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A comprehensive summary of recent progress in the understanding of nonleptonic weak decays
of strange particles is presented. The dynamics of these processes is strongly influenced by nonper-
turbative correlations between two quarks in scalar color-antitriplet states. A coherent description
of the AI = —rule in kaon and hyperon decays as well as the AI, -Ag mass difFerence emerges, re-2
solving so far mysterious puzzles. In all cases, the calculations are free of undetermined parameters.
Extensive use is made of chiral symmetry and chiral perturbation theory. Relations of our ideas to
other approaches, namely, the 1jN, expansion, dual @CD sum rules, and lattice gauge theory, are
pointed out.

I. INTR.ODUCTH3N

Soon after the discovery of strange particles it was ob-
served that their weak decays exhibit an unexpected pat-
tern. Nonleptonic hyperon as well as kaon decay pro-
cesses associated with isospin change AI =

2 strikingly
dominate other transitions, indicating a complex inter-
play of strong and weak interactions. A prominent ex-
ample of this so-called AI =

2 rule [1] is manifest in the
experimental ratio [2]

I (Ks ~+ w-)
&(A + ~ 7r+ xo)

which should be close to one without the influence of
QCD. Eff'ects of similar strength also occur in hyperon
decays. Theoretical investigations of nonleptonic weak
transitions have a long history. With the advance of
SU(3) and current algebra, several relations between de-
cay amplitudes have been obtained. Development of
the standard model and QCD brought further important
progress. The renormalization-group summation of hard-
gluon corrections to the weak vertex leads to an enhance-
ment of AI =

2 amplitudes and a small suppression of
AI =

2 ones. But although this effect shows the correct
tendency, sizable factors are still missing. More than 30
years after its discovery, the explanation of the AI =

2rule in the framework of the standard model is therefore
still a challenge. In particular, the magnitude of hyperon
and kaon decay amplitudes remained unexplained [3, 4).

On the other hand, the dominant mechanism responsi-
ble for nonleptonic two-body decays of D and B mesons
could be established soon after the first experimental
data were available [5, 6]. These decays predominantly
proceed via the direct production of one of the final
mesons by a color singlet quark current present in the
effective weak Hamiltonian. In this process, nonpertur-
bative QCD plays an essential role. It is taken care of
by the use of meson decay constants and form factors
for single current matrix elements. That this so-called
"new factorization" in energetic transitions is a conse-
quence of QCD is to some extent supported by the 1jN,

expansion [7, 8] and QCD sum rules [9], but a deeper
understanding is necessary and a challenge for further
investigations. Since confinement forces are important
even in energetic heavy-quark decay processes, they are
expected to be dominant in transitions of strange parti-
cles. The AI =

2 puzzle has, therefore, to be resolved
in dealing with nonperturbative QCD in the low-energy
d omaln.

In a series of recent papers [10—12] we have shown that
the concept of diquarks as eAective degrees of freedom is
the important key for the understanding of nonleptonic
weak decays at low energies. The strong nonperturba-
tive forces between two quarks in a color antitriplet state
lead to quark-quark correlations comparable in strength
to the quark-antiquark attraction inside mesons. The
main part of the effective weak Hamiltonian does noth-
ing but to transform a quasibound spin-zero (su) diquark
into a (ud) diquark. This picture can be directly applied
to nonIeptonic hyperon decays and yields an excellent de-
scription of all S- and P wave amplitudes. -In the case of
kaon decays, the chiral dynamics of pseudoscalar mesons
in interaction with diquarks determines the structure and
strength of AI =

2 transitions. The calculation involves
the same combination of coupling constants as in hyperon
decays. We, therefore, obtain a coherent understanding
of nonleptonic weak decays of strange particles in terms
of a single dynamical effect.

This paper is organized as follows. In Sec. II we shortly
review the concept of an effective weak Hamiltonian for
nonleptonic decays. It incorporates perturbative QCD
corrections to the weak vertex. The pattern of these cor-
rections already gives important hints about the underly-
ing physics. It leads us to the notion of diquarks as effec-
tive degrees of freedom of QCD in the low-energy regime.
The basic properties of these quasiparticles, namely their
masses and couplings to local currents, are investigated
with QCD sum rules. Section III reviews the treatment
of nonleptonic hyperon decays using these ideas. This
application is most natural since diquarks are part of
baryon wave funct;ions. In the main part of this paper
we focus on the more elaborate case of kaon decays. In
Sec. IV, the phenomenology of A' —+ m x amplitudes is
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summarized. Q~e compute the factorization contribution
to these decays and emphasize the strong restrictions on
weak amplitudes imposed by chiral symmetry. The tech-
nique necessary to incorporate effects of long-distance
quark-quark correlations and their contribution to kaon
decay amplitudes is developed in Sec. V. The calculation
of the A. ~ xz' amplitude is discussed in detail. Using
functional integration techniques our model is cast into a
form suitable for the consistent application of chiral per-
turbation theory. This approach is particularly useful in
higher order calculations since it allows the determina-
tion of all the coupling constants of the effective chiral
Lagrangian. It is subject of Sec. VI. Relations to other
approaches, namely to the I/N, expansion, dual @CD
sum rules, and lattice gauge theory, are pointed out in
this context. The consistent treatment of higher-order
chiral corrections to the AI =

2 amplitude is presented
in Sec. VII. It includes meson loops and contributions
from higher dimensional chiral operators. An alternative
treatment of the Anal-state interactions using dispersion
relations is also discussed. Including these corrections we
obtain an excellent theoretical description of both isospin
amplitudes relevant in K —+ x m decays. Finally, in Sec.
VIII recent progress in the understanding of the long-
distance part of the I&L,-K~ mass difference is reviewed.
This issue is intimately related to the LI =

2
enhance-

ment in nonleptonic kaon decays. Section IX contains a
summary and our conclusions.

II. THE EFFECTIVE WEAK HAMILTONIAN

To lowest order in the standard model, nonleptonic
weak decays are governed by a single W-exchange dia-
gram. Strong interactions affect this simple picture in
a twofold way. Hard-gluon corrections can be accounted
for by perturbative methods and give rise to new effective
weak vertices. Long-distance confinement forces are re-
sponsible for the binding of quarks inside the asymptotic
hadronic states. The theoretical tools to separate these
two regimes are provided by the operator-product expan-
sion [13] and renormalization-group techniques [14]. The
result is the well-known effective Hamiltonian which, in
the case of strange-particle decays, reads [15]

) c, (p) Q; + H.c.
i=+,3,5,6

(2 1)

It consists of a product of local four-quark operators
Q; and scale dependent Wilson coefficients c;(p). U„g
and U„, are elements of the quark mixing matrix [16].
They are real in the standard parametrization [2]. G~ is
Fermi's constant. In the basis of Gilrnan and Wise, the
operators are

Qy = —,'[(su)v ~(ud)v-~ +(sd)v-~(uu)v-~],
Qs, 5 ——(s d) v ~ ) (q q) vp~, (2.2)

g=t4) G, S

Qs = —2 ) . (s q)s+p (q d)s p, —
g=tl )Cf )S

where (s u) v ~ = s p& (1 —p5) u, et, c. Long-distance
physics becomes apparent in hadronic matrix elements
of these operators. On the other hand, the Wilson coef-
ficients take into account perturbative corrections asso-
ciated with the evolution from the scale of the W boson
to a hadronic scale p. For our numerical estimates we

choose the scale such that n, (p) = 0.5. The correspond-
ing values are [17]

c+ - 0.65, c 2.42, cs —0.01,

c5 0.006, c6 ——0.02

(2.3)

as compared to c+ ——c = 1, c3 ——c5 ——c6 —0 without
@CD corrections. Obviously, cs and the coefficients of
the penguin operators Q5 s are very small even at low

scales.
In order to understand the reason for the strong per-

turbative correction of cy, it is instructive to consider
the effective Hamiltonian as describing a scattering pro-
cess 8 + u —+ u + d. According to the decomposition
3 13 3 = 3* 6, the initial and Anal states can be in
an antitriplet or sextet with respect to color. These two
possibilities correspond to Q and Q+, respectively. The
fact that the perturbative gluon exchange is attractive in
the 3* and repulsive in the 6 channel explains the en-
hancement of c and the suppression of c+, respectively.
By means of a Fierz transformation this can be made
more explicit [18]:

'R,n' —— U„g U„, [ c (p) (u d)s. (su)s-
2

+c+(p)(ud) (»)s+ + II c],
(2.4)

where (s u)s. ——ey, z s; C(1 —p5) u& is a scalar and pseu-
doscalar color-antitriplet, diquark current, and the other
currents are given by similar expressions. C is the charge-
conjugation matrix. The ellipses stand for contributions
of Qs and penguin operators.

From the very existence of baryons, it follows that also
the long-distance color force between two quarks in an
antitriplet state is attractive. Consequently, one expects
a further enhancement of matrix elements of Q . If the
attractive potential is strong enough to build quasibound
two-quark states, the currents in (2.4) can be interpo-
lated by local diquark fields. This is likely to be the
case for the 3* channel only, where both the short- and
long-distance forces are attractive. After all, diquarks
do exist inside baryons. (The product of sextet cur-
rents behaves differently. Since in this case the short-
distance force is repulsive, bound color-sextet diquarks
seem very unlikely. To handle this term, it should there-
fore be rewritten in its usual form. ) Clearly, because of
their open color, diquarks cannot be asymptotic states
of QCD. They may, however, act as quasiparticles at
some intermediate scales. Their status is like that of
constituent quarks which dissolve into smaller partons at
high q2.

In hadron physics and spectroscopy, the binding of
quarks to diquarks has important implications and has,
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G(q) = i d ze" (Ol'T (:j;(z) S;t.[z, 0] jt(0):]lB),

where the path-ordered Schwinger string

(2 6)

S;t.[z, 0] = 'P exp ig, A„dz"
) „ (2.7)

ensures gauge covariance. A careful analysis of correla-
tors such as this gives large coupling constants [20, 21]
(as large as g ) indicating strong binding inside the two-
quark system. Stability of the sum rules requires that
pseudoscalar (J+ = 0 ) diquarks are considerably heav-
ier than their scalar (J+ = 0+) counterparts, in agree-
ment with quark model expectations. An important re-
sult of this analysis is that the anomalous dimension of
the diquark decay constants is minus one-half that of
the Wilson coefFicient c . The renormalization-group-
improved perturbative scaling is [21]

« - [~ (y)] "' (2 8)

and is not significantly modified by nonperturbative
contributions. Consequently, c (p) g(„d)(p) g(,„)(p) be-

therefore, often been discussed [19]. Because of the par-
ticular form (2.4) of the eff'ective Hamiltonian, weak in-
teractions are even more suited to see and study the
corresponding effects. The operator Q can act in a
very special and intuitive way. It annihilates a color-
antitriplet (su) diquark and creates a (ud) state (or vice
versa). The crucial question is, however, whether or not
this 41 =

&
process is really the dominant one. This

question can be answered by considering the coupling
strength of a diquark state to the associated local cur-
rent [20], e.g. , for a scalar (ud) diquark with color index
l.

(2) i/2

~~v (~ I u; &v5 d, l(«)i &
=

I

—
I ~a) g(ud)(p),

(, 3r
(2.5)

where V 2/3 is a color factor. g(„d) has been defined in
analogy to g, the coupling of a pion to the pseudoscalar
current, and is a scale-dependent quantity. "Diquark de-
cay constants" such as this have been investigated by var-
ious methods. The approach from QCD sum rules starts
from the time-ordered product of two diquark currents:

comes scale independent. It is precisely this product
which enters all our computations. In Table I we quote
numerical results for different combinations of flavor and
parity. The equal parity product is relevant for hyperon
decays, while the mixed parity combinations govern the
I& —+ vr x amplitudes. These numbers refer to a mass of
500 MeV for the scalar («) diquark. They increase by
25% (decrease by 20'%%uo) if this mass is 600 (400) MeV.

Alternatively, one may extract g~„~~ and g~, „~ from the
analysis of hyperon decays [12], or study the coupling of
a proton, described as a u (ud) bound state, to a baryonic
current [20]. The results of these diff'erent methods nicely
agree and thereby reduce the uncertainty inherent in sum
rule estimates. In the following computations we use

c g(+„d) g(+,„)——(0.075 + 0.015) GeV

c gl+ d) g(+„) ——(0.090 6 0.015) GeV
(2.9)

consistent with little explicit chiral-symmetry breaking.
The fact that the diquark couplings are large gives us

confidence that the picture of the effective Hamiltonian
acting on diquark states is an appropriate one. It anni-

hilates and creates these states in a very effective way,
and the combinations (2.9) incorporate, as we shall see,
the major nonperturbative effects active in nonleptonic
transitions at low energies. More precisely, this is true
as long as gd; )) f mz, with m& being the mass of the
decaying quark. Matrix elements of scalar diquark cur-
rents are then much larger than those of vector currents
which arise in factorization of the weak Hamiltonian in its
usual form (2.1). This relation is well satisfied in strange-
particle decays. Since Q transforms like an AI =
operator, this will lead us to a natural understanding of
the AI =

2 enhancement. In heavy quark decays, on the
other hand, matrix elements of vector and axial-vector
currents are clearly dominant. This is the reason why

(new) factorization works quite well in energetic D and,
even better, in B decays [5, 22].

III. NONLEPTONIC HYPERON DECAYS

Substituting the color-antitriplet currents in the first
part of (2.4) by normalized, scalar and pseudoscalar di-
quark fields

1
(("s) (s&) («))s-~

2

TABLE I. Combinations of diquark coupling constants with the Wilson coefficient c as ob-
tained from +CD sum rules [21j.

1.00
0.50
0.25
0.09

0.37
0.45
0.58
1.00

error

p' (GeV') n, (p) '- g('-d) g('-) (G'V')

0.070
0.072
0.075
0.082
0.014

g(~d) g(~ ) (

0.088
0.090
0.091
0.093
0.025

c g( d) g(+ )
(GeV )

0.090
0.090
0.091
0.097
0.024
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one obtains the effective Hamiltonian of the diquark
model

TABLE II. S-mave hyperon decay amplitudes A in units10, taken from Ref. [12].

Gy'H, fr = U„~ U, —c gl„d) gl, „) pl. A, pl. . (3.2)
2 3

It simulates the strong attractive quark-quark correla-
tions active in nonleptonic weak transitions. This form
of the Hamiltonian can be directly applied to hyperon
decays, since diquarks are part of the asymptotic baryon
wave functions.

The theoretical description of hyperon decays starts
from baryon-pole formulas and current algebra relations
[4]. One defines dimensionless amplitudes A and B by

Decay

A nx 0

A ~ pm
Ax
E

Z+ -n~+
Z+ pe
E ~nx

Theory

—2.11
2.74
3.46

—4.58
0.03

—3.30
4.29

Experiment

—2.36 + 0.03
3.25 + 0.02
3.43 + 0.06

—4.49 + 0.02
0.14 + 0.03

—3.26 + 0.11
4.27 + 0.01

( B, m
~

'R,n (0) ~
B; ) = i u, (A —p5 B)u; .

They describe parity violating S-wave and parity con-
serving P-wave transitions between J = — baryon2
states B; and Bz. (For the case of 0 decays, see Ref.
[12].) As an example, Fig. 1(a) shows the contributions to
the P-wave amplitude for the decay A ~ pm in the pole
model. Weak interaction can either cha,nge the A into
a virtual neutron which then emits a pion, or the pion
may be emitted first leading to an intermediate E+ state.
The P-wave amplitudes are therefore determined by the
baryon matrix elements of t, he effective weak Hamilto-
nian. Since in a constituent quark model for baryons
there cannot be color-sextet diquarks, Eq (3.2). directly
applies and simply replaces an (su)o+ state in the initial
baryon by a (ud)o+ diquark leaving the remaining quark
unaffected [23]. The calculation depends very little on
details of the baryon wave functions [12]. The first com-
bination of coupling constants quoted in (2.9) fixes the
magnitude of all baryon matrix elements of the effective
Hamiltonian. For octet baryons the d/f ratio turns out
to be precisely (—1), with d = f = 0.3—7 x 10 GeV.

The same matrix elements also determine the soft-
meson limit of the S-wave amplitudes. To obtain the
S-wave amplitudes for on-shell pions, however, a trick
is required. One writes the amplitudes as a sum of pole
terms using the fact that the relevant z baryon interme-
diate states, which contain 0 diquarks, are heavier by
about 700 MeV than

&
baryons. Finally, consistency

with the soft-pion limit is enforced to fix the coupling
constants.

With this input, the diquark contributions to both S-
and P-wave amplitudes are determined in magnitude and
sign. They have to be supplemented by the amplitudes
obtained from factorization of the full effective Hamilto-
nian (2.1). The latter account for the effect, of the strong
@CD attraction between quark and antiquark instead of
two quarks and, in particular, take care of the AI =

2
parts of the decay amplitudes and of the contributions
from penguin operators. They are generally not large
since matrix elements of vector currents are suppressed
for small particle momenta. Nevertheless, the addition
of the factorization amplitudes is necessary, in particu-
lar, in those decays where the diquark contribution is
small. Because of the completely different decay mecha-
nism there is very little danger of double counting. (See
also the discussion in Sec. VI about the different behavior
of factorization and diquark contributions with respect to
the large N, expansio-n. ) The relative sign of both am-
plitudes, which is determined from theory, turns out to
be crucial then. In Tables II and III, we compare the
theoretical and experimental results. The 5-wave ampli-
tudes for decays to mN states include a correction for
final-state interactions suggested by the measured phase
shifts [12]. It is quite remarkable that in spite of the ap-
proximations used the theoretical amplitudes calculated
in this way are in very satisfactory agreement with ex-
periment. No undetermined parameters have to be in-
troduced. The old puzzle of the P waves and their con-
nection to the S waves, which was a headache for many

TABLE III. I -vrave hyperon decay amplitudes B in units
10 ", taken from Ref. [12].

(b) (c)

FIG. 1. Pole contributions to the parity-conserving P-
wave amplitudes for the decays A ~ p x (a) aud 0 —+

A K (b) in the diquark model. The black square indicates
the weak vertex from (3.2). The transition 0 —+ = x in (c)
can proceed via factorization only.

Decay

A~nx 0

A~ px
Ax
Z x

E+ n ~+
Z+ -p~'
E ~ n7I.

0 ~AA0:- x
0

Theory
—15.59

23.20
—14.43

19.78
44.22
30.74
—1.18

7.70
1.46

—0.75

—15.61
22.40

—12.13
17.45
41.83
26.74
—1.44

5.37
1.80

—1.10

+ 1.40
+ 0.54
+ 0.71
+ 0.58
+ 0.17
+ 1.32
+ 0.17

0.13
+ 0.08
+ 0.07

Experiment
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years, is new resolved.
In 0 decays, a clear separation of diquark and factor-

ization amplitudes occurs. The transition 0 ~ I» A,
shown in Fig. 1(b), proceeds via the strong process
0 ~ K:- followed by the weak transition = —+ A
whose strength is determined by the large diquark decay
constants in (2.9). Because of the flavor quantum num-
bers there is no factorization contribution in this case.
The decays 0 —+ = vr, on the other hand, cannot pro-
ceed via a diquark transition but do allow for factor-
ization, see Fig. 1(c). To our satisfaction, these ampli-
tudes are strongly suppressed although they can proceed

via LI =
2 transitions. The pattern emerging in the

low-energy regime is that weak decays are always large
if they can proceed via a diquark transition, and small
otherwise. We know of no exception of this general rule.
It will prove to be particularly valid in the nonleptonic
decays of kaons, to which we turn now.

IV. THE DI = —RULE IN KAON DECAYS

The decays I& ~ ax are described by three indepen-
dent amplitudes which, in the presence of final-state in-
teractions, have the isospin decomposition [3]

1/2
i A(I&s ~ x+z. ) =

3

2
A(I~s «) =o o

3)
/ 3 1/2

ix(I'+ - ~+~o) = ~—

A2e" —= A+

1
A2 e'" ——

2

A2e'" = g+, .

1/2
Ape" + I—

g3
2 /'2 1/2

Ap e'~0 —~—
(3 (4.1)

Electromagnetically induced AI =
2 weak transitions

are negligible. Ao and A2 are real amplitudes corre-
sponding to isospin I = 0 and I = 2 in the final state,
respectively. bo and b2 denote the S—wave ex scattering
phases. Experimentally, one has [2]

]A+
~

= (3.911+0.007) x 10 GeV,
[ App [

= (3.714 + 0.015) x 10 GeV,
(A+o )

= (1.831 + 0.006) x 10 GeV .

Accordingly,

(4.2)

1
Ao = [2A+ + Aop )

= (4.71 + 0.01) x 10 GeV,
6

2
A2 —

) A+p (
= (2.11+0.01) x 10 GeV,

3
(4 3)

i g/(Ii. s ~ sr+~ ) = [ (1 —() c + (1+() c+
2

+2 ( c3 —2 y (cs + (c5)],

ig/(I&s ~ x vr ) = [ (1 —() c —(1+()c+
2

+2( c3 —2Z (es + (c5)],
(4 4)

Ki A/(Ic+ ~ x+7r ) = (1+()c+ .
2

The parameter ( has been introduced in Refs. [5]. The
abbreviations are

~
bp —a2 (

= (56.5+ 3.0)' .

These numbers should be compared to the amplitudes
obtained from factorization of the effective weak Hamil-
tonian (2.1). They are

V„q V„,f (m~ —m ) = 0.53 x 10 GeV,
2

(4 5)
/'

m/ f~ —1 = 6.6+1.2.
m~2 —m2 (m/2 —m~2 f )

In r we have neglected the I» x form factor which exper-
imentally is very close to one. For the estimate of y, pole
dominance for the ver form factor of the dd current has
b een assumed, with mf p 976 MeV being the mass of
the nearest isospin-zero scalar meson. The constant

2mx
m„+ mg

2m+
mg + mQ

(4 6)

is related to the quark condensate. In estimating its
value, the running quark masses have to be evaluated
at the same scale as the Wilson coeKcients. In fact, the
product g c6 is almost scale independent. For n, (p) = 0.5
one has (Ref. [26]) (m, + md) 230 + 20 MeV, and thus
v 1,07 + 0.10 GeV.

Using the values of the Wilson coe%cients as given in
(2.3), we find

~A/(I&s ~ ~++ )~ (1.25 —0.70() x 10 " GeV,

~A/(I~s ~ vr x )[ = (0.76 —1.18() x 10 GeV,
(4.7)

~g/(I~+ ~ x+vr )~ 2.44(1+() x 10 GeV .

Note that, in factorization, the contribution of penguin
operators is very small and does not exceed 3% of the
experimental amplitudes. The parameter ( takes into
account our insuKcient knowledge how to handle the
so-called Fierz terms in factorization. In the conven-
tional prescription, ( = 1j&„but this neglects matrix
elements of color-octet currents and is therefore not jus-
tified. "New factorization" requires ( 0 and is phe-
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E(x) = exp A, P, (z) (4.8)

where A are the Gell-Mann matrices, and P (z) de-

note the pseudoscalar fields. In lowest order of the chi-
ral expansion, f coincides with the pion decay constant

f 132 MeV. Under SU(3)L, xSU(3)~, the fields trans-

form according to Z ~ UI. E U&~. To order p2, the most
general strong-interaction Lagrangian is uniquely deter-
mined and reads ((. . .) denotes a trace in flavor space)

nomenologically favored in exclusive decays of D and B
mesons [5, 22], indicating that quark and antiquark from
a color-singlet current like to stay together to form an
asymptotic hadron state. It is important to note that
new factorization gives the exact result for the decay am-
plitudes in the N, —+ oo limit. From (4.7) it is apparent
that also in Ii. decays ( = 0 is favored compared to( = 3.
In particular, this brings the AI =

2 factorization ampli-
tude already in rough agreement with experiment. Also
the AI =

2 amplitude becomes larger [8], but the main
part is still missing.

The application of the ideas presented in Sec. II to kaon
decays is less straightforward than in the case of hyper-
ons, since diquarks are not part of meson wave functions
in an apparent way. One may, however, make use of the
fact that the pseudoscalar mesons are Goldstone-bosons
associated with the spontaneously broken chiral symme-
try of the QCD Lagrangian. Chiral symmetry completely
determines the structure and, to a large extent, also
the strength of the Goldstone boson interactions among
themselves and with external fields. Chiral perturbation
theory is the systematic expansion of these interactions
in powers of the meson momenta and masses [27—29] (in
the remainder commonly denoted by p). It is the most
powerful nonperturbative (in the sense of perturbation
theory in cr, ) approach to QCD at low energies and pro-
vides a convenient framework for the investigation of the
long-distance contributions to nonleptonic weak decays
of kaons.

As usual we introduce a nonlinear representation in
flavor space

f4
+g s—v (As(mqK + Zm ))

(4.10)

The components of

2

L„= i —KO„Kt, —(L„)= 0p 4
(4.11)

are the lowest-order chiral realizations of the U —A color-
singlet quark currents appearing in the eA'ective Hamilto-
nian ('2.1). This is readily derived applying the Noether
procedure to (4.9). The dimensionless parameters gs and

h8 are not restricted by chiral symmetry. They have to
be determined from experiment or within the context of
a given model. The second operator in (4.10) is, by the
equations of motion, a total derivative. It does not con-
tribute to physical (on-shell) decay amplitudes [29—31].

The single operator transforming like 27 is again bi-
linear in I & and has components

(4 9)

It is "invariant" under the chiral group if the fictitious
transformation mq ~ UL, m& U& of the quark mass ma-
trix is implemented. The constant v, defined in (4.6),
gives masses to the Goldstone bosons.

In order to obtain the structure chiral symmetry im-
poses on weak decays, one needs to find, to a given or-
der of the chiral expansion, the set of all meson opera-
tors with the appropriate transformation properties un-
der SU(3) and isospin. It is well known [30] that to lowest
order there are only two operators transforming like an
SU(3) octet. This part of the chiral Lagrangian is conve-
niently written as

G~ (
~„,V„, l 4 g, ( A, I.„L")

2

GF 1/2[4 g27 (L23L11 + L13L21 + 2 L23L22 —3 L23L33 + H. c.)g2
3/2+ 4 g27 (L23L11 + L13L21. L23L22 + H.c.)] (4.12)

where contraction over p is implicitly assumed. The two
parts mediate transitions with AI =

&
and 2, respec-

tively.
The on-shell I& —+ x x amplitudes computed from these

Lagrangians read

i A(I&s ~ 7r+7r ) = ~2 ~ (gs + g27I + g2~~ ),
i A(Ks 7r' ~') = v 2 K (gs + g27~' —2 g2'7I'),

(4.13)

g(Ig+ + 0) g
/

2

I

with ir given in (4.5). We find it convenient to define the
phenomenological parameters in terms of the on-shell de-
cay amplitudes to all orders of the chiral expansion, i.e.,
to absorb all higher order corrections into a redefinition
of these parameters. In this way, they become directly
related to measurable quantities. From the experimental
amplitudes (4.2) one deduces the values

I gs + g27 I

= 5-13 + 0 07
(4.14)

l g27I l
= 0.163 + 0.002 .
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mg —md

p 04

3/2 f +
p

(4.15)

This procedure precisely corresponds to new factoriza-
tion, as can be inferred from comparison of (4.13) and
(4.4). The reason is that the replacement

(4.16)

is strictly valid in the N, ~ oo limit where the color-
singlet quark currents hadronize independently. Correc-
tions to this limit are formally suppressed in the I/N,
expansion, although obviously quite large phenomeno-
logically. It seems likely, therefore, that the large-N,
expansion breaks down in the hI =

~ channel. There
are, in fact, strong indications for this also from other
investigations [32, 33].

It will turn out that, due to dominant long-distance
eff'ects, the pattern of the I/N, corrections is completely
difI'erent than that arising from conventional factoriza-
tion of the weak Hamiltonian. As in the case of hyperon
decays, our strategy will be to supplement the new fac-
torization contribution (4.15) by the long-distance contri-
bution from quark-quark correlations. The observation
that the coeKcient g&7, which remains unafkcted from

I

Because of the SU(3) relation g27 ——
5 g&7, the 27-

contribution to AI =
2 amplitudes is tiny, i.e. , ~ g&7

~ gs ~. The AI = —rule therefore reffects octet enhance-
ment in nonleptonic weak transitions.

By naively replacing the color-singlet quark currents
in the eff'ective weak Hamiltonian (2.1) by the hadronic
currents (4.11), on the other hand, one obtains [3]

C C+
g8 = + —+C6 ~ j. .41 )

diquark efI'ects, is only slightly overestimated in new fac-
torization supports this treatment.

V. THE CHIRAL DIQUARK MODEL

&y = &APL, D"PL, + &I 0R D"0R
—m' (4L, 4I+4R .4R)

+—(P~~ m,
*

PR + PRt m, PL, )2
(5.1)

as well as interaction terms between mesons and di-
quarks. We shall restrict ourselves to nonderivative cou-
plings here. This guarantees the best possible ultraviolet
behavior. If not removable by field redefinitions, deriva-
tive interactions would imply Noether currents not sepa-
rable into meson and diquark parts and would signify an
unwanted internal structure of these particles. The most
general interaction Lagrangian bilinear in P, and of up
to second order in the chiral expansion, is given by

The strong attractive quark-quark interaction in color-
antitriplet states certainly influences nonleptonic kaon
decays. In order to calculate this contribution one needs
to know how pseudoscalar mesons couple to diquark
states. The basic idea here is to generalize the stan-
dard approach from chiral perturbation theory [10]. In
addition to the octet of pseudoscalar mesons, we consider
the normalized local diquark fields PL, and PR in (3.1) as
effective degrees of freedom of @CD at low-energy scales.
They transform as antitriplets with respect to both color
and ffavor SU(3). The diquark part of the weak interac-
tion Lagrangian is simply given by (3.2). It has the form
of an ofI'-diagonal mass term and could in principle be
diagonalized by a suitable field redefinition. This greatly
simplifies the calculation of Feynman diagrams, but oth-
erwise does not affect the decay amplitudes [35]. For
reasons of transparency we stick here to the unrotated
fields.

The strong-interaction Lagrangian (4.9) is supple-
mented by kinetic and mass terms for the diquark fields
[34]

Am2 II

(/It Z* PR+ PRt Z Pr, ) ——(mq Et + E mt ) (P~~ PI, + PRt PR)In R
I

[P~~ (m' E + Z' )m/1, + PRt ( mE*+ E m*) PR] .L (5 2)

We note that the first term is the only operator of zeroth
order (po) in the chiral expansion.

The coupling parameters in (5.1) and (5.2) are related
to the diquark mass spectrum. For reasons of simplicity
we shall assume v = 0, i.e. , the same SU(3) mass splitting
for J = 0+ and 0 diquarks. The corresponding term
in (5.1) does not anyway give rise to interactions with
mesons. Expanding E one obtains the mass matrices

m2
Mvv, = (vvv T +(v" —v') (mv)) IL

2

!

for diquarks of positive and negative intrinsic parity
(J = 0+), respectively, where ll is the unit matrix in
flavor space. Flavor eigenstates of diA'erent parity differ
in their mass squares by a constant amount Am, while
the SU(3) mass splitting is proportional to the current
quark masses:

V
bm = m(, „)—m(„d)

——v' (m, —mg) = —(m~ —m )
'U

(5.4)

(my+ m,
+v' 0

0

0
mg + m~

0

0
0

m„~ mg)

as it is the case for mesons. In the spirit of the quark
model one expects the ratio v'/v to be close to one. From
(5.3) the choice v" = v' appears natural. Then only cur-
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bm 2 2 bm2 2

m(~g) —m+ ) m( )
—m+ +

2 2
(5.6)

On phenomenological grounds, one expects a rather
large mass split ting between difIerent parity diquark
states, i.e.,

—m~ m~ (i43p) —m~ 900 MeV.

(5.7)
This pattern is nicely confirmed by the @CD sum-rule
analysis [21]. Since diquarks only appear as internal lines
in Feynman diagrams, it is tempting to consider the limit
m ~ oo, thereby removing the heavy fields from the
model. This limit can readily be performed after the
nonlinear field redefinition

1~. = c' ~. = (~.—&-),
2 (5.8)

1
(0+ + it-)

2
with ( = (Z')ii'~. This simplified version of the diquark
model has been discussed in detail in our earlier papers
[10]. We shall point out the implications of the m ~ oo
limit below.

The chiral diquark model presented here has very nice
features. First of all, one can prove that all weak de-
cay amplitudes are ultraviolet convergent [35] (as long
as no meson loops are involved). This is not trivial,
since already the lowest-order diagrams involve diquark

I

rent masses of quarks being constituents of a diquark
contribute to the diquark mass. It turns out that the
precise value of v" is almost irrelevant for the applica-
tions. Its contribution to the Ix ~ 2x amplitude is of
order p and furthermore suppressed by m2. Already at
this stage we note that in lowest order of the chiral ex-
pansion only the interaction term proportional to Am
contributes to weak decay amplitudes [35]. The terms
proportional to v' and v" give rise to total divergences of
the type of the second operator in (4.10). Although nec-
essary for a realistic diquark mass spectrum, they are of
minor importance for the numerical analysis. In the fol-
lowing we set v" = v' = v whenever numbers are quoted.

In the applications it will be useful to expand the decay
amplitudes in terms of the SU(3) mass splitting b'm~. We
therefore define averaged masses my and their ratio by

2=1 2m2~ = —(m(„„) + m(, „) ), z —= , (5.5)
m+

such that

Ks Ks

Ks Ks Ks

Ks

FIG. 2. Feynman diagrams for the decay A& ~ vr 7t- in

the diquark model.

(5.9)

iAd;(I~'s ~ 2n. ) =
~ &„g V„,

16vr2

9(ted) 9(stl) (g + g + C)

with
(5.10)

loops some of which diverge individually. The sum of all
graphs is always finite, however. As in conventional chi-
ral perturbation theory, current algebra relations and the
Gell-Mann —Cabibbo theorem are satisfied by construc-
tion. Finally, to lowest order in the chiral expansion weak
decay amplitudes only depend on the single quantity

Am2-'+
zp—= z(m, =0) =

m2-
2

which corresponds to the chiral limit m&
—0 of the mass

ratio z introduced in (5.5).
We are now in a position to compute the nonperturba-

tive contribution to weak decay amplitudes of kaons aris-
ing from long-distance quark-quark correlations in color-
antitriplet states. The set of loop diagrams contributing
to the decay Ixp —+ 2 vr in lowest order of the chiral di-
quark model is shown in Fig. 2. The double lines are
diquark propagators, and a black square represents the
weak vertex from (3.2). The evaluation of these graphs
is straightforward, although rather tedious, It involves
the scalar two- and three-point functions Q, z and C,zi
defined in the Appendix. Single diagrams diverge loga-
rithmically, but the sum of all contributions is finite. The
resulting on-shell decay amplitude reads

A = (Am ) (C, ,+2+ + C,+, , —C,+2 s+ —C2 2+s ),
[Q22 (m/) —Q2$ (mK) —Q2s (m ) + Q2s (m ) —Q2s (mK) + Q2s (mK)],

(5.11)

2 ++ 2 -- 2 +- 2 -+ 2 2
x Q22 ( K) + Q22 ( K) Q23 (mK) Q23 ( K) + 2 Q22 (mm) Q23 ( ~)1 —p 1+p

1 2 2v
1 —p

Q23 ( w) + mw [Qss (mK) + Q33 ( K) Q22 ( K) Q22 ( K)]v
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Here, p = bm~/Am2 is the ratio of the SU(3) and parity mass splitting. The lower index on the two- and three-point
functions denotes the diquark flavor (2 = (su), 3 = (ud)) while the upper signs refer to parity. Note that, as promised,
only differences of the logarithmic divergent, two-point, integrals Q;~ enter in (5.11). 'Iherefore, the divergent parts
cancel.

The reader may convince her- or himself that the total amplitude vanishes in the SU(3) symmetry limit [where the
masses of (ud) and (su) diquarks become degenerate], in accordance with the Gell-Mann —Cabibbo theorem. In order
to bring the complicated expression (5.11) in a more transparent form, we expand the amplitude in powers of meson
masses. Using (5.4), a cumbersome calculation gives a simple result valid to fourth order [35]:

i Ad;(I~s ~ 2 ' ) = G~ V„g V„,f (m~ —m ) ~ 4
'"

4&(z) (1+A4) + O(p ), (5.12)

where

z+1
C(z) = lnz —2

z —1
(5.13)

is a function of the ratio of averaged diquark masses introduced in (5.5). Note that to lowest order (p ) the amplitude

only depends on the single parameter zo ——z(mz ——0), and is in accordance with the general structure (4.13) requii'ed

by chiral symmetry. The parameters v' and v" of the diquark Lagrangian enter in the fourth-order (p ) term Aq. It,

reads

C (z) ~. = — 1+-
l
+ —+(z) + 2 G( )—m' (4v" —v') v' 1&

2 7' z) v
I z +2Gz

with functions

1 2
E(z) = 1+ —— lnz,

z z —1

z'+ 4z+ 1 z+ 1

(z —1)s (z —1)~

(5.15)

into account. This stabilizes our results, i.e. , decreases
the dependence on the mass parameters. For the remain-
der of this paper, the parameter values of Table IV are
used as a representative range. We average the amplitude
over this range and take the variation as an estimate of
the intrinsic error of our model. This gives

This fourth-order term enhances the amplitude by (16 +
4)Fo, depending on the values of the mass ratio z and m+.
Contributions of even higher orders in (5.12) are small.

Table IV contains numerical values for the diquark-
model amplitude computed from (5.10) for different mass
parameters. For comparison, the results of the approxi-
mation (5.12) are shown in parentheses. It is an accurate
approximation over the full range of parameters. In this
table, the mass dependence of the diquark coupling con-
stants as obtained from @CD sum rules has been taken

i Ad;(I~s ~27r ) = (1.7360.24+0.29) x 10 GeV,

(5.16)

where the first error takes into account the variation with
these parameters, while the second one reHects the un-
certainty in the diquark coupling constants (2.9).

In the limit z ~ oo corresponding to infinitely heavy
pseudoscalar diquarks, the function C(z) diverges loga-
rithmically, while 44 ~ 0. This shows that the heavy

TABLE IV i Ad j ( A' s ~ 2 x ) in units of 10 GeV for different diqu ark ma sses (given in

GeV), as computed from (5.10). The SU(3) averaged mass rn+ has been defined in (5.5), and

Arn = m —m+. Numbers in parentheses refer to the approximation (5.12).

m+
(ted)

0.40

0.50

0.60

0.62

0.69

0.52

0.60

0.69

Am = 0.7

1.438
(1.3O8)
1.398

(1.326)
1.423

(1.380)

1.626
(1.493)
1.599

(1.525)
1.643

(1.598)

Am = O. 9

1.814
(1.677)
1.802

(1.725)
1.867

(1.820)

em =1.0
1.999

(1.860)
2.004

(l.925)
2.091

(2.O42)
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mass m of the pseudoscalar diquarks acts as an ultravi-
olet momentum cutoff A in t1. . loop integrals. Thereby,
we recover the result of the simplified diquark model [10]

i A„(Ks 2 x') = G~ V„g V„,f. (m2~ —m'. )

x In( 1+c g~~d} g(,~}
87r' f4 ( m+' p

(5»)
As in the case of hyperon decays, the diquark am-

plitude has to be supplemented by (new) factorization.
Both amplitudes add with the same sign. In Sec. VI
we shall discuss in detail that (5.10) is formally sup-
pressed vrith respect to factorization in the 1jN, ex-
pansion. Therefore there is no danger of double count-
ing. Since 'H~& in (3.2) is a AI =

2 operator, the di-
quark mechanism contributes to the isospin amplitude
Ao only. Hence, we find the theoretical results [see (4.3)
and (4.13)]

I/2
Ao" —— — [i Ag;(I~s ~ 2' ) + v'2v. (gs~ + g27~

' )]0

= [(2.12 6 0.46) + (1.33 + 0.27)] x 10 GeV
= (3.45 6 0.53) x 10 GeV,

A2" ——v 6 z g27
' —(2.81 + 0.56) x 10 GeV,

(5.18)

where a 20%%uo uncertainty has been associated with the
factorization amplitudes to account for the uncertainty in
the factorization scale. These numbers have to be com-
pared with the experimental values quoted in (4.3). The
pattern already looks quite promising, although some

corrections are still needed. They are mainly due to me-
son loop effects (final-state interactions among them),
which have not yet been taken into account. This is the
subject of Sec. VII.

VI. CONNECTION TO CHIRAL
PERTURBATION THEORY

The previous section dealt with an explicit calculation
of a decay amplitude in the diquark model. Already the
lowest-order (one diquark loop) result turned out to have
quite a complex structure. Although the requirements of
chiral symmetry are obeyed, it is hard to see how they
come about, e.g. , how the common factor (m~ —m2) in
(5.12) arises. It would be instructive to see the connec-
tion with the conventional formulation of chiral perturba-
tion theory, where this structure is a direct consequence
of the derivative interactions in (4.10) and (4.12). This
can be achieved in an elegant path-integral formulation
of the diquark model [35]. We evaluate the generating
functional, formally written as

&Id. I- &P. &dc&0~«V(~ &~l&(~)+i P(~)I.I,
(6 1)

where j, are external sources for the pseudoscalar meson
fields. The total Lagrangian Z(z) consists of (4.9), (5.1),
(5.2), and the weak interaction (3.2). The diquark de-
grees of freedom can be integrated out explicitly in (6.1).
This gives rise to an effective, nonlocal Euclidean action
involving the meson fields only:

I'a;[E] = —tr ln(l —G ML, ) —tr ln(1 —G MR)

Gy 4—tr ln 1+ V„g V„, —c gt„g}gE,„}&s G(1 —Mr. G)

' Z'G(1 —M„G)-r Z~G(1 —M, G)-' (6 2)

The symbol tr means trace in flavor, color, and coordi-
nate space. The matrices Ml. and M~ are given by

I II

ML, ——(m' Z + E' m ) ——( m Z + K m ) IL

(6.3)

Furthermore,

the otherwise undetermined coupling constants are fixed
in terms of the parameters of the diquark model. Here
we just quote the resulting weak interaction Lagrangian
to lowest order (p ). It is of the general form (4.10) with
coeKcients

C—9(ud) 9(au

8x J
(6.5)

d4p ~iP {z—y)
z —y (2~)4 p'+ m' (6 4)

is the free Euclidean diquark propagator with I being
the common diquark mass introduced in (5.1).

The effective action (6.2) can be expanded in terms
of local meson operators with an increasing number of
derivatives on the E field or powers of Ml. and M~. Up to
order p this program is carried out in Refs. [35]. It yields
the standard form of the effective chiral Lagrangian, but

The diquark contribution to g8 could have also been read
ofF from the decay amplitude (5.12) when compared to
(4.13). Note, however, that the ratio zo of diquark masses
in the chiral limit, as defined in (5.9), appears as argu-
rnent in the function 4(zo) vrhile the ratio z of SU(3)
averaged masses is to be used in (5.12). Both differ, of
course, in higher orders of the chiral expansion. The
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g =
i 1+, , +(zo) i+ —Xcs

c / g(ud) g(su) ~ c+
2 i, 4''

= (285 + 071) + (1.41 + 028) = 4.26 + 076 . (6.6)

The first number refers to the diquark contribution, the
second one to factorization. The errors have been deter-
mined as in (5.18).

Alternatively, one may define an effective, scale-

eft'ective-action approach immediately shows that, to low-
est order, all weak amplitudes in the diquark model are
determined by the same coefFicient g8', as it is required
by chiral symmetry.

As a side remark, we note that our approach shows
that, unlike commonly believed, the coefIicient h8 of the
weak mass operator in (4.10) gets contributions from
nonpenguin operators. In our case h8' involves the loga-
rithmically divergent two-point functions Q;& (Ref. [36])
evaluated at zero external momentum and with 0+ di-
quark masses in the limit rn&

——0. They can be regular-
ized with a cutoff in the loop momentum. For reasonable
values of this cutoff, h' is larger than the penguin con-
tribution hzsin (4.15) by more than an order of magni-
tude and has a different sign. Although this coeKcient
is irrelevant for the decay amplitudes considered here,
it would be important, for instance, in decays of pseu-
doscalar mesons into a light Higgs particle [37].

Equation (6.5) shows that nonperturbative quark-
quark correlations in color-antitriplet states give a sizable
long-distance contribution to the phenomenological pa-
rameter gs of the lowest-order eflective chiral Lagrangian
for nonleptonic weak decays. Adding to this the factor-
ization result from (4.15), we obtain the total coefficient
[38]

independent coefFicient c' by

gs
—O(1) .

),N, (6.8)

c' = c-(pi) ~ (5.7+1.0) ( ), (6.7)0.09 GeV4

where the factorization contribution has to be under-
stood at the factorization point pJ, the diquark con-
tribution is scale independent. The last two equations
are central results of our analysis. They clearly show
how matrix elements of the octet operator Q between
pseudoscalar mesons are, in addition to the perturbative
enhancement of the coefFicient c, further amplified by
long-distance phenomena. The strength of this effect is
measured by the nonperturbative diquark coupling con-
stants. Note that this very welcome enhancement differs
drastically from the conventional factorization prescrip-
tion giving c' = c (1 —1/W, ).

At this point it is worthwhile to discuss the N, de-
pendence of gs in (6.6). The pion decay constant f is
of order QN„whereas the diquark coupling constants
gg; [more precisely, the matrix element (2.5)] do not de-
pend on the number of colors. Each diquark loop in the
diagrams of Fig. 2 is associated with a color multiplic-
ity factor

2 N, (N, —1) according to the dimension of
the irreducible antisymmetric representation contained
in N, X, . In addition, at least one gluon exchange is
required because of the color mismatch between mesons
and diquarks. We illustrate this in Fig. 3 for one of the
diagrams contributing to It ~ x transitions. Quite
generally, diquark loops are therefore suppressed by one
power of n, 1//)/, and count like O(X,) in the large-N,
expansion. Consequently, the diquark contribution to gs
is formally suppressed by 1/N, compared to factorization

(su) (ud)

d

d

N2e,
2

FIG. 3. Typical quark-line diagrams arising in the diquark model. A ~ x transitions represented by this Feynman graph
can proceed in two ways corresponding to "eye" and "figure eight" topologies. The formation of an intermediate diquark pair
in color-antitriplet states requires the exchange of at least one gluon. Generally, in weak interactions, diquark amplitudes are
suppressed by 1/Nc compared to factorization. For A ~ z transitions the factorized amplitude is proportional to f~ fr& N, .
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This is in accordance with the statement that factoriza-
tion becomes exact in the N, ~ oo limit [7], but ap-
parently g8' is by far the dominant contribution at the
physical value N, = 3. One is, nevertheless, forced to add
factorization since it gives the only term which survives
in the formal limit N, —+ oo. With the help of the N,
power counting one can unambiguously distinguish be-
tween both contributions. There is no danger of double'
counting.

The above results are particularly suited for a compar-
ison to other approaches. We want to stress that (6.6)
describes a dynamical enhancement of AI =

2
ampli-

tudes already in lowest order of chiral perturbation the-
ory. Such an effect is not observed in the detailed analysis
of the AI = — rule by Bardeen, Buras, and Gerard [8]
who start from the factorization ansatz 'R~g L& L",
where L& is the hadronic current operator introduced
in (4.11), and compute nonfactorizable 1/N, corrections
arising from meson loops. All of these corrections are
of next-to-leading order (p~) in the chiral expansion. In
our opinion, this ansatz does not fully take into account
the possibility of quark reordering before hadronization.
Contributions of this type are strongly enhanced by the
diquark mechanism. They are caused by the complex
structure of the composite four-quark operator 'H, ~.

In this context, it is interesting that the behavior indi-
cated by (6.6) is also found in dual @CD sum rules [32].
In this approach one finds an enormously large gluonic ra-
diative correction to the coe%cient g8 provided and only
if 1/N, corrections are taken into account. This effect
indicates a break down of both perturbative @CD and
the 1/N, expansion. The diquark model allows for the
first time an estimate of the size of this nonperturbative
effect.

Finally, we mention that recently K ~ zr and I~ —+ a x
matrix elements have also been investigated in numerical
lattice calculations [39]. The quark flow diagrams arising
in our model are very similar to those considered there,
the so-called "eye" and "figure eight" topologies. For
Ix ~ m transitions, examples of both cases are shown in
Fig. 3. From (6.6) it follows that in our model matrix
elements of the operator Q give the dominant contri-
bution to AI =

&
amplitudes. If lattice results become

more conclusive in the future, it should be possible to
test the ideas presented here in numerical calculations.

VII. HIGHER-ORDER CHIRAL
CORRECTIONS

Up to now, the theoretical isospin amplitudes (5.18)
are still in slight disagreement with the experimental ones
given in (4.3). In addition, they have no relative phase,
while the experimental phase difference ~60 —62

~
56 is

quite substantial. The fact that the K ~ vr x amplitudes
must have absorptive parts is a consequence of unitarity.
It is due to the possibility of 7r vr rescattering in the final
state. In order to account for this one has to consider
higher-order corrections in the chiral expansion. They
arise from meson loops as well as from higher-dimensional

f~ 3m~ —mz 1 5 1

The chiral logarithms p; are defined as

m' m.' (7.2)

where p is an arbitrary subtraction point. The contribu-
tion of 0(p4) operators to (7.1) reads [28]

operators in the effective chiral Lagrangian.
The general framework for higher-order calculations in

chiral perturbation theory has been worked out by Gasser
and I eutwyler [28], and has later been applied to non-
leptonic weak interaction [29]. It is convenient to use the
method of dimensional regularization for the ultraviolet
divergences arising from meson loop diagrams. The poles
in (D —4) (D denotes the space-time dimension) can be
absorbed into a renormalization of the coupling constants
associated with operators of order p in the effective chi-
ral Lagrangian. These operators have been classified for
the strong [28], and recently also for weak interactions
[29]. Unfortunately, their number is quite large, and
consequently many a priori unknown phenomenological
parameters, the renormalized coupling constants, enter
the theory. Whereas it is possible to determine the coef-
ficients of the strong-interaction Lagrangian experimen-
tally, this seems not feasible for weak interactions since
there are as many as 38 independent octet and 28 inde-
pendent 27-piet operators in next-to-leading order.

Therefore, one has to rely on phenomenological models
to provide estimates for these coupling constants. 1/N,
inspired arguments can give a rough pattern, but they are
not very predictive in this case since most of the relevant
weak operators involve the same power of N, . Further-
more, we have just seen that there are good arguments
that the 1/N, expansion is not useful in the particular
case of LI =

2 nonleptonic weak decays of kaons. Re-
cently, some geometrical methods relating the coeKcients
of the strong and weak Lagrangians have been suggested
[40], but the success of such ideas still has to be demon-
strated. We shall use a different approach here. With
the method developed in Sec. VI it is possible to deter-
mine all the coupling constants of both the strong and
the octet part of the weak-interaction Lagrangian in the
framework of the diquark model [35]. Weak couplings
get an additional contribution from factorization. It is
obtained by replacing the color singlet quark currents in
the effective Hamiltonian (2.1) by hadronic currents J„
derived from the next-to-leading-order strong-interaction
Lagrangian.

Let us illustrate the renormalization procedure with
an example from strong interactions. Next-to-leading-
order corrections to the matrix elements of the axial-
vector current between a meson and the vacuum modify
the lowest-order relation f = fjr ——f In dimensio. nal
regularization with D = 4+ 2e one finds, for the contri-
bution of meson loops (e ~ = e ~+y~ —ln4z —1, where

p~ ——0.5772. . . is Euler's constant),



CONSISTENT ANALYSIS OF THE hI=
2

RULE IN. . . 787

f2
—(m~ —m ) L5= —(m —m )K n

t' 3 1

I(16(4 ), —,-+ l(S) I,
and the renormalized ratio of decay constants becomes

f~ 5 1 3 8=I+ —I - ——S~ — I;—+ —,(mk ™.)Ls(~)

(7.3)

(7 4)

The scale dependence of the renormalized coeKcient
L5(p) cancels the scale dependence of the logarithms.

The diquark-model prediction for this coe%cient reads
[35]

Ks

Ks

Ks

Ks

Ks

Ap=
~

—
~

0~V„dV„, (mls —m )f »e''
42)

(7.6)

to all orders in chiral perturbation theory. Here, f is

the renormalized pion decay constant, and bo the strong-
interaction phase of the amplitude. Note that gs is no

3 v' C(zp) (7.5)
16 v (4n.)2

involving the same function as appearing in the decay
amplitude (5.12). Assuming that the diquark model
gives the dominant contribution to I 5 at a scale of 1
GeV, i.e. , L5(1 GeV) L5' = (0.75 6 0.14) x 10 s, one
ffnds f~/f = 1.215+ 0.015 in excellent agreement with
the experimental ratio (Ref. [2]) f~/f = 1.22 + P.PI.
Note that this scale is very reasonable and roughly co-
incides with both the factorization point and the masses
of pseudoscalar diquarks which effectively cutoff the di-
quark loop integrals.

Similarly, other phenomenological parameters I; of the
strong interaction Lagrangian [28] can be understood in
terms of quark-quark correlations. It turns out that, with
exception of I i, 1.2, I3 which are known to be saturated
by the p resonance [41], the diquark model reproduces
the experimental values within few percent at the scale
p 1 GeU. This can be seen as a dual approach to
Ref. [42] where the couplings L; are saturated with me-
son resonances. But in addition, the diquark model gives
predictions also for the octet part of the weak interaction
chiral Lagrangian, and for long-distance contributions to
the eff'ective AS = 2 interaction (see Sec. VIII and Ref.
[11]). The corresponding coupling constants are called
(Ref. [29]) E; and D, , respectively. Knowledge of E,
at the scale p 1 GeV builds the basis for a consistent
treatment of next-to-leading-order corrections to the am-
plitude Ao, to which we turn now.

The meson loop diagrams contributing to the process
I&p ~ 2m' are shown in I"ig. 4. The black squares now
denote weak vertices from the eff'ective Lagrangian (4.10)
with gs ——gs +»' as given in (6.6). For the amplitude
Ao one can safely neglect the contribution proportional
to g27 and absorb the next-to-leading order chir al cor-Z/2

rection into a redefinition of the coupling parameter g8.
To this end, we define the renormalized coupling g8 by
means of the on-shell decay amplitudes (4.13), i.e. ,

FIG. 4. Meson loop corrections to the A'g ~ 7r 7r am-

plitude. The last diagram represents the renormalization of
meson fields and decay constants as well as contributions from
the next-to-leading-order weak chiral Lagrangian.

longer associated with a single operator but gets contri-
butions from all orders in the chiral expansion. It is con-
venient to separate the contributions from factorization
and diquarks to g,

» = (1+ &f)» +(1+&&)»'

where the "bare couplings" g8 and g8' have been given in

(4.15) and (6.5), respectively. Both differ in the power of
the (unrenormalized) decay constant f and are therefore
renormalized differently. The complete O(p ) calculation
of the chiral corrections 6, is the subject of Refs. [35].
We just quote the result here. One finds

1+AJ— fw

fir
157 15 91+
18 P7f

2
PR+ 2Pg

m~2 t' f~+~, ,
~

l

&
—

&) +&~

C(z) f 13 9
I + &di =

@( ) f 1+
18 Pw —130K +

2 Pg

+&4+ &~
I

(7 8)

The contribution of chiral logarithms in Ay agrees with
the result given in Ref. [8). Here, however, we present for
the first time expressions for the full correction. Apart
from the chiral logarithms these contain terms arising
from tree diagrams of the next-to-leading-order (p ) weak
chir al Lagrangian. In the case of Ay they are pro-
portional to L5 and have been expressed in terms of
(f~/f —1) with the help of (7.4). We see that part
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of the correction Ld, results in the replacement of the
"bare" ratio zp appearing in (6.5) by the physical ratio z
of averaged diquark masses [42]. The remaining fourth-
order correction from p operators is contained in the
quantity A4 such that, apart from meson loops, we re-
cover (5.12). Finally, the constants Ci and C2 are rather
complicated functions of the meson masses [35]. They
have values Ci 0.16 and C2 —0.11.

At the matching scale p = 1 GeV, the next-to-leading-
order chiral corrections amount to an enhancement of g8
by about, 25%%uo:

S —77?,

G~(s) = exp i b2(s) +
l jr

xP
8 —'o?,~ s —s

4m~

(7.12)

denotes the principle value of the integral. We have
evaluated this function using the experimental data for
the scattering phase (Ref. [43]) b2(s). The result is

0.23, Ad; 0.26 + 0.14 . (7.9) a, (m' ) = (O.89 ~ O.O3).-*I'"4& (7.13)
The error in Ad; reflects the variation with the diquark
mass parameters. Below we will show that an increase
of the amplitude Ao of this size is already expected from
vr 7r final-state interaction alone. However, the total chiral
correction includes more, namely, vertex corrections and
the renormalization of the meson decay constants. From
(6.6) one finds the renormalized coefficient

~s
—(5.25 P 0.93) + (2.15+ 0.48) ln, (7.10)

GeV '

where the dependence on the scale p, where the match-

ing of meson loops and p operators is done, has been
shown explicitly. Two thirds of this value are accounted
for by the diquark contribution. Adding the small con-

tribution of g&7 from (4.15), and taking into account a
30% uncertainty in the scale p, we finally obtain

g8+ g27
——5.3+ 1.1 . (7.11)

The accuracy of the next-to-leading-order calculation
can be estimated from the result for the scattering
phases, which have to reproduce the large value of the
phase difference given in (4.3). To order p one finds
b2 —bp/2 = —13', and hence bp —b2 —40'. The value
of bg is indeed consistent with the experimental value
for the I = 2, S—wave 7r x scattering phase (Ref. [43])
b2"~ —(ll +4)'. In the case of bp one finds agreement
with (7.8) after subtraction of the phase shift associated
with the strongly inelastic fp(975) resonance [44]. It is
therefore sufFicient to stick to the one-loop approxima-
tion.

The full next-to-leading-order calculation of the AI =
2 amplitude A2 in chiral perturbation theory has not yet
been done. It would require a model treatment of the
order-p chiral Lagrangian for LI =

2 transitions. From
the fact that the m vr scattering phase is small and nega-
tive in this case, one may expect a moderate suppression
of A~. For an estimate of this effect we follow the ap-
proach of Ref. [45] where, starting from a Muskhelishvilli-
Omnes-type dispersion relation, the eA'ect of final-state
interactions to the K ~ 27r amplitudes can be deter-
mined from the measured S-wave ~ ~ scattering phases
bp(s) and b2(s). To this end one considers the isospin
amplitudes as analytic functions in s = p~, satisfying
A(s = m ) = 0 as required by the Gell-Mann —Cabibbo
theorem. Assuming that the derivative of A(s) with re-
spect to s is known at s = rn, a once-subtracted disper-
sion relation can be solved. It gives a multiplicative final-
state correction factor which, in the case of A2, reads [45]

As expected, the AI =
2 amplitude is moderately sup-

pressed by final-state interactions. We shall take this
number as an estimate of the full next-to-leading-order
correction of A2. [In the case of Ap, the estimated cor-
rection is (Ref. [45])

~ Gp(m&&) [
1.40. It is of the same

order of magnitude as the tot, al chiral correct, ion given in
(7 9) ]

EVe are now in a, posit, ion to present our final results for
both isospin amplit, udes. The AI =

~ coefficient (7.11)
governs t, he amplitude Ao, v, hile the factorization result
for A2 has to be corrected for final-state interactions by
means of (7.13). This yields

Ap: (4.86 + 1.01) x 10 GeV: (1.03 + 0.21) Ap"~

(7.14)
Aq ——(2.53 + 0.51) x 10 GeV = (1.20+ 0.24) A~"~'

in excellent agreement with the experimental values given
in (4.3). The AI =

2 rule is no longer mysterious.

VIII. THE K~-Kg MASS DIFFERENCE

As a further example, we focus on the effects of long-
range quark-quark correlations on the neutral kaon mass
matrix. The observation of I& -K mixing was the first
example of particle-antiparticle oscillations and had im-
portant implications for the development of the standard
model. It still gives the tightest constraint on flavor-
changing neutral currents, is responsible for the mass dif-
ference Am~ between the weak eigenstates KL, and I&g,
and determines the CP impurity parameter e. The mea-
surement of a nonzero e by Christenson et a L provided
the first and up to now only evidence for CP violation
[46]. Today it is still not possible to firmly constrain
parameters of the standard model from K -Ii mixing,
since the theoretical description involves hadronic ma-
trix elements, causing sizable uncertainties. In particu-
lar, Arn~ is very sensitive to long-distance physics.

In the standard model, the short-distance I~ -A tran-
sitions are described by box diagrams with double W-
boson exchange, as shown in Fig. 5(a). From the associ-
ated amplitude with external quarks, an effective AS = 2
Hamiltonian is derived by subsequently integrating out
the W bosons, top and charm quarks [47]. Even for a
heavy top quark, the real part of the mixing amplitude
is almost insensitive to the third family. The dominant
short-distance contribution to the I&L,-I~ g mass difference
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u, c, t AmK" (1.0 6 0.5) x 10 GeV (0.14+ 0.07) I's
c Il~

u, , c, t

(ud) (su)

K0

d
while experimentally [2]

AmK = (3.522+0.016) x 10 ' GeV,

Arn~ = 0.477 + 0.002 .r,

(8 3)

(8 4)

(su) (ud)

(b)

(u) (d)

FIG. 5. Different contributions to Ii Ij mi-xing: (a)
short-distance box diagram transitions in the standard model;
(b) long-distance quark-quark correlations simulated by inter-
mediate diquark states. The Feynman graph of the diquark
model is also shomn.

comes from the charm quark

2

x(I~. I(sd)v ~(sd)r ~ I
It ) . (8 1)

The scale-dependent coeKcient g, takes into account
short-distance QCD corrections to the box diagrams. It
is roughly independent of the top-quark mass and has the
value (Ref. [47]) rl, 0.7 for n, (p) 1. The observation
that Am~ is proportional to m, led to an estimate of
the charm quark mass by Galliard and Lee [48] already
in 1974.

The hadronic matrix element in (8.1) is conveniently
written in terms of the so-called B~ parameter,

(I~ I (s d)&-&(s d)v ~ II") = —', BK(p') fK mK (8.2)

such that the combination g, (p) BK(p) is scale indepen-
dent. There are several methods to calculate this pa-
rameter, most of which give values significantly smaller
than the naive vacuum-insertion result B~ ——l. While
QCD sum rules [32, 49] and chiral perturbation theory
[50] yield rather small values BK 0.3 —0.6, numerical
lattice computations [39] predict BK 0.8 —1.0. In the
large-N, limit, BK = 4s. We shall use BK ——0.6 + 0.3 [at
the scale where n, (p) = 1] for an estimate, and obtain,
with m, 1.35 GeV,

0 I
i'9i9

—0.15 + 0.15
S

(8.5)

as a rough estimate. It shows the tendency to cancel the
result (8.3) of the short-distance analysis. Consequently,
the main part of the mass difference must come from
further long-distance contributions.

In the diquark model, due to flavor conservation in
strong interactions only the single diagram shown in Fig.
5(b) induces Ii -I~ mixing. It accounts for the attrac-
tive long-range forces between light quarks in the box
diagrams. The corresponding contribution to the mass
diff'erence is of the form [10]

(' GF , 4 I(m„)
mKAmK —

I Vd V, (c g( d)g(, ))g2 3j4x J

(8.6)

with I(md;) being a rather complicated, finite function
of the diquark masses. In terms of the scalar two-point
integral defined in the Appendix it reads [ll]

I's 7.377 x 10 i5 GeV is the experimental decay width
of Its. Obviously, the short-distance analysis can only
account for a small fraction of the mass difference.

The situation becomes even worse if mixing via single-
particle intermediate states K ~ vr, g, g' ~ K is taken
into account. It is well known that the sum of the con-
tributions from x and the octet state gs vanishes in the
SU(3)-symmetry limit [51]. Symmetry-breaking correc-
tions are quite large in this case, however, and the result
is particularly sensitive to the g g' mixing angle and to
the coupling of the singlet g~ to KI, . A recent detailed
analysis can be found in Ref. [11]. Assuming a nonet
symmetry for matrix elements of the eAective weak I a-
grangian between pseudoscalar mesons, one obtains (for
&„s ———20' + 4')

)~m» '
1(~ )= (Qar —&Q+ +Q +Qrt —&Qtg +Q, ~

—& l, l

—& (Qr, +Q+„—Q+„—Q+„)
2 — 2P % QJ'

(8.7)

where &m has been defined in (5.4). The total expres-
sion for I(md;) stays finite in the SU(3)-symmetry limit
bm2 = 0.

In Table V we show numerical results for the diquark
contribution to Lrn~ for diAerent mass parameters. As
previously, we have assumed the same SU(3) mass split-
ting for mesons and diquarks. If the scalar (ud) diquark is

not too light, the dependence on the parameters is rather
moderate. For sensible values rn&+

d&
0.5 —0.6 GeV we

obtain

AmK (3.5+ 1.2) x 10 ' GeV = (0.47+0.16) I's,
(8.8)
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TABLE V. EmI& in units of 10 GeV. The mass pa-
rameters (given in GeV) are the same as in Table IV.

0.6
0.7
0.8
0,9
1.0

m(„~) ——0.4+

4.803
4.777
4.811
4.883
4.979

m(„~)
——0.5+

3.679
3.637
3.653
3.709
3.790

m( ~)
——0.6+

3.274
3.218
3.220
3.264
3.337

where the error takes into account the uncertainty in
the diquark coupling constants. It is exciting that the
single diagram of the diquark model can perfectly ac-
count for the experimental value of the mass difference
given in (8.4). The conclusion is that Am~ is completely
dominated by long-distance physics and is caused by the
dynamical mechanism also responsible for the AI =
enhancement in kaon and hyperon decays.

It is possible to analyse Ii -I~" mixing not in terms
of intermediate diquark states, but in the framework of
an effective meson theory characterized by a weak chiral
Lagrangian of the form

jeff —~AS=1 + ~AS=2 (8 q)

Contributions to the mass difference then arise from di-
agrams involving either two separate AS = 1 vertices
or a contact AS = 2 vertex induced by long-distance
effects. For details of the rather lengthy next-to-leading-
order calculation we refer the interested reader to Ref.
[11].The result agrees with the prediction of the diquark
model. We thus conclude that the single graph shown in
Fig. 5(b) combines the effects of a huge set of meson loop
diagrams.

IX. CONCLUSIONS

Although the general pattern of weak decays is well
described by the standard model of strong and elec-
troweak interactions, a coherent understanding of non-
leptonic transitions and, in particular, of the AI =
enhancement observed in strange-particle decays, was al-
ways missing. The intricate interplay between strong and
weak interactions in these processes has remained a mys-
tery for decades. During the last years, important new
information came from detailed experimental and theo-
retical studies of decays of D and B mesons. Soon it
was recognized that nonperturbative aspects of QCD are
important even in these energetic transitions. In two-
body decays the dominant eA'ects arise from the confin-
ing color forces between quarks and antiquarks during the
hadronization. They can be taken care of by an appropri-
ate factorization prescription, by hadronic form factors
and meson decay constants. In this way a satisfactory
semiquantitative description of energetic transitions of
heavy mesons could be established.

In the case of strange-particle decays, on the other
hand, it has been known for a long time that factorization
cannot account for the large AI =

2 amplitudes. This

has often been considered as an argument against this
approximation, but it is actually not. The point is sim-

ply that factorized amplitudes involve matrix elements of
vector and axial-vector currents, which become small for
kinematical reasons at low momentum transfers. In ad-
dition to the attractive interaction between quarks and
antiquarks, the strong-binding forces between two quarks
in color-antitriplet states must also be considered then.
They lead to momentum independent matrix elements of
scalar currents and, consequently, become important at
low energies. We have shown, in fact, that strongly corre-
lated quark pairs play the key role in the understanding
of nonleptonic weak decays at low energies.

A measure of the strength of the attraction between
two quarks are the so-called diquark decay constants
gtd;l. Their calculation from QCD sum rules gives large
values, as large as the coupling of the pion to a pseu-
doscalar current. It is, therefore, justified to simulate the
strongly correlated quark pairs by local diquark fields.
The fundamental nonperturbative quantity which enters
the effective weak Hamiltonian is the product,

g(„g) g(,„) 0.09 GeV

This combination is scale independent. It reflects a dy-
namical enhancement of matrix elements of the AI =

2
operator Q

The calculation of hyperon decay amplitudes is the
most natural application of this concept, since quark
pairs in color-antitriplet states are part of baryon wave
functions. The weak Hamiltonian simply replaces an (su)
diquark in the initial (or intermediate) baryon by a (ud)
diquark, with an amplitude determined in magnitude and
sign by the above product of coupling constants. If the
resulting amplitudes are supplemented by those obtained
from factorization of the weak Hamiltonian, a very sat-
isfactory quantitative description of all S- and P-wave
amplitudes is obtained. A simple pattern emerges. In
strange-particle decays, amplitudes are always large if
they can proceed via a diquark transition, and small if
not. An interesting confirmation of this rule occurs in
0 decays. The process 0 ~:-x is strongly suppressed
compared to 0 ~ A K although it involves a QI =—

2
transition. The flavor quantum numbers simply do not
allow for a diquark transition in this case.

The main part of this paper focuses on nonleptonic de-
cays of kaons. We have shown that a quantitative treat-
ment of these processes becomes possible by a general-
ization of conventional chiral perturbation theory, Chi-
ral symmetry fixes to a large extent the structure and
strength of the interaction between scalar diquarks and
pseudoscalar mesons. The coupling constants of the effec-
tive Lagrangian are determined in terms of mass param-
eters for which little freedom exists. The diquark fields
are then integrated out in the generating functional. The
chiral expansion of the effective action yields the stan-
dard form of the chiral Lagrangians for strong and weak
interactions of pseudoscalar mesons. All couplings are
calculable in terms of diquark mass parameters. In par-
ticular, we have shown that the octet part of the effective
weak interaction is strongly enhanced by nonperturbative
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Amrr' (3.56 1.2) x 10 GeV (9.3)

in agreement with the experimental value. This result
is also in accordance with the complete next-to-leading-
order analysis of the KL, -I~p mass difference in chiral
perturbation theory. It shows that the origin of the mass
difference is closely related to the dynamical mechanism
responsible for the AI =

2 enhancement observed in
strange-particle decays.

A coherent, self-consistent and intuitive physical pic-
ture of the major long-distance effects in nonleptonic
weak transitions has emerged. Hyperon as well as kaon

effects already in lowest order of the chiral expansion.
Matrix elements of the operator Q get, in addition to
the factorization amplitude, a long-distance contribution
from quark-quark correlations which is nonleading in the
1/N, expansion but nevertheless dominant for the phys-
ical value N, = 3. For large N„ factorization becomes
exact, but it fails complet, ely to describe the LI =
amplitude for I& ~ vr 7r. A breakdown of the I/N, ex-
pansion in the AI =

2 channel accompanied by a failure
of perturbative QCD has also been found in dual QCD
sum-rule studies. The diquark model is the first nonper-
turbative approach which predicts the size of this effect.

Including next-to-leading-order chiral corrections, our
theoretical results for the two isospin amplitudes describ-
ing K —+ ver decays are in excellent agreement with ex-
periment

Ath Ath

,„,= 1.0+ 0.2, ,„,= 1.2+0.'2 . (9 2)
0 2

The resolution of the AI =
&

puzzle happens in various
steps. Perturbative QCD corrections increase the ampli-
tude Ao by roughly a factor of 2, while A2 is moderately
suppressed. Evaluated in factorization it is only slightly
larger than the experimental value. For the AI =
amplitude Ao there is still a factor of 3 missing, how-
ever. It is this amplitude which is further amplified by
the attractive long-distance forces between quark pairs in
color-antitriplet states. Calculated in the diquark model,
this contribution is larger than factorization by a factor
of 2. Adding both is justified since they have a differ-
ent physical origin and are of different order with respect
to the 1/N, expansion. Finally, meson loop eIFects and
contributions from higher-dimensional operators lead to
an additional increase of the AI =

2 amplitude by 25%,
and account for the final-state interaction phases. They
also reduce A2 by IOFo bringing it into agreement with
the experimental value.

The analysis of the I&L,-Kp mass difference provides a
further test of the proposed diquark mechanism. Many
processes influence the Ii -K mixing amplitude making
the problem rather complex. The simplest contributions,
however, namely those from short-distance box-diagram
transitions and single-meson pole graphs, balance each
other. Therefore, the main part of the mass difference has
to be explained in terms of long-distance phenomena. We
have shown that the single diagram of the chiral diquark
model provides a successful description. It represents
long-range color interactions between light quarks in the
box diagrams, and gives

decay amplitudes and the long-range part of the I&L,-Itp
mass difference are intimately related and find their ex-
planation in a single dynamical effect. The mystery of
nonleptonic weak decays of strange particles is resolved.

From the knowledge of the physical origin of the
AI =

2 rule, further conclusions can be drawn. The
CP-violating quantity r' is not strongly enhanced even
though the relevant penguin operator Qs is a EI =

2 op-
erator. The reason is that Qs cannot be written in terms
of scalar diquark currents. Thus, e' may be estimated us-
ing factorization [18,52]. Our explanation of the b,I =

2
enhancement is not in conflict with the small value of
e' found experimentally. In D decays, f m, is of about
equal magnitude as gd;, indicating that diquark effects
can still be important, but are no longer dominant. In
energetic two-body decays the diquark loop contribution
cannot compete with a more direct meson generation.
Factorization with asymptotic particle states gives the
dominant contribution to the decay amplitudes and pro-
vides for a semiquantitative understanding of many ener-
getic two-body D decays [5]. In specific channels, diquark
effects may still be sizable, however. They certainly have
an inHuence on inclusive charm decay rates [6]. This ef-
fect has to be taken into account even for a qualitative
understanding of the lifetimes of D+ and D . Because of
the strong increase of factorization amplitudes with the
available energy, quark-quark correlations are of almost
no significance in 8 decays. An important exception are
decays into baryons. The formation of the final baryon-
antibaryon pair is greatly facilitated if diquarks are gen-
erated in an intermediate step. This mechanism implies
numerous selection rules and the possibility to explore
experimentally the way the additional quark-antiquark
pair is created [6, 10, 53].

Note added in proof The value. quoted in (4.3) for the
phase difference bo —6-~ obtained from K ~ xvr decays
is rat, her uncertain because of isospin breaking efFects,
which have not been taken into account, . In a detailed
analysis of vrvr scattering data. , Devlin and Dickey [Rev.
Mod. Pllys. 51, 237 ( 1979)]obtalil 6p —62 —(41.4 68.1)
in agreement with the result found in chiral perturbation
theory. We are grateful to J. Gasser for pointing this out
to us.
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APPENDIX

Here we collect the definitions and some useful for-
mulas for the scalar two- and three-point integrals ap-
pearing in decay amplitudes of the diquark model. In D
space-time dimensions, the two-point function Q,i(p ) at
external momentum p is defined as
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QV(p') (4 D)
(4x) (2m) [(k —p)2 —m~ + irl] (k' —m2 + irl)

'

It is logarithmically divergent for D = 4. An arbitrary mass scale p has been introduced in order to make Q;3
dimensionless. For D ~ 4 one finds

2 M,~ (z, p2)
Q, (p') = —

I + y@ —In4n
~

— dz ln
' +O(D —4),

P

where

M,', (z, p') = zm,'+(1 —z) m,
' —z(1 —z) p' —iq .

The integration over the Feynman parameter z can be done analytically.
The scalar three-point integral

C, t-(Pi, P2)
(4z.) (2z.)4 (k2 —m2+ irl) [(k —pr)2 —m. + &rl] [(k+ p2)2 —mt, + &rl]

is finite and can be evaluated in D = 4 dimensions. For simplicity, the dependence on the pion momenta p~ and p2
has not been explicitly shown in (5.11). Introducing Feynman parameters and setting q = (pi + p2) one obtains

C,, t(pr, p2) = — dy dz(ay + bz + czy+ dy+ e z+ f)
0 0

with coeFicients

2a=P2,
b=q

2 2 2C:P~ —P2
2 2 2d: 27ly —m~ —P2 )

2 2 2 2e = m- —mP+P2 —P~,
f =m; —irl.

The parameter integrals may be evaluated using the technique of 't Hooft and Veltman [54].
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