[' (2.18)

2. An important specia/ case: W = 0 or g = 0

A special case which will turn out to be of particular
importance in our considerations is that where either T
or &z is zero (for example, due to some type of symme-
try). Then the transformations required to diagonalize
the down-quark mass matrix can be taken to be the same
(up to a possible overall phase depending upon the phase
of r2 relative to ri) as those required to diagonalize the
upqllal k mass matrix: i e. , VL: VL and V& ——V& .

In this case, V& and V& are unit matrices, again
aside from a possible overall phase. In the case where no
explicit CP violation is introduced, since we have defined
our phases so that ri is real and positive, K2 must also
be real. If v2 ) 0 then the CPM matrices are unit, ma-
trices. If z~ ( 0 then assuming that V& and V& have
been defined to produce positive up-quark masses, posi-
tive down-quark matrices can be obtained, for example,
by writing V& ——V and V& ———V&, in which case
VGKM I and VcK14

R
In addition to trivial CKM matrices, setting g = 0

forces the up- and down-type-quark masses to be pro-
portional: the ratio is fixed by lci/~~2~. This result arises
because both the up- and down. -type-quark masses now
are derived from the same Yukawa coupling matrix T.
Furthermore, it is interesting to note that this relation
among the quark masses will not be altered by soft-
breaking terms of dimension 2. Such a relation among
up- and down-type-quark masses, while not in agreement
with experiment in the case of the u and d quarks, could
be regarded as acceptable if there are small corrections to
quark masses from additional new physics and/or radia-
tive effects [16). However, the ratio of the two bidoublet
VEV's is no longer an adjustable parameter; it is fixed
by the third family: vi/~K2~ = mi/mi, . Radiative cor-
rection effects would also have to be responsible for the
off-diagonal elements of the CKM matrix observed in the
I sector. Overall, having Q = 0 (or X = 0) leads to very
awkward phenomenology.
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We can now write the general interaction term for the
quark mass eigenstate with the neutral P-type Higgs
fields:

To identify the flavor-changing and flavor-conserving
combinations, we define the orthogonal neutral fields:

+VCKMMDVCKM t
( ~yO + y0 *)]U

The inverse transformation is

(2.2O)

yO

yO (2.21)

+VCKM t MUVCKM( yO ~ + *yO)]D In terms of $0+, the couplings to the quarks are

K
yO

—MU + )0 1 2 MU + VCKMMDVCKM UR
K K+ K+

(2.22)

K
yQ MD ~ yO ~, & 2 MID p ~ ~CKM MIJ~CKM) DR (2.23)

Note that these couplings are not diagonal since the
CKM matrices are not diagonal. This non-diagonality
always yields powerful constraints, especially in this min-
imal model for which we have MLRS or QMLRS in the
limit where explicit CP violation is absent. Indeed, it is
obvious from Eq. (2.23) that only the two components,
i.e. , the real and imaginary parts, of the complex P
field can have flavor-diagonal couplings. Thus, the real
component of the $0 must correspond to the "standard
model" Higgs boson, and the imaginary component must
be the massless Goldstone field absorbed by the light Z.
In order that the fiavor-changing couplings of the P+ in
Eqs. (2.22) and (2.23) not conflict with experiment, the
mass eigenstates containing significant mixtures of P+
must have a large mass. The exact requirement will be
presented shortly.

D. The lepton-Higgs-boson couplings

We now turn to the lepton-Higgs-boson couplings.
These are more complicated than the quark-Higgs-boson
couplings because the leptons have both Dirac- and
Majorana-type Yukawa couplings. The most general
Lagrangian invariant under SU(2)L, C3 SU(2)R transfor-
mations, and the discrete LR-symmetry operation of
Eq. (2.6) is [17]

„=f;, V~ p O'R + g;, V~ p O'R + H.c.

g ~ ( hM );~ (O'L C72 AZ 4Z + O'R 072 AR O'R)
+H.c. , (2.24)

where, as in the quark Yukawa case, f and g must be

Hermitian matrices, and in component form

(2.25)

&L, + &I. + &a+ &a
(2.27)

We also define

1 fKi + gK2 (2.28)

We shall focus on a single generation, and we shall ignore
generation mixing; therefore we shall drop the (i, j}in-

dices on f, g and hM . In this one-generation approxi-
mation, IR symmetry [Eq. (2.6)] requires that f and g
be real. h~, the Majorana coupling, can be taken to be
real and positive as a result of our ability to rotate +L,
and 4~ by a common phase without changing the phase
of the f;~ 's and g, ~

's.
To identify the mass contributions, we insert the

VEV's for the Higgs fields. (As discussed, vR and zi
can be taken to be real and positive, while K2 will have
only a small phase if only a small explicit CP violation is
introduced into the Higgs potential. Thus we work in the
approximation where all VEV's are real. ) The charged-
lepton mass comes only from the f and g terms:

1
m(E+) = (fr.g+gai) .

2
(2.26)

Neutrino mass derives both from the f and g terms,
which lead to Dirac mass, and from the h~ term, which
leads to Majorana mass. Defining, as usual, g'—:C(g)+,
it is convenient to employ the self-conjugate spinors
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hD~+ 2hM v~
(2.29)

Normally, we expect hM and hD to be similar in size,
IiM mr/r+. In such a case, since we require

v~ )) !(:+,vl. (for miv„)) mii ~), v and N will be ap-
proximate mass eigenstates with masses:

This quantity governs the size of the Dirac-type neutrino
mass term. Note its close relation to the combination
appearing in the charged-lepton mass of Eq. (2.26). In
terms of hD and hM, the neutrino mass matrix can be
written in the form

it is the P+ Higgs boson which has the fiavor-violating
couplings. Actually, there are two real components, P+"
and P+, which will give rise to FCNC transitions; we de-
note these generically as P&cNc. These have the poten-
tial to generate large Ao-Ii transitions in contradiction
to experiment. The relation between the Ix -K transi-
tion amplitude and the experimentally measured A'" mass
splitting is determined by

X/2
AM~ ——2Re A'0 'H, ~ I~ I~ Q,g Iyo

(2.33)

~w - v& hM ~~,

m, = V2 (hmuc— hD a+
2h~ v~)

(2.30)

The problem is that the standard-model box diagram
already yields the bulk of the transition amplitude nec-
essary to generate the proper mass splitting; thus, the
contribution from the FCNC FIiggs boson must be lim-
ited. A reasonable condition is [6, 10, 9]

One can ask if these systematics must always apply.
One possibility might be to have hM — 0 and hD
nonzero. However, then if f and g are comparable, we
would have a Dirac neutrino with mass of order mg, a
clearly unacceptable scenario. The very small ratio

(fKi+g!(:g) & (10 eV)
(g!~i + fjc2) (0.5 MeV)

(2.31)

requires, for example, f « g and r2 « zi (assuming the
absence of a finely tuned cancellation between f!(:i and
g((:2). In the other extreme, hD could be zero. This is
certainly acceptable so long as m~ is suKciently large.
From Eq. (2.30) we see that in this case m~ = m, vs/vl. .
For the electron case, where rn & 10 eV this clearly
requires a very large value for v~/vr, in order that the

N, have a large mass. Constraints on the X, mass arise
from neutrinoless double-P decay. The bound obtained
in Ref. [5] takes the form

) M(y )

x ( @gRiIig) (3 ( @rL@d) . (2.35)

[V&c™has been abbreviated as V+ and ViciKM as V
R = (1 + ps)/2 and L = (1 —p5)/2. ] From the above
Hamiltonian, a bound on the P&cN& mass can be ob-
tained [10,6, 18]. This is found to be

M(@cNc) 10 TeV (2.36)

i/2
(EM~j,„p, ) 2Re ((li /

Mg /!i"j('K"/RP/IC"j)

(2.34)

From Eq. ('2.23), we find the effective Hamiltonian for
the Higgs-boson-exchange diagram to be

m~ ) 63 GeV (2.32)
Escape from this bound is completely impossible in our
minimal model with MLRS or QMLRS, whether approx-
imate or exact.

This yields an important constraint. For instance, sup-
pose that mdiv„1. 4 TeV, so that Eq. (2.32) requires
mdiv. & 100 GeV. Then v~/vl. = m~ /m must ex-
ceed 10 for I, . & 10 eV. For rn~„1.4 TeV, v~
3 TeV (m~„= gij~/~2), and we see that vl, & 1 keV
would be required. This is an even stronger constraint
than that which emerges from pE~. In particular, for
ppw = (K+ + 2t!I,)/(K+ + 4vL, ) to be within 1% of unity
only requires vt. + 0.07K+ 15 GeV. Further, it is ob-
vious that if the hD term (rather than the hM term)
dominates m~, then m~ & m„vier/vl, and the constraint
becomes even stronger. This type of strong constraint
on vL, can only be avoided if there is a very finely tuned
cancellation between the hM and AD terms contributing
to m„ in Eq. (2.30).

F. Review of unitarity bounds

We now examine the constraints coming from the con-
dition that the lV-W scattering amplitude satisfy unitar-
ity. Recall the bound derived by Lee, Quigg, and Thacker
[19], for the standard-model Higgs boson (PsM) is

(8~~2&
'"

M(gsM) & - 1 TeV
3Gy )

(2.37)

What is the corresponding limit in the LR-symmetric
model?

The term in the Lagrangian which contributes to the
WL, -WL, scattering is

E. Review of FCNC bounds 2

(2.38)
Here, we briefly review the FCNC constraints relevant

for our analysis. From Eqs. (2.22) and (2.23) we see that Transforming to the (P+, P ) basis and shifting the fields
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by their VEV's, yields a trilinear coupling of the form

2

W~+W; (K+y'"), (2.39)

where $0" is defined by P = (P " + i,P ')/~2 Rec.all
that P has fiavor-diagonal couplings, and note that the
FCNC Higgs boson P+ does not couple to the W& W&
vertex. Since m~ ——gK+/2, we see that the W&+W& Pa"

coupling is igrn~~, just as in the standard model. It is
now apparent that WL, —R'L, unitarity requires that,

M(P ") ( 1 TeV (2.40)

[Note, some analyses argue that the value is lower, i.e. ,

630 GeV (Ref. [20]).] Most importantly, the Higgs
bosons with Aavor-changing couplings, i.e. , the real and
imaginary components of the Pa+, are not constrained by
unitarity in W-W scattering. Thus, they are a priori
allowed to be as heavy as required for phenomenological
consistency with the FCNC bounds discussed earlier.

III. THE SPONTANEOUS BREAKING
OF THE HIG G S SECTOR

A. The vacuum expectation value
seesaw mechanism

The requirement that the potential have a minimum
implies, in p ar t, that

=0. (3 1)

We can solve the above two equations, eliminate p3, and
thus find

p2Ki + plK1K2 + p3K2 —(2pl —p3)VLVR (3.2)

This is the infamous VEV seesaw constraint which im-
plies a relation among the widely varying VEV scales.
(As noted in the Appendix, this is simply the zero-phase
limit of the real part of a more general VEV seesaw rela-
tion. This relation, in combination with other minimiza-
tion conditions, implies that the allowed phases of the K~

and vl, VEV's must be zero in the absence of explicit CP
violation in the Higgs potential introduced via an imag-
inary part to n2. ) Let us examine this relation to see
if it will generate the proper mass scale for the physical
p ar ticles.

We take the Higgs potential parameters P; and p; to
be of order unity. If these parameters were too large,
they would violate unitarity [19, 20, 11] and lead to a
nonperturbative theory. These parameters can be very
small, but that would require fine-tuning. We must also
keep in mind that P; and p;, as well as K2 and vt. , can
have any sign, so long as conditions of vacuum stability
are satisfied (i.e. , all Higgs bosons have positive mass
squared); however, we can define vR and Ki to be positive
definite. We would like v~ to be 3 TeV so that the WR
mass is in a range observable at the SSC (WR & 10 TeV).
The r's are of order 250 GeV, as determined from the
8 L, mass. Therefore, we expect that the natural scale

for vt, arising from the seesaw mechanism is 10 GeV.
Values of this size or lower are acceptable from the point
of view of keeping corrections to ppw below the 1% level.
However, it turns out that the more critical question is
whether this scenario yields sufIiciently small values for
the neutrino masses.

By introducing p, where

P, K', + P, K1K, + P, K',

(2pi —p3) K+

we abbreviate the seesaw relation

(3 3)

K+
VL, —P va

(3.4)

and we can express the neutrino mass froiii Eq. (2.30) as

(3 5)

~V

ha
2h

2
V~

K+2
(3.6)

From Eq. (2.32) we learn that vR 3 TeV (mii „
1.4 TeV) requires m~. 100 GeV. For m 10 eV,
Eq. (3.6) then implies that p —h2L, /(2hM2) + 10 s. Bar-
ring a highly tuned cancellation, this requires both y
10 and hD/(2hM) & 10 (equivalent to hM & 10
using hD m, /K+). In short, whether or not the p
term dominates m„, the only way of avoiding too small
a value for rn~ is to have p & 10 . This same type of
restriction on y can be obtained by examining just rnv it-
self, without reference to m~. We describe the procedure
in the following.

We begin by noting that a comparison of Eqs. (2.28)
and (2.26) makes it apparent that unless f and g are very
different in size, hD will be of order m, /K+ 2 x 10
(While such a small value for the Yukawa couplings asso-
ciated with the lepton sector has no fundamental expla-
nation, either in the L R model or in the standard model,
this small scale could result from some higher theory. In
contrast, fine-tuning of the Eliggs potential parameters is
generally regarded as a much mare serious problem. ) Let
us now suppose that p is order 1. Neglecting (for the

where hM are Majorana-type Yukawa couplings, and

h&, defined in Eq. (2.28), relates to Dirac-type Yukawa
couplings. From its definition, we expect p to be a pa-
rameter of order 1; however, a priori, it can be either
positive or negative. [For instance, the '2pi —p3 com-
biriation in the denominator of Eq. (3.3) must generally
be negative for vacuum stability, while P2 can easily be
positive and Ki can be significantly larger than K2.] We
will now examine whether the above relations can yield
consistent mass values for both the charged lepton and
its neutrino. For simplicity, our discussion will neglect
mixing between lepton families, and p will be assumed
to be positive.

Let us begin by noting that it is by no means trivial
to obtain acceptable values for both m~ and m . In
particular, one must be careful that rn~ does not become
too small [21]. From Eq. (3.5) we find
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2
e 2 1 e 2 1 m~ ]2h~ y& —hD — —- 10

2 2 K+
(3.8)

where we have used the assumptioii that m, ha@+.
Together, these require

10-', q&10-';
that is, we must require the fine-tuning of y to 6 or 7
orders of magnitude.

For the second case, we assume p & hD2/2 hM 2, which
implies (note that a negative fermion mass can always
be rotated to positive mass through redefinition of the
fermion field)

2 2hD K+

~2hM v„
(3.10)

Again, we use mg hD++ to find (in the electron gener-
ation)

moment) the possibility of cancellations between the two
terms in Eq. (3.5), we have the smallest m~ values when

hM hD. If m„ is required to be less than 10 eV,
we find that v~ must be & 10 GeV. Consequently m~„
and m~1 also will be in the range 10 10 GeV. In this
limit, the model reduces to the standard model with no
observable consequences other than the Majorana neu-
trinos. We shall now examine the constraints placed on

p if the scale of v~ is to be much lower.
First, it can be easily checked that for y near 1, ex-

treme fine-tuning is required in order to obtain suNcient
cancellation between the two terms of Eq. (3.5) so that v~
values in the 3 to 10 TeV range would be obtained. We
exclude this possibility as being highly unnatural. Hav-
ing eliminated such cancellation, we now Rsk what p val-
ues could give us v~ 3 TeV (for example). In Eq. (3.5)
we have two choices; either the first term (hM p) or
the second term (h2&/2 hM ) can dominate. We examine
these possibilities in turn. In the first case, we assume
y h~ & hD/2 hM and v~ 3 TeV, which implies (in the
case of the electron generation)

m .v~ 10 eV x 3 TeV

~2K&+
—

~2(250 cev) 2

But, from our assumption, we have

We conclude that if we require the m~„ to be in the few
TeV range, it is necessary to fine-tune p to 6 or 7 orders
of magnitude to obtain a small enough m value.

If we carry this analysis one step further and consider
the limits arising from cosmological constraints, we can
demand [22, 23]:

Qm„, & 100 eV . (3.13)

If we accept this constraint (which can be evaded should
the v, have a very short lifetime), we can then repeat the
above analysis for the v neutrino. The restriction that
m, & 100 eV allows us to enhance the limits by large
factor. BrieRy, when phM dominates m, we find hM
10, y & 10, while if the hD term is dominant we
find AM & 5 x 10, y & 10 . This certainly represents
extreme fine-tuning for y; in addition, the values required
for h~ are much too large for perturbation theory to be
VRlld for the leptoIi MRjoI'RIlR coupliIlgs.

One situation that we have not explored in the above
analysis is that which arises as a result of the fact that
ri and ii:q enter dilferently into mz, Eq. (2.26), and hD,
Eq. (2.28). Were there some reason to have z2 « i~:i and
f « g, then hD would be much smaller than mr/i~:+.
Writing hD ——e (m, /r+), we find that the fine-tuning
requirements on p obtained above are reduced by a factor
of 1/e . Thus, if e 10 the fine-tuning requirement
for y would be largely eliminated (unless we employ the
cosmologically based fine-tuning requirement). However,
such a small value for c requires fine-tuning for the f, g,
and z2 values. In later sections, we shall see that simple
symmetries can be invoked to set f = 0, but that a small
value for K2 in this situation is likely to lead to too large
a m, /mi, ratio. Further, we would still not have escaped
the problem of predicting too small a value for the N
mass unless we fine-tune p.

This dilemma allows for two definite branches: (1) we
can fine-tune so as to obtain Higgs potential parame-
ters Pi, P2, and Ps that are 6 or 7 orders of magnitude
smaller than is natural; or (2) we can look for new sym-
metries that dispose of the problem altogether by elimi-
nating the terms in the Higgs potential associated with
the P's, thereby eliminating the VEV seesaw relation.

+2m, .v„

5x10 3(0.5 MeV)

~2(10 eV)( 3 TeV)
(3.11)

B. Eliminating the VEV seesaw
via additional symmetries

We can avoid the severe restrictions of the seesaw rela-
tion of Eq. (3.2) if we can find a symmetry which requires
the P Higgs potential parameters involved to vanish.

This relation, together with our initial assumption for y
implies

ho m,
2 2 Symmetries which retain the Majorana coupling.

(0.5 MeV)
2(250 GeV)~(5 x 10—s)~

(3.12)

We look for a symmetry which eliminates the P, -type
terms in the Higgs potential while leaving invariant the
Majorana Yukawa couplings of the leptons to the Higgs
triplet. We begin by considering a general set of trans-
formations of the Higgs fields:
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&L, ~e"' &I. , &R ~e""aR, 0 ~ e"&y,
(3.14)

and investigate whether these will achieve our purpose.
The invariance of the lepton Majorana mass term of the
Lagrangian

ZM = i(hM);, (@,~C7;Al. @,1. + @,RC7;AR4, R) + H. c.
(3.15)

requires that the lepton fields transform as

@L, —+e ' 4L, , 'LIIR —+e ' 4R. (3.16)

However, the invariance of both the P and P parts of the
Dirac lepton mass term,

&D = f~i4~R+ g~iW~R+ H', (3.17)

requires P to transform as P ~ kP. {Note, P ~ —P
would yield a discrete symmetry, not a continuous one. )
If we suppose for the moment that P transforms in this
fashion, we find

&D —@r.4'@R (+I)e 'e ' "'III.W@R,

which implies

(3.19)

Thus, there is no symmetry which will allow us to elim-
inate the P-type terms in the Higgs potential while re-
taining the Majorana and Dirac Yukawa couplings.

Thus, we temporarily abandon the idea of keeping both
the P and P terms in LD, and we allow P to transform
nontrivally such that f = 0, and g g 0. [This choice is
such that, even if K2 ——0, m(g) will still be nonzero; cf.
Eq. (2.26).] We now see that

ZD - @L,P@R ~e*"e "'e ""@Lg@R,
which implies

(3.20)

pi [Tr(4»Rdt &I.) + Tr(4 l &1.4&R)]
+p, [T.(y~ yt~,')+ T.(yt~, y~'„)]
+p[ (0 4' ')+ (4' 0 ')]

(3.22)

we find that Ps will be left invariant by the symmetry

P.[T (~~R~'~.') + T (~'~.~~Rt)]

P [ e
—2%8 e2lERL218y T (P+ P$Qt )

2lEr —2IEa —2584, T (Pf + y+t )]

(3.21)

If we now examine the transformation properties of the
P; terms of the Higgs potential,

Eq. (3.21)] e"r-e"4'e "R = 1, and it would have been the
P~ term that was left invariant. Thus, any symmetry of
this simple U(l) class will fail to eliminate all of the P
terms.

Nonetheless, in the case, for example, where the g term
is retained and the Ps term survives the symmetry, we
could still eliminate the role of Ps in the VEV seesaw
relation by taking K2 to be very small or zero. This
presents no problems for the lepton sector; however, we
must still examine the quark Yukawa couplings. Since
the latter involve no Majorana-type term of the form
Eq. (3.15), it is clear that the quark iIr's can transform
in any manner that we wish. Thus, we can choose to
retain either the X or g term of Eq. (2.9), but not both.(j g 0 is preferable for a small zq limit. This would
require the quark 4's to transform oppositely to the lep-
ton iIr's. ) This leads to two awkward phenomenological
predictions: (a) we predict proportionality between up-
and down-type-quark masses, with the ratio being deter-
mined by rci/~K2~; and (b) the CKM matrix is predicted
to be a unit matrix. Both predictions could be altered
by one-loop corrections. While proportionality between
up- and down-quark masses is not in perfect agreement
with observation, the mismatch with experiment could
easily be overcome by small corrections from additional
new physics or radiative eA'ects. The appropriate value
for Ki/(r"2

~

is of order 30 for a top-quark mass of 145 GeU.
I~'or such a ratio, the contribution of the Ps term in the
VEV seesaw would be suppressed by a factor of 10
compared to naive expectations, and Ps would only have
to be fine-tuned at the level of 10 to 10 . Though this
is a considerable improvement, such a level of fine-tuning
would still be unnatural. Of course, if the cosmological
constraint of Eq. (3.13) is accepted, then the fine-tuning
constraint becomes a factor of 10 worse, and the very
small size required for Ps could not, possibly be explained
in any natural way. Thus, this possibility seems quite
contrived and we will not examine its phenomenology
further.

Thus, we have failed to find any additional symme-
try that will allow us to eliminate all the P-type Higgs
potential terms, thereby completely escaping the restric-
tions of the VEV seesaw relation, while maintaining the
phenomenologically attractive lepton Majorana coupling.
Nonetheless, one can certainly imagine embedding the
I R inodel in a larger GUT scheme. Then, it can easily
be imagined that there is a hidden group under which the
various fields transform in such a way that the P terms
are eliminated, while leaving invariant all the Yukawa
couplings and all the other Eriggs potential terms. Cer-
tainly, these P-type terms in the potential are distinct
from all the others in that the LR and AL, fields each
enter linearly (cf. the Appendix). We shall pursue the
phenomenology for this type of model shortly.

= ps[Tr(QARpl All ) + Tr(pt AI. QAtR)], (3.23)

where we have used the identity of Eq. (3.21). Note that
if we had chosen to retain the f term of the lepton Dirac
Yukawa Lagrangian, we would have required [instead of

2. Symm, etvies that zero the Major.ana eomplings

It is straightforward to construct a symmetry opera-
tion that forces all the P terms to be zero, provided we
allow the Majorana coupling to be noninvariant under
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the symmetry (and thereby zeroed when the symmetry
is imposed). However, it is essentially mandatory that
Rny syITllrletry which zeroes thc Majorana coupling must
allow for simultaneous invariance of bo/h the P and P
Dirac couplings, thereby allowing retention of both the
X and g couplings in the quark sector. (The f and g
lepton sector couplings are also both allowed in such a
CRSC.

The reason foi Ilcedlllg to I'etM11 both 'tile X alld g
Dirac quark couplings is as follows. In the lepton sector,
Eq. (2.31) must be satisfied in the absence of a Majorana
coupling. Satisfying this equation requires a very small
ratio for, say, fjg, and even then a suKciently small ratio
for m„./m, is achieved only for ~~q~/~1 & 10 . How-

ever, this yields completely unacceptable results for the
quark sector unless both X and g are nonzero. For in-
stRllcc, lf g ls required to be zel'o ln tile qilRI'k scctol', tllell
the ratio of up-type to down-type quark masses would be
xi/)z2~ + 10, which is much too large. (The CKM ma-
trix would also be trivial, but higher order corrections in
some extended model might fix this up. ) This problem
does not arise if X and g can both be nonzero. Even
though obtaining the correct m~, /m, ratio will continue
to require that f/g and ~zz~ /I" I be very small, so long as
g and P are not too different in size, acceptable quark
masses can be obtained. Indeed, values for these quark
Yukawas that yield the experimentally determined quark
IIlasscs Rre easily fouIld, Rnd I'cqlllre Ilo more fille-tlllllng
the, n is typical of the Yukawa couplings to the Higgs bo-
son in the standard model.

The conditions for retaining all the Dirac Yukawa cou-
plings have already been given in the previous subsection:
in the simplest case one need only defin«he symmetry
so that the fermion @'s (both lepton and quark) and
the bidoublet field 4 remain invariant. It is then easy
to specify transformation properties far the L~ and LI.
that force the P's to be zero, while retaining all other
Higgs potential terms. For example, we can define the
syIIHDetry operatloIl as

(3.24)

Since the p terms have one b, r. and one XII field, they
will not be invariant under this symmetry, whereas all
the other Higgs potential terms have an even number of
AL, fields and an even number of AII fields. As expected,
this symmetry does, however, imply that the Majorana
Yukawa coupling of Eq. (3.15) must be absent.

A. A detailed leak at ccrealistic" models

In light of the discussion of the previous section, it is
apparent that the VEV seesaw relation forces us into a
rather narrow set of possibilities. These may be summa-
rized as follows: (1) the A terms are of order 1, and the
extra gauge and Higgs bosons have mass scales on the

order of 10 GeV; (2) the P; terms are "fine-tuned"

by hand (order by order) to satisfy the see-saw relation
with y 10 7 [or y 10 Iz assuming Eq. (3.13)]; (3)
the P; terms are forced to vanish by the symmetry of
Eq. (3.24), leading to a Dirac neutrino, and thereby to
the requirement of a very small value for z2/~I., or (4)
the P; terms are constrained to vanish in a context be-
yond our model [25]; Regarding the second possibility, we
acknowledge that if ane is allowed to fine-tune the set of
p pal'Rllletei's, flic seesRW constl'alllt CR11 bc obvlRtcd Rlld

light-boson masses can arise. This is reminiscent of the
Yukawa couplings in the standard model which are ad-
justed to 1 part in 10 . Although this fine-tuning can
be done to the set of P parameters in the IR model, we

note that the tuning necessary ta efkctively remove the
sccsRW constraint ls 1 pRrt ln ~ 10 or ~ 10 depend-
ing on the cosmological limits incorporated. Far these
reasons, we set aside the "fine-tuned" model; once one
resorts to fine-tuning the parameters, there is little pre-
dictive power left in the model. Although the first case is
the most natural, it contains no new particles of observ-
able mass scale. We shall return to this case in the next
section. Here, we brieAy investigate the characteristics of
the third and fourth cases.

Assuming that the pi, pz, and ps terms can be elim-

inated, the remnant of the seesaw relation of Eq. (3.2)
which arises from the first derivative conditions is

0 = (2pl —ps)UL, &R

We have three obvious choices to satisfy Eq. (4.1): (a)
set eR = 0, (b) set (2pl —ps) = 0, or (c) set vl, = 0.
We immediately dismiss choice (a), as this would yield
a mass for WR in the range of miv~, in contradiction
to observation. In the case where both uL, and @II are
nonzero, and 2pl —ps ——0, diagonalization of the mass
matrices (see the Appendix) reveals the fact that the
neutral bosons of the left-handed triple, bl,

" Rnd bL, ',
are massless at the tree level. If they are truly massless,
then they will be invisible simply because they will not
decay. However, it is quite likely that small masses for
the b&" and b&~' are generated at one loop, in particular
through the Yukawa Majorana term of the Lagrangian.
Nonetheless, even if they develop a small mass from such
one-laop corrections, their anly couphngs and decays are
to vv-type channels which are also invisible. Since the
known Z would decay inta a pair of 6& particles with
a width equivalent to that of two neutrino generations
[22, 5], this possibility appears to be eliminated by the
recent neutrino counting limits reported by the Mark II
group at the SLAC Linear Collider (SLC) and by the
various CERN LEP experiments [12]. Thus, choice (c)
(eL,

——0) is the only phenomenologically viable scenario
among those that arise when all the P parameters of the
Higgs potential are zero. Hence, we will examine the two
cases, (3) and (4) defined above, for choice (c).

For case (4c), where Majorana neutrino mass terms are
allowed, ul, = 0 leads to an attractive scenario for lepton
and neutrino masses. In particular, we retain a mech-
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anism for generating neutrino masses —a primary mo-
tivation for selecting the triplet Higgs representation—
without predicting too small a N, mass given the small v,
mass. This can be seen from Eq. (2.30) by setting vI. —0
and noting that hD and hM are nonzero (and relatively
unconstrained) in this case. Indeed, we had already seen
in the arguments following Eq. (2.30) that consistency
of N, and v, masses with experiment tended to require
very small values of vL, . Case (3c) is possibly less at-
tractive because of the small value required for ~~~ ~/Ki,
and the absence of a seesaw mechanism in neutrino mass
generation. However, there is no fundamental diNculty
for such a model so long as both of the Dirac couplings
X and Q are nonzero in the quark sector. Thus, we have
arrived at two models which potentially yield reasonable
phenomenology, but only for a highly constrained set of
Higgs-boson couplings and VEV's. We find this result
to be particularly interesting, given the apparently large
number of free parameters in this model.

In fact, it is worth reemphasizing what has occurred
in our analysis up to this point. We have required that a
phenomenologically acceptable minimum of the Higgs po-
tential (1) allow foi generation of proper fermjon masses,
(2) allow for generation of proper boson masses, and (3)
respect charge conservation and vacuum stability. The
task of finding such a minimum is greatly complicated by
relations such as the VEV seesaw which arises from the
first-derivative conditions. These relations must be satis-
fied in order to generate a minimum of the Higgs poten-
tial, but they have the (unnatural) property of relating
parameters across widely difI'ering scales, and can lead
to (intuitively) unexpected results, as will again become
apparent in the following section. We have seen that it, is
far from trivial to satisfy these relations without encoun--
tering severe phenomenological difFiculties. Indeed, even
in some subclasses of the (4c) and (3c) models that have
survived to this point, additional phenomenological con-
straints will arise from fIavor-changing neutral-current
limitations. Satisfying these constraints wiii require ad-
ditional restrictions upon these two IIlodels. We study
an example of such a subclass in the following section.

Certainly, to demonstrate that our two class (c) I R
symmetric models, with nL, and all P's equal to zero,
are not necessarily free of phenomenological disaster re-
quires furt, her analysis. The phenomenology of this class
of models has been examined [5]; however, a complete
analytical analysis of these models is far too complex to
reasonably consider. We shall illustrate the precarious
position of this class of models by examining the follow-
ing "toy" model which is very similar to the general "re-
alistic" case.

B. An illustrative leek at a "tuy" madel
of the p; = 0, ur, —0 class

In this section, we briefly look at the class (4c) and
(3c) models of the above section (P; = 0, vI, ——0) with
one slight variation: we eliminate the p, 2, A~, and n~
terms from the Higgs potential. Wc make this selection
because (1) this choice allows us to solve this model ana;

Io

0 0
0 0
0 0
0 uR2(ps —2p, )/2)

We focus on the first two entries on thc diagonal. We
see that the imaginary component of P (P ') is the
massless Goldstone mode, while the liavor-changing ~to+

Higgs boson mass squared is given by M~(go+) = 8(K~i +
)( $2) =- 32mi2v, I&~I/a' W

the Po' Higgs boson will violate the FCNC bound of
Eq. (2.36) unless A2 is very large (- 200); but, , a. large Aq

will lead to R violatioIl of onitarity, RIld R bI'cakdown of
perturbation theory [1lj.

What this model illustrates is that, despit, e the large
number of (apparently) free parameters in the Higgs po-
tential, GIlc is ln great dRIlgcr Gf losing th.c frccdolrl to dc-
couple the mass scales of the FCNC Higgs bosons (which
must be & 10 TeV), from the mass scale of the standard-
model Higgs boson (which must be & 1 TeV). A detailed
analysis of the "realistic" model of ihe previous section

lyticaliy, (2) it is similar to the "realistic" case discussed
above (only diff'ering by three terms in the Higgs poten-
tial) and, therefore, we might expect some features of our
"toy" model to teach us about the more general class of
LR-symmetric models, and (3) this "toy" model has some
interesting properties which merit investigation. SpecifI.—

cally, we shall show that this model has significant difIIi-
culties in matching experimental phenomenology, requir-
ing further restrictions on the model parameters. Such
diKculties may be indicative of problems that one must
be careful to avoid in the more general type (4c) and (3c)
"realistic" LR-symmetric models.

The above-mentioned parameters can be eliminated in
the IIiggs potential by applying the symmetry P iP.
However, this symmetry cannot be extended consistently
to the entire Lagrangian without eliminating one of the
two DII'Rc Yukawa coupling terms, yielding R trivial tI'cc-
level CKM matrix. More importantly, the predicted
quark masses would be totally unsatisfactory. Indeed,
since we shall also discover that thc resulting model re-
quires v2 to be zero, it is clear from previous discussions
that we would obtain vanishing down-type-quark masses.
In particular, for g = 0 Eqs. (2.14) and (2.16) predict
that mi, = mi~K2~/Ki ——0 for zq ——0; radiative correc-
tions to this result are unlikely to be suKciently large that
a reasonable 6-quark mass could be obtained. Thus, this
P symmetry has to be restricted to the Higgs potential if
we are to have reasonable phenomenology. Consequently,
we label this special parameter case a "toy" model.

We shall focus our discussion on the imaginary Higg~-
boson mass matrix to illustrate one potential phenomeno-
logical difhculty of this restricted subclass of the (4c) and
(3c) type models. This di%culty arises in the general case
where both i~:i, v2 g 0. In this case, we can simplify the
mass matrix using the full set Gf first derivative condi-
tions; the matrix. in the (P ', P+', 6&', 6&'j basis is (for
the case where the P; are zero, we use the first-derivative
conditions to eliminate the p, ; parameters Rn(] u3 in the
mass matrix elements given in Appendix section 3)



850 DESHPANDE, GUNION, KAYSER, AND OLNESS

shows that it is possible to decouple these mass scales,
without further restrictions on the model, but only by
careful choices of the Higgs potential parameters.

In the case of our "toy model, " there is also a way
to avoid the FCNC problem, but it requires a special
scenario for the VEV's. (See Fig. 2.) This scenario
leads to restrictive but, not necessarily unacceptable,
phenomenology. In particular, we take (for example)

0. When p2, n2, A~, and the P, terms are set
to zero, the first-derivative conditions become homoge-
neous; i.e, ,

~ ~ ~
7 (4 3)

Choose p.2, X4, and e2 =0,

and solve Higgs sector analytically.

Compute masses of FCNC Higgs.
Find that these masses are

My2 ——8 X,2 ( K)
2 + K22 ) M (WL)

We cannot satisfy FCNC constraints
and

unitarity constraints simultaneously
unless

Ki ot K2 - O.

Setting K1 r K2 =0 leads to:

~ Quasi-Manifest LR Symmetry
~ No WL-WR Mixing

CP-Violation restricted to
quark Mixing Matrices

where f„(.. .) is a general quadratic function of the
VEV's, and v; represents any of the VEV's. Therefore,
we can satisfy the first-derivative conditions by setting
either f„,(. . .) = 0 or z; = 0. We can escape from the
FCNC difficulties by taking K2 ——0, so that the associated
constraint f„,(. . .) = 0 is removed. This, it turns out,
restores our freedom to decouple the mass scale of the
standard-model Higgs boson from the mass scale of the

FCNC Higgs boson. (This can be checked using the equa-
tions for the imaginary components of the neutral mass
matrix of the Appendix obtained prior to first-derivative
subst1tutlons. )

%hat are the phenomenological implications of this?
First, we remind the reader that even if there is some
(small) amount of explicit CP violation in the Higgs po-
tential, thereby in general allowing for a small amount
of violation of manifest or quasimanifest left-right sym-
metry in the model, the restriction of K2 ——0 will re-
store MLRS or QMLRS. See the discussion following

Eq. (2.16). If MLRS or QMLRS holds, we have already
noted that the lower bound [9] on mdiv„of 1.6 TeV is iron
clad. [Without the manifest left-right-symmetry con-
straint, the lower bound on m~„ is reduced [10],depend-
ing (in the minimal IR models we are exploring) upon
the amount of explicit CP violation allowed. ] Addition-
ally, since the Wr, -Wir mixing angle (() is approximately
given by [26, 27]

VR rnw K+
(4 4)

setting z2 (or zi) equal to zero implies that there is no
WI.-W~ mixing. This implies that there can be no phases
in WI.-W~ mixing, thus eliminating this source of CP
violation. Consequently, even if CP violation is intro-
duced into the Higgs potential explicitly, if v2 —0 the
only sources of CP violation in the interactions of the
WL, will be those of the standard model. In particular,
the WL, contributions to the electric dipole moment of
the neutron and the parameter E' arise from the com-
plex phase in the CKM matrix, and are identical to the
standard-model results [27, 26]. Of course, IIiggs-boson-
and W~-, etc. , exchange diagrams could give additional
contributions.

So far, all that we have said is the same whether we
consider the "toy" model as falling into class (4c) or
class (3c). Since z2 ——0 is required to remove FCNC
Higgs-boson problems in any case, the fact that the class
(3c) model (with no Majorana Yukawa coupling) requires
small or zero v2 in order to achieve an acceptably small
value for m~ /m, presents no additional restriction. In
fact, the main distinction between the two models is the
fact that in class (3c) the X and v combine to form a
(light) Dirac neutrino, while in class (4c) we have (by
fiat) retained the Majorana couplings and the neutrino-
mass seesaw mechanism.

Although these two "toy" models that we examined
formed a very small subset of the (4c) and (3c) general
I R-symmetric models, they clearly emphasize the point
that the parameters of the general model are severely
constrained by experimental phenomenology in a com-
plex way that can only be accurately described by an-
alytically solving the fully general case a formidable
task that we do not attempt here. The analytic solution
of this "toy" model highlights potential phenomenologi-
cal diFiculties that may arise for the general case when
multiple constraints are applied simultaneously. How-
ever, we have examined the general case to ensure that
it has sufIicient freedom to decouple the masses of the
"standard-model" and the FRANC Higgs bosons for some
choices of the parameters. But, it is not feasible to com-
pletely map out the region of parameter space [within the
general class (4c) and (3c) models] in which the FCNC
and other potential phenomenological problems do not
arise.

FIG. 2. Flow chart for the "toy" model of Sec. IV. This di-
agram summarizes the phenomenolog;ical constraints relevant
to this specific class of models.

V. THE GENERAL HIGGS SECTOR

Having examined the possible branches of the minimal
IR model outlined in Fig. 1, we now turn our discussion
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toward general properties of the Higgs sector which are
common to all of these difkrent branches. It is important
to note that the material discussed in this section does
not depend upon any additional symmetries or special
choices of the parameters; this analysis applies to the
most general case. In particular, it applies even to the
case where all the parameters (in particular the P's) of
the most general Higgs potential are nonzero, and have
not been fine-tuned to be small. Recall that in this latter
case, vR must be very large, and we shall verify that
all extra Higgs and gauge bosons (beyond the SM) will
be very heavy. Additionally, much of this discussion is
qualitatively applicable to many of the extensions of the
I R models.

We have performed the complete minimization of the
general Higgs potential, and outlined the results in the
Appendix. Using these results, it is possible to charac-
terize the probable ranges of masses and mixings. In this
analysis, we will assume that none of the VEV's are ex-
actly zero. However, we will assume that explicit CP
violation is small, implying that the complex phases of
the VEV's are likely to be small, i.e. , of order vr, /vR.
Thus, we have performed the analysis ir~ the approxima-
tion where we take the VEV's to be real. (This simpli-
fication is assumed so that the results are comprehen-
sible. The previousty mentioned analysis of the FRANC
constraints was performed in the most general context
with complex n2 and complex VEV's. ) This has the ef-
fect of decoupling t,he real and imaginary components of
the Higgs fields, and thus the general 8 x 8 neutral mass
matrix reduces to two separate 4 x 4 pieces.

When estimating the scale of the boson masses, it, is
very important to first impose the minimization condi-
tions because these conditions give rise to subtle rela-
tions between the extreme mass scales involved. For
example, one cannot ignore all terms of order vl. rel-
ative to VR,. in particular, the VEV seesaw relation

SKI + ~IKIKg + ~SK2 (2pl —pa)VI, VR connects these
scales. Therefore, we must substitute all conditions aris-
ing from the minimization before we analyze the physical
mass scales of the Higgs bosons and their mixings.

In the Appendix, we first present the general form of
the mass matrices, and then substitute the minimization
conditions. In addition to substituting the relations aris-
ing from the first-derivative conditions, one must also
ensure that the second derivatives are positive so that
the physical mass values squared are positive; this step
involves a large set of complicated inequalities. Once
again, we have not attempted to map out the entire re-
gian of parameter space such that these inequalities are
satisfied. We have, however, verified that choices for the
parameters do exist such that there are no obvious con-
victs with phenomenology. For instance, it is clear that
taking vR to be very large avoids many potential diFicul-
ties.

Having utilized the minimization conditions, we can
safely neglect terms of order (vr, /vR) For the neu. tral
sector, it is useful to perform a rotation of the fields
from the gauge-eigenstate basis to what we shall call
the flavor-eigenstate basis. This rotation is the same
as the rotation discussed in Sec. II, and it identifies the

flavor-conserving and flavor-changing components of the
P fields. A schematic form of the mass matrix for the real
components of the neutral field in the (P ",Po+", bR", bL")
basis is

( AK2

AK~

QVRK
0

0,'VR K

0,'VR K

2P] VR
0

PVRK
0

—,'(ps —2pi) vR ~

(0 0 0 0
0 nvR 0 pvRK
0 0 0 0

( 0 PvRK 0 -(ps —2pi) vR )
(5.2)

Note that in this form the Goldstone bosons (Po', bR)
are readily apparent. As before, we see that the bio' field
decouples as the P couplings (and VL, ) vanish. The mass
scales of the various Higgs bosons are as expected. The
neutral real mass matrix is such that the P

' can be light,
while the other Higgs bosons are likely to have masses
set by the scale VR. The neutral imaginary mass matrix
has the two required zero eigenvalues, but the other two
masses will again be set by VR. Thus, if vR is very large,
as required if the P's are not fine-tuned or required to
be zero, all the non-standard-model Higgs bosons in the
neutral sector will be very heavy.

For the singly charged Higgs sector, we will ex-
hibit the results in the ((KIQI + K2$& )/K+, (KIQ&
K2$+I)/K+, bR+, b&+) basis. We find

O.' VR
0

0,'VR K

( |3VRK

0 O'VR K

0 0
0 oK~
0 PK~

/3 R
0

PK~

q (pa —2pl) vR )
In this form, the Goldstone corresponding to WI, is ob-
vious. The Goldstone corresponding to WR is a compli-

Here, we have introduced a shorthand notation where
the parameters (n, P, A, p, K) without subscripts stand
for generic parameters of their class, and have indicated
for each entry only the largest contributing type of term.
The exact entries are presented in the Appendix. (This
same generic notation will be used for the other mass
matrices that follow. ) Note that after we have dropped
t, he (VI./VR) terms, the bR" and bl" fields do not mix di-
rectly. Also, it is interesting to note that although the

and Q fields arc Ilot, IYlBss elgenstatcs their mixing
is doubly suppressed; i.e, the mixing angle is (K/VR)
not, —(K/vR)2 as naively expected. We see that, in the
limit that the P couplings (and VI. ) vanish, the bL' field
decouples from the other Higgs bosons. Furthermore, the
mass squared of this boson is proportional to (pa —2pl),
a combination we have seen and shall continue to see fre-
quently. Additionally, the mass squared of the b&o&" held
is proportional to (pi). Therefore, we find that, pi & 0
while (pa —2pl) & 0. This implies that significant can-
cellation in p3 —2pi is not altogether iiTiprobable, which
in turn implies that the masses of the (b;.) bosons could
easily be lighter than the naive estimate of VR n~, ~„.

For the neutr al imaginary mass matrix in the
oi boi bo') basis, we fin
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cated mix of the remaining fields; it is predominantly b&
with mixings of order (~/vier). As was the case for the
neutral bL, fields, we see that the b&+ field has a mass-
squared matrix entry of order vR (that could be sup-
pressed for small ps —2pi) and that it decouples as the
P couplings (and vL, ) vanish.

For the doubly charged sector, in the (6~++, h'&++) basis,
we find a mass-squared matrix of the form

(
2p, v„' P~ (6.4)Pz ~ (Ps —2pr)vrr

The eigenstates will generally have mass of order vR, and,
in the pattern of previous bI. fields, we see that the b&++

field decouples as the P couplings (and vr. ) vanish.
In conclusion, we see that, as v~ ~ oo, the masses

of all the extra gauge bosons and the Higgs bosons will
also approach infinity except for the (LR analogue of the)
standard-model Higgs boson whose mass scale is of or-
der K an~~, independent of the magnitude of v~.
As such, it could well happen that the only signature
of an underlying LR-symmetric theory that will be ac-
cessible at present and foreseeable machines, will be a
Majorana-type neutrino in addition to the neutral Higgs
boson that plays the role of the SM Higgs boson in the
LR model. Conversely, if the extra gauge bosons and
Higgs bosons are within reach of the future colliders, this
LR model will exhibit some very interesting phenomenol-
ogy, as has been discussed, for example, in Refs. [1, 3, 5,
23, 28, 24]. In particular, Ref. [5] discusses signatures and
production mechanisms for the various Higgs bosons at
e+e and hadron colliders, focusing especially on the ex-
perimentally accessible signals for the left-handed triplet
Al. members as a function of the parameter combination
p3 —2pq which we have seen controls the magnitude of
the v& entry in the mass squared of the bL, 's.

tuning" or extra physics is necessary to allow v~ and
m~„ to be small enough that the phenomenology of the
extra Higgs and gauge bosons can be in an experimen-
tally accessible energy range. Whether this makes the
LR-symmetric models unattractive is a judgment that
we leave to the individual reader.

In the absence of such fine-tuning we have seen that
v& must be very large () 107 GeV). In this case, all
of the new particles associated with the underlying left-
right-symmetric theory will have masses set by the scale
v~, and thus be experimentally inaccessible. In light of
our illustration with this minimal LR model, it is essen-
tial that the consumer of extended electroweak models
should retain a degree of skepticism when considering
the phenomenology of theories with extended and very
complicated Higgs sectors that have not been analyzed
using a complete and internally consistent Higgs poten-
tial minimization.
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APPENDIX

VI. CONCLUSIONS 1. The most general Higgs potential
and vacuum expectation value choices

For our theory to be left-right symmetric, it is nec-
essary that our Lagrangian be invariant under the (dis-
crete) left-right symmetry defined by

(Al)@L ~@R +R~+L
A priori, it is possible that one could allow for the pos-
sibility of phases in the above left-right transformations
e.g. , P ~ e' 4'gt or Err +-+ e' ~EL, , etc. However, one
may always absorb such phases by appropriate global
phase rotations of the fields. We shall assume that this
has been done. As a result, we are not free to use global
phase rotations to remove other phases that may appear
in the theory. However, the phase-free form of left-right
symmetry as stated in Eq. (Al) does imply that many
parameters in the Higgs potential that might otherwise
be complex will be required to be real. Alternatively, one
could imagine allowing phases in Eq. (Al) in which case
many of the Higgs potential parameters could be com-
plex, but then global phase rotations of the fields could
be employed to make them real. Following the strict form
of Eq. (Al), the most general form of the Higgs potential
is

In t, his paper, we have presented a detailed analysis of
the spontaneous symmetry breaking and the Higgs sector
of the conventional minimal SU(2) L, SSU(2)rr SU(I)a r. —
left-right-symmetric theory. Specifically, we performed a
critical assessment of the phenomenological viability of
such models, and indicated the degree of "fine-tuning"
necessary to satisfy experimental observations.

We have demonstrated that it is nontrivial to obtain
a minimum of the Higgs potential which yields phe-
nomenologically acceptable boson and fermion mass val-
ues; this task is further complicated by relations such
as the VEV seesaw conditions which have the (unnat-
ural) property of relating parameters across widely dif-
fering scales. There are many attractive aspects to a
left-right-syrriinetric gauge theory, including (i) a mech-
anisrn for neutrino mass generation, (ii) a VEV seesaw
relation which naturally requires v~ )) z if vL, && z, and
(iii) the identification of the U(l) quantum number with
(B —L); and (iv) a collection of (potentially) observ-
able Higgs and gauge bosons including doubly charged
Higgs boson as well as many Majorana-type Higgs boson
with only leptonic couplings and thus interesting purely
leptonic decay signatures. However, substantial "fine-
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U = —pl[Tr(p p)] —Ijz[Tr(pp ) + Tr(p p)] —p3[Tr(ALGAL) +Tr(ARAR)]+ AI([Tr(pp )] }
+A2([Tr(pp )] + [Tr(p p)] ) + A3[Tr(pitl )Tr(p p)]

+&4(Tr(&&') [Tr(&&') + T (&'&)]) + ~I(IT (&L&L)l'+ [Tr(&R&R)]')

+p2[Tr(ALAL)Tr(ALAL) + Tr(ARAR)Tr(ARAR)]+ p3[Tr(ALEL)Tr(ARAR)]

+P4[Tr(+L+ L)TI(+ Ri 1R) + Tr(+L+L)Tr(+RI-lR)] + cll(Tr(00 ) [Tr(i-iL+L) + Tr(+R+R)])
+n2[Tr(pp )Tr(QRQR) + Tr(p p)Tr(QLQL)] + Il& [Tr(p p)Tr(ARDR) + Tr(p p)Tr(QLQL)]

+c 3[Tr(it/ &L&L) + Tr(y y&R&R)]+ p1 [Tr(4»Ritl'&L) + Tr(it &Le&R)]

+p2[TI(/+RE +L) + Tr(p +Lpga-lR)] + p3[Tr(Q+R4 +L) + Tr(4 i ALP'i-~R)] (A2)

We have explicitly written out each term completely to
display the full parity symmetry of Eq. (Al). Note that
because we eliminated, as discussed above, any phases
in Eq. (Al), all terms in the potential are self-conjugate
except for the o.2 term; as such, o.2 is the only parameter
which may be complex. At first glance, it would appear
that there are many types of terms missing from this most
general potential such as Tr(ALAtLALALt). A straight-
forward (and lengthy) calculation has shown that the set
we use in our Higgs potential is the minimal independent
set from which all other terms can be constructed. (The
results contained in this appendix were generated using
the symbolic manipulation programs REDUCE and MATH-

EMATICA, and the typescript was generated directly from
this output so as to minimize the possibility of introduc-
ing errors. )

I et us now discuss the phases of the VEV's that may
be assumed by the neutral components of AR, AL, and P.
Since we have employed our global phase degrees of free-
dom in eliminating phases from the left-right transforma-
tion symmetry of Eq. (Al), our only remaining freedom
in choosing VEV's is that allowed by the underlying UI.
and U~ transformations. Of these, only the T& and T~
components are useful for the VEV's of the neutral Higgs
fields. Using

(ei&g,
U

0
e

—i&L,

and the corresponding form for U~, one finds

KIe'~" i(eL ~R)

(A4)
—2iHL, —2i eR

vL, ~ vre, va ~ vie

Clearly, we have two degrees of freedom. We use these
to choose v~, r~ g IR+. It is these two VEV's that are
always nonzero in the various diAerent scenarios that we

examine in this paper.
We are now in a position to consider the minimization

of the potential. As outlined in the text, there are six
minimization conditions when two of the VEV's (r2 and

vL) are, a priori, complex. Writing Kq ——~K2~e'~' and

VL = ~VL~e' ~, we may think of these six minimization
conditions as resulting from the first derivatives with re-
spect to VR, K1, ~K2~, ~vL (, 02, and OL. As given in more
detail later (for the case of real VEV's), the first three

plKIK2»n(OL —02) + p2K1 Sln OL

+p3K2 sin(OL —202), (AG)

0 = VRVL(2KIK2 S111(OL —02)(P2 + P3)
+ [r1 sin OL + K~ sin(OL —203)]pl)

+ S1I1 02 K 1 K 2 Cl'3 (VR + VL ) + (4A3 —8A 2 )(K 1
K 2 )j

(A7)

where these equations come from the vL, , 01. , and 02
derivatives, respectively. In these equations and the ensu-
ing discussion, VL refers to the magnitude ~VL~ and sim-
ilarly for K2. Clearly, Eqs. (A5) and (A6) are simply
the real and imaginary components of a single complex
equation. A solution of this complex equation requires
that the three complex plane vectors obtained from the
P terms add together to give a real number. This obser-
vation is crucial to the phase arguments to appear below.
The relation contained in Eq. (A5) is that which we re-
fer to as the VEV seesaw relation in the limit where the
angles are zero. The above equations are similar to those
obtained in Ref. [8] in a different notation, but their an-
gle factors appear to enter differently (and in such a way
that, the vt. and 01. derivative equations are not obviously
the real and imaginary components of a single complex
equation); further, we have included an important sub-
stitution in order to simplify the 02 derivative equation.

first-derivative equations can be used to determine p3,
p&, and p» respectively. The required values for these
parameters will be assumed to be an output of some GUT
scenario. The remaining three first-derivative equations
impose strong constraints on quadratic couplings appear-
ing in the Higgs potential, and on the relative phases of
the VEV's. We shall analyze the case in which the Higgs
potential does not have any expheit CP violation; i.e.,
the single possibly complex coupling of the potential n2
will be taken to be real. The results for the second trio of
first derivatives can then be given in compact form. (A
substitution for I;3 from the v~ derivative will be made in
the ~VL~ derivative equation, and the 02 derivative equa-
tion will be simplified using results from the OL, derivative
equation. ) We find:

(2pl —ps) VRVL = pIKI K2 COS(OL 02) + p2KI COS OL

+p3K2 COS(OL —202) (A5)
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Let us now consider the solution of the above equa-
tions. The key observation follows from Eq. (A7). Re-
call first that v~ && zy, v2 && nL, is required for correct
phenomenology. Suppose all the couplings are compara-
ble; in particular let us first assume that the P's are not
anomalously small (contrary to our eventual conclusion
that they must be fine-tuned to be small in order that
the neutrino mass be small) and that neither of the K's

is very small or zero. Then, assuming that the Higgs po-
tential parameters appearing in the coeNcient of' sin 02 in
Eq. (A7) are not fine-tuned so that this coe%cient is tiny,
Eq. (A7) implies that sin O2 is at most of order VL/VR, a
very small number. Thus, 02 must be very near zero or
a. Substituting this result into the complex vector equa-
tion, whose real and imaginary components are Eqs. (A5)
and (AG), implies that the complex plane P vectors can
only add to give a real number if sin 0L, is also of order
vL/vR (We assume the absence of fine-tuning such that
the P's have closely correlated magnitudes and opposite
signs. ) But, when substituted into Eq. (A7), this in turn
implies that sin O2 —vL/vR, and so forth. Thus, it is
clear that the only solutions to t, hese two equations are
those where OL,

——0 or z and 0~ ——0 or vr. Of course, if
vl. ——0 identically this result follows trivially from these
equations. Next, suppose that K2 ——0. Then Eq. (AG)
implies immediately that sinoL, ——0; the angle 02 is ir-
relevant in this case. Next, let us imagine that the P's
are all simply very small (as required for good lepton
masses, see text). Then Eq. (A7) gives an even smaller
result for sin O2, and Eqs. (AG) and (AG) continue to re-
quire that OI, O2 ——0, ~. Finally, suppose that, the P's
are exactly zero as the result of some higher symmetry.
Clearly, Eq. (A7) implies that sin O2 = 0 (unless K2 —0,
in which case the phase of K2 is irrelevant). The angle
OL cannot be determined, but from Eq. (A5) we see that
either 2pj —p3

—0 or nL, ——0 is required. The former
possibility is discarded on phenolnenological grounds, as
discussed in the text, and would, in any case, be regarded
as extreme fine-tuning in the absence of a symmetry lead-
ing to the relation. Hence, for this case, we must have
vI. =—— 0 and OI. becomes irrelevant.

Even an extremely specialized fine-tuning of the pa;
rarneters of the Higgs potential, where there are very
strong cancellations in the coe%cients of t, he angle fac-
tars appearing in Eqs. (A5)—(A7), fails to yield a phe-
nomenologically viable option. For example, taking o.3 ——

(842 —4&3)K /(VR+ VI ), it, will be possible for pha-es to
develop for the VEV's vI. and K~., however, since o.3 deter-
mines the mass scale of the FCNC Higgs boson, we lose
the ability to decouple the FCNC Higgs-boson-mass scale
from the analogue of the standard model Higgs-boson-
mass scale. Therefore, such a fine-tuning constraint will
lead to large FCNC's in contradiction with experimen-
tal observation (cf. Sec. V and Appendix sections 6 and
7). This example demonstrates the subtle interplay of
the various constraints on the I R model, and these are
precisely the type of constraints t, hat we deal with in
a general framework in Sec. IV. To summarize, we find
that in all cases spontaneous CP violation does not arise.
This conclusion is the same as that reached in Refs. [7]
and [8] on the basis of similar arguments.

2. The real components of the neutral mass matrices

We first compute the components of the real mass ma-
trix in the ($01",P2", bR", 6L") basis. The mass matrices
are symmetric matrices which we require to have positive
eigenvalues. We recall the shorthand K+ ——(Kl + K2):

M, l = Al(3K1 + K2) + 2K2(2A2+ A3) + GKlK2A4

—pl + nl(vL + vR)/2 + p2VLvR (A8)

= 2KiK2(» + 4&2 + 2&3) + 3&4K+ —2P2

+n2(VL + VR) + (plvLVR)/2 i (Ag)

M, s' = M3; = VL(2p2K1+ plK2)/2
+vR(nlK1 + 2n2K2) (A10)

Ml 4 ™41—VL (nl K 1 + 2n2 K2)

+VR(2p2Kl +- plK2)/2, (A11)

M22' =- Al (K, + 3K2) +2K1(2A2+ A3) + GK1K2A4 —Pl
+(nl + ns)(vL -+ VR)/2+- p3VI VR, (A12)

M~~' = M32' = vL(pl Kl + 2p3K2)/2

+vR[2n2K1 + K2(nl + n3)] (A13)

M24 = M42 —vI [2n2K1 + K2(nl + n3)]
+VR(pl Kl + 2psK2)/2, (A14)

M33' = (nlK~ + 4n2K1K2 + n3K2)/2 —p3 + psvL/2

+38& a ~ (A15):M43 —(p2Kl + plK1K2 + p3K2)/2 + p3VLVR

(A16)

M44 —(nlK+ + 4n2K1K2 + n3K2)/2 —p3 + 3plvL

P3VR/2 . (A17)

3. The imaginary components
of the neutral mass matrices

In a manner similar to the previous section, we com-
pute the components of the imaginary mass matrix in the

With this background, we are now in a position to
compute the components of the various mass matrices.
We shall continue to take o, 2 to be real, so as to avoid
explicit CP violation; all the other couplings are real,
as already discussed in the text. Further, as a result
of the phase arguments above, when n~ is real all the
VEV's will be real as well. We will present the results
both before and after the first-derivative constraints have
been substituted; both expressions will be useful when
examining the difI'erent manifestations of the Higgs sector
displayed in Fig. l.
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(yOi yOi pOi pOi) M34 = M43 = (p2K1+ pl K1K2 + psK22)/2,

~1K+ —2K2(2A2 A3) + 2K1K2~4 pl

+nl(vL + vR)/2 —P2vr. vR, (A18)
M44 ——(nl r+ + 4n2r 1K2 + nsK2)/2 —p3 + pl VL

Im 2 2 2 2

+p3VR/2 . (A27)

M12 ——M21 ———8K1K2A2 —%4K+ + 2p2 —n2(vL + VR)
Im Im 2 2 2 2

+Pl VI VR/2 (A19)
4. First-derivative conditions

M, 3 = M31 = VL(2P2K1+ P1K2)/2,

M,'4 = M41 = VR—(2P2K1+ P1K2)/2,

M22 ~1K+ 2K1 (2~2 ~3) + 2K1K2~4 pl

+(nl + n3)(VL + VR)/2 —p»LV R,

(A20)

(A21)

(A22)

We now compute first derivative constraints for the P
Higgs fields:

,„=K, A1+ 3K,K2A4+ K2A4+ K1K2(A1+ 4%2+ 2%3)2 3 2

1

+Kl[—p, , + (nlvL)/2+ p2vLVR + (nlvR)/2]
+K2 [—2p2 + n2VL + (pl 'VLVR)/2 + n2VR]

(A28)

M23 ——M3™2 = —VL(P1 Kl + 2P3K2)/2,

M24m = M42 = vR(p, K1+ 2p3K2)/2,

(A23)

(A24)

(A25)

M33 —(nlK+ + 4n2K1K2 + n3K2)/2 fl3 + p3vL/2

+P&"R ~

3 3
Op

—K2~1 + K1~4 + 3K1K2~4 + Kl K2(~1 + 4~2 + 2~3)2 2

+ I-2p'+ '+(P" )/2+ "1
+K2[ pl + (nlVL)/2+ (n3VL)/2 + p3VLVR

+(n»R)/2+ (n3VR)/2] (A29)

Using the above relations, we can solve for p& and p2.

pl [2vLVR(p2K1 —p3K2) + (vL + vR)(nlK —n3K2)]/(2K ) + (K+$1+ 2K1K2.$4)

p2 —ivLvR[plK —2K1K2(p2 —p3)] + (vL + vR)(2n2K + n3K1K2))/(4K ) + Ki K2(242 + A3) + (A4K+)/2

Likewise, for the A Higgs fields, we have

O& (p3VI VR)/2 + pl VR + VL [(p2K1)/2 + (pl K1K2)/2 + (p3K2)/2]
R

+VR[(nlK, )/2 ~ 2n2KlK2 + (nlK2)/2+ (n3K2)/2 —p3],

O& plvL + (p3VLVR)/2 + VR[(p2K1)/2 + (plK1K2)/2 + (p3 )K/22]

(A32)

+vL [(nlK1) /2 + 2n2K1K2 + (nl K2)/2 + (n3K2)/2 —p3] (A33)

With the above two equations, we can solve for p3, and
a parameter of our choice, which we pick to be P2.

p3 —[n1 r+ + 4n2K1 K2 + n3K2 + 2pl (vL + vR)]/
2

p2 —[ pl KlK2 p3K2 + (2pl p3)VLVR]/Kl

K 1 /K+ K2/K+ 0 0 )—K2/K+ Kl /K+ 0 0
0 0 1 0
0 0 0 1)

(A36)

which will accomplish our change of basis.

nantly comprise the IR analogue of the light "standard-
model" Higgs boson.

To this end, we define rotation matrix

5 ~ B.otatlon to tile flavor-diagonal basis

Referring back to Sec. II, we shall find it useful to ro-
tate the neutral fields into what we shall call the flavor
diagonal basis. That is, we go from the {$1,$2, 6R, bL)
basis to the jp, p+, 6R, bL) basis. Recall that it is the

which is flavor-diagonal, ancl therefore must domi-

6. The rotated real matrix

We now examine the real components of the mass ma-

trix in the flavor-diagonal basis, (P ",P+",C, bL"), with
the first-derivative conditions substituted and the sim-

plifying condition: eL,
——0. Note, the rotation necessary
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to change the basis is: W+e = RMR'RT, where MRe is
in the mass matrix in the ($01",$20", bRD", bLD") basis, and
Mn' is in the flavor-diagonal basis:

Mlj —2~1K+ + 8K1K2(2~2 + ~3)/K+ + 8K1K2~4

8. The singly charged Higgs sector

We now present the singly charged mass ma-
trix with no minimization conditions imposed in the
(/+1, p2+, bR+, bL+) basis

= M21' —4K1K2K (2%2 + A3)/K+ + 2A4K

(A37)

(A38)

M,+, = [»1K++4KiK2&4 —2p',

+n, (VL+ VR) + nsv„]/2,

M2] 2K1K2( ~2 + ~3) ~4K+ + 2p2
—n2(vL + VR),

(A53)

(A54)

M13 ™31—nl VRK+ + K2VR(4n2K 1 + n3K2)/K+Re Re

Re ReM14' ——M41' ——0,

M2, (4%2 + 2A3) K4 /K2+ + nsvR2K~i/(2K2 ),

(A39)

(A40)

(A41)

Mls ——(—2p2KlvL —pl K2vL + nsK1 VR)/(2+2), (A55)

M14 —M4+1 —(nsK2VL + pl K1VR + 2p3K2VR)/(2%2)

(A56)

M23 ™32—vR(2n2K + n3K1K2)/K+
Re Re (A42)

M22 —A1K+ + 2K1K2A4 —p, + [nl(VL + VR)]/2

+(nsvL)/2, (A57)

M,4' ——M42' ——vR(Pl Kl + 2P3K2) K+/(2K1)

Re 2M33' ——2P1V~ )

Re ReM34' = M43' ——0,

(A43)

(A44)

(A45)

M23 M32 (plK1VL + 2p3K2VL + n3K2VR)/(2~2)

(A58)

M24 M42 (n3K1 VL —2P2 K 1 vR Pl K2 vR)/(2~2)

(A59)

MR4' ——vR2(2pl —p3)/2 . (A46) M33 (nl K+)/2 + (n3K+)/4 + 2n2K1 K2 ps

+(psvL + 2pl vR)/2, (A60)

7. The rotated imaginary matrix M34 M43 (Pl K+ + 2P2 K 1 K 2 + 2P3 K 1K2 )/4 (A61)

Im Im Im ImM1 1 M12 M13 M14 (A47)

M22 ——2K+(2%2 —A3) + nsvRK+/(2K ) ) (A48)

We now examine the imaginary components of
the mass matrix in the flavor-diagonal basis,
(P ', P+, bR, bL'), with the first-derivative conditions
substituted and the simplifying condition: vt. ——0. Note,
the rotation necessary to change the basis is M
R M m R, where M m is in the mass matrix in the
($1', pz', bR, bL') basis, and Wl~ is in the flavor-diagonal
basis. Also note that the rotation for the imaginary ma-
trix differs from that for the real case:

M44 ——(nlK+)/2+ (n3K+)/4+ 2n2K1K2 —p3

+(2plvL + p3vR)/2 . (A62)

9. The rotated singly charged Higgs sector

We now examine the imaginary components of the
mass matrix in the rotated basis, with the first-derivative
conditions substituted and the simplifying condition:
vt. ——0. Note, the rotation necessary to change the ba-
sis is JH+ = RM+R, where M+ is in the mass matrix
in the (/+1, /+2, bR+, bL+) basis, and M+ is in the rotated
basis i ((K14 1 + K24 2 )/K+ ) (K14'2 K24'1 )/K+ ) bR & bL ) '

M23 ——0,Im (A49) Mii (nsK+vR)/(2K ), (A63)

M24 ™42= vR(PlK1 + 2P3K2)K+/(2Ki) i (A50) M12
——M21 ——0,+ + (A64)

MIm M Im 033 34

M44 = —VR(2 pl —p3)/2

(A51)

(A52)

M13 ™31= (n3"+VR)/(2~2) ~

M14 ——M41 ——[vRK+(pi Kl + 2p3K2)]/(2V 2Ki),

(A65)
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(A67) MIz+ = Mzr+ = (psKI + pIKIK2+ pzK&+ 4p46t. ver)/2,

(A72)

M+ = M4+s = [Kz (P, KI + 2PsK2)]/(4KI), (A69)

M22
—

[ ntK+ + nsKI + 4n2KIKz —2ps++ 2 2

+»i(PI + 2Pz) + P»A]/2 . (A73)

M4+4 = [crsK' —»t't(2pI —ps)]/4 . Again, me substitute first-derivative conditions and set
vL,

——0:

10. The doubly charged Higgs sector M,+,+ = (nsK + 4p2utt)/2, (A74)

We now present the doubly charged mass matrix with
no minimization conditions imposed in the (b&++, b&++}

basis:
MI+z+ = M2++ = [K (psK, + pIKIK2 + psK2)]/(2K, ),

(A75)

[ crI K+ + crsKI + 4crzK I Kz —2lts + psvL++ 2 2 2 2

+»A(PI + 2pz)l/2 Mz2+ = (~sK' —[utt(2pI —ps)]}/2 . (A76)
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