
PHYSICAL REVIEW D VOLUME 44, NUMBER 3 1 AUGUST 1991

Exclusive decays of heavy and light mesons

Patrick J. O'Donnell and Humphrey K. K. Tung
Department of Physics, Uniuersity of Toronto, 60 St. George Street, Toronto, Canada MSS 1A7

(Received 5 March 1991)

In the exclusive decay of the B meson into a A ' and a photon, the large recoil momentum creates
a di%culty in making a connection between the quark level calculations and the meson states. In
the quark model, depending on how the recoil momentum is handled, this can lead to difFerences of
a factor of about 5 in the branching ratio. In order to explore this problem, we look at some other
meson processes where there exist some experimental data. For the vr form factor we show that, by
imposing current conservation together with relativistic meson and spinor normalizations within the
quark model, it is possible to remove a parameter z which had previously been introduced to obtain
agreement with the form-factor data. The data on the decay u ~ x @+p and u —+ x p also show
the importance of retaining relativistic meson and spinor normalizations; however, we do not resolve
the recoil problem. For the exclusive decays 8 ~ A'p and 8 ~ A'e e we show the extent to
which the heavy-quark symmetries determine these decays, even in regions of large recoil.

I. INTRODUCTION

The decays b —+ 8 + X form an important class of
rare decays in which the standard model can be further
tested. These involve the sequence of flavor transitions,
b ~ u, t.",t ~ s in which two W vertices occur. The
coupling to the massive virtual internal particles is the
source of the interest in such decays. In the original at-
tempt to exploit this [1], building on earlier work [2] in
the decay s ~ dy it was hoped that the strong depen-
dence on the mass of the top would provide a means of
detecting the top. In 1987 it was realized [3, 4] that the
short-distance calculations [5] of the processes s ~ d7
could be taken over to the b ~ sp and the branching ra-
tios could be enhanced. Also the dependence on the top
quark would be softened considerably. These papers did
not include a full two-loop QCD-corrected calculation of
the rare processes which have now been carried out by
the Caltech group [6, 7] and by the Toronto group [8—11].
Although there was a difference between the latter two
groups, arising from a technical point in the handling of
divergences, this has now been resolved and apart from
some minor details they are in agreement.

The next task is to find limits on the exclusive decays.
It does not appear easy to go from the inclusive charmless
nonleptonic decay b ~ 8+gluon to the exclusive nonlep-
tonic charrnless decays. From the inclusive decay b ~ sp
the exclusive rare decay that might be most easily cal-
culated is B ~ I~'p and there have been a number of
attempts to calculate this branching ratio. However, the
problem remains: in the published literature there seems
to be an inherent diKculty between the application of the
quark model and the sum-rule approach [12—15].

Even within the quark model there are contradictory
results. Here the problem can be summarized as follows.
The amplitude for the decay, (Ii * jsio„q brt ~B), may be
written in terms of three Lorentz-covariant form factors:
fi(q ), f2(q ), and fs(q ). Then I'(B ~ Ii*7)/I'(b

sp) —~fi(0)~ gives the exclusive to inclusive branch-
ing ratio. The amplitude is calculated in the quark
model using Gaussian momentum wave functions of B
and I~". The form factor fi(0) can be easily extracted
in terms of the overlap integral between the B and I~*
momentum wave functions. The overlap integral has
the form exp[ —O(1)(1 —mK. /mti) ] and is accompa-
nied by a phase-space factor [16] g(En, /m~) —1/~2,
coming from the noncovariant normalization of the me-
son wave functions, by comparison with the situation in
atomic physics [17]. AVith relativistic normalization for
the quark spinors, there are other factors which occur;
these contribute another factor of ~2. (This can be seen
readily in the paper of Altomari [12].) The square of
fi(0) then gives a branching ratio of approximately 25%,
close to a. value obtained in a, calculation [14] using QCD
sum rules and symmetry properties, 28 + 11% (although
a later paper [15] now appears to favor the higher value
of about 40%; no estimate of the likely error is given,
however).

However, there are other relativistic effects to be con-
sidered; these modify the factor of O(1) in the exponent.
For the two-body decay, the kinematics are such that
the process take place far from threshold. In Altomari's
paper, the kinematics are chosen so that the exponent
is a function of the three-momentum of the I~* rather
than of the factor (1 —mK. /mti) . This leads to the
introduction of a factor [I + (mt' —mK. ) /(4miimrg )j
in the exponent which brings the estimated branching
ratio down to the inuch smaller value of 4.5%. This dif-
ference between the two forms of exponent corresponds
to keeping a nonrelativistic (25%) or relativistic (4.5%)
kinematic structure.

At present, there is no consensus on the resolution of
this problem. Our purpose here is to explore these prob-
lems by considering other exclusive processes for which
data exist. These are the pion form factor and the pro-
cess ~ ~ z p+p . Although these are very diA'erent in
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mass from the heavy B system there are similarities in a
number of parts of the calculations to those of the heavy
mesons. We also show how the heavy-quark symmetry
limit enters into the decay of b —+ s processes. We use
the quark model to show the extent to which the heavy
quark symmetries hold even though the s quark may not
be sufIiciently heavy. The symmetry relations seem to
hold very well over the full kinematic ranges of b —+ s
processes. An explicit calculation also shows that care
must be taken to distinguish between the kinematics and
the symmetry rela, tions.

II. THE H DECAY AND THE QUARK MODEL

A. Meson transitions in the quark model

For the meson transition X(qrq2) —+ Y(qsq~) shown in
Fig. 1, the nonrelativistic quark model is used to cal-
culate the hadronic matrix element (Y'(k)lJ„lX(0)) in
the rest frame of X. It begins with the construction of
weakly bound quark-model states of X and V as

IX(0)}= V'2M' dI ) .Ax(p)XL, ', s,X'. '.-Iqr(p, ~)q2( —P &)},

l&(k)) =42Ev dv) A (v+
'

&) xi ', s,x'. '.-lv3(k+p ~)Q~( —v, ~))

Ag-(p) = Mx— 2+ m2 @2+m2

(2)

Ar (k, p) —= 2 + Mr2 — (k + p )~ + ms2

where the y functions are Clebsch-Gordan coeKcients
that couple the quark spins o. and 6 to the meson spin
S, and the meson spin S and orbital momentum L to
its total angular momentum j. The functions Px and
P~ are the qq relative momentum wave functions of the
mesons X and Y. In the rest frame of X and with
recoil momentum k, the corresponding quark momenta
of X and Y are qr(p)q~( —p) and qs(k + p)q~( —p), re-
spectively; q~q2 has relative momentum p while q3q2 has
relative momentum p + m2/(m2 + ms)k. To calculate
(Y(k) lJ„lX(0)}involves knowledge of the quark matrix
element (qsq2l J„lqrq2}; this matrix element can be ob-
tained exactly using full Dirac spinors and an overlap in-
tegral between the X and Y momentum wave functions.

There are, however, two problems to face in this use of
the quark model. The quark-model states of X and Y in
Eq. (1) are only valid when X and Y' are weakly bound.
This is, however, the case when m~+m2 M~ and m2+
m3 M~. To see this, let us define the binding energies
of X and Y in the transition of X(qrq2) ~ Y(qsq9) as

quarks inside a. meson are assumed to be nonrelativistic.
It is then obvious from Eq. (2) that Ax(p) is small and
lAr (k, p)l ( m2. Since in most cases m2 is less than
50% of Mg. , both X and Y are then weakly bound and
the use of t, he quark-model states of X and Y in Eq. (1)
is )ustified ln this case.

The other problem comes from the relative momentum
wave functions in Eq. (1); they are determined by solving
the Schrodinger equation of the corresponding qq system
with a Coulomb plus linear potential [18, 19] between the
quarks, For L=O meson states that we will consider here,
they are chosen to be Gaussian wave functions of the form

p2) —3/4 —p ~/2P~

with a variational parameter P. The formulation of the
relative momentum wave function is then obviously non-
relativistic. The qs(k + p)q2( —p) system of meson Y
becomes highly relativistic in the region of large recoil
and the use of the above nonrelativistic momentum wave
function for Pg is then questionable. In Ref. [18], this
kind of problem was treated by fixing the meson and
quark spinor normalizations at the zero-recoil point and
ignoring all of the recoil dependence in the matrix ele-
ment except for the momentum wave-function part. The
recoil momentum can be written as

In the nonrelativistic quark model, the Fermi motion of
t —q2

4M' My My

x(o)
g2

p

Y(t')

FIG. 1. The quark level diagram of the meson transition
X(qr q2) ~ Y(q3f2)

where q = (Px —Pr ) and t—:(Mx —Mr ) . Since
q = t~ corresponds to the point of zero recoil, near
this point lkl can take the nonrelativistic form: lkl

gM~/Mg-gt~ —q2. In Ref. [18], the nonrelativistic
form of the recoil momentum in the momentum wave
function was adopted. The recoil dependence of the ma-
trix element at large recoil was prescribed by multiplying
lkl by a universal relativistic correction factor 1/Ic (where



EXCLUSIVE DECAYS OF HEAVY AND LIGHT MESONS 743

@=0.7 was determined by fitting the quark-model result
of the charge pion form factor to experiment [21]).

In Sec. III, we examine the pion form factor in the
quark model and find instead that so long as the relativis-
tic normalizations of meson and quark spinors are kept,
the correction factor I/~ seems to be unnecessary and
the procedure for fixing various normalization factors at
zero recoil is then inappropriate. AVe shall maintain fully
relativistic normalizations of meson and quark spinors
throughout our calculations; the recoil dependence of the
matrix element will then come from both the momentum
wave functions and normalization factors.

B. The decay B —+ K*p

The exclusive decays B ~ X,y are assumed to be
well modeled by the quark-level decay 6 ~ sp; i.e. ,
the exclusive decay B ~ I~*p is expected to proceed
through the quark level decay [20]. The branching ra-
tio is suppressed however by the overlap between the B
and the I~* momentum wave functions. For this decay,
we need to calculate the hadronic matrix element [12, 13]
(Ji*(k)Isia„„q"bBIB(0)) at q = 0. The matrix element
has the covariant expansion:

(~'*(&)Isi~~.q bBIB(&')) = fi(&g')isu. ~ .*"k'"k + .(~B —m~-)~& —~* q(&'+ &)y»(q')+ fs(q')~* q(&' —&)p

(5)

(6)

with three form factors fq(q ), f~(q ), and fs(q ). The
branching ratio of the exclusive to inclusive process, R =
1(B ~ Ii*p)/1(b ~ sy), is written in terms of fq and
fg as [12, 13]

1(B~ I~*p)
1(b ~ sp)

m' rn' —nl, ' '1—[If~(0)I'+ 4lf2(o) I'j
msB(mb2 —m )s 2

The B and I~* mesons are weakly bound since m~ +
md n~@ and m, + mg m~ . The hadronic matrix
element is calculated in the quark model by constructing
weakly bound quark-model states of B and I~* as in Eq.
(1). The form factors fq(q ) and f2(q~) can be extracted
easily from the matrix element using Eq. (5). They are
given by (see the Appendix for details)

f~(0) =—

1
f2(o) = --fi(0),

2

mg
dp WB(p)tb~- I p + k

Ims+ ma

E, +m, Eg+mg ( E~+p, /' p,
2E, 2Eg q E +m, y q Et, +mt, p

'

(7)

where the energy and momentum terms are given as fol-
lows:

m2 +m2 m2 m2= M™
22Th g 2m+

'+ m~ E = Q(k+p)2+ m,'.
It is clear from Eq. (7) that we have kept the relativis-
tic normalizations of meson and quark spinor; the recoil
dependence of fq and fq come from the momentum wave
functions as well as various normalization factors. In the
numerical evaluation of the integral, we choose mg ——0.33
GeV, m. , = 0.55 GeV, and mg = 5.0 GeV; the momen-
tum wave functions P~. and PB are taken to be Gaussian
wave functions [Eq. (3)] with the variational parameters
[18] Pry* ——0.34 GeV and PB = 0.41 GeV.

The recoil momentum lkl = (mB —m~. )/2mB is
highly relativistic in this case, bringing into question
the use of the nonrelativistic function P~«. If we keep
the quantity lkl explicitly and use the relativistic value
[12] Ikl = (mB —m~. )/2mB in p~. , we obtain numer-
ically fq(0) = —0.19 and f~(0) = 0.095; this gives a
branching ratio I'(B ~ I&*p)/1(b ~ sy) of 4.0%. An-

other possibility [18] is to use the nonrelativistic lkl =
+mr&. /mB(mB —mug-) in pry. . Since we keep fully rel-
ativistic meson and quark spinor normalizations, we drop
the correction factor 1/r. This however .produces a very
different result with f~(0) = —0.43 and f2(0) = 0.21
which gives a branching ratio [13] of 21% close to the
result of the QCD sum-rule calculation.

Thus if the nonrelativistic form of the recoil momen-
tum lkl is used in PK* the branching ratio is enhanced
by a factor of 5, An immediate question then is whether
we should trust the relativistic 4% or the nonrelativistic
21% branching ratios as they both involve a continua-
tion from a small recoil region where the calculations are
presumably relia. ble to a region of la.rge recoil. To help
answer this question we look for guidance from data. The
pion form factor and the decay ~ ~ vr p+p are exclu-
sive processes for which. there are data and which have
been partly investigated in the quark model.

III. EXCLUSIVE LIGHT-MESON PROCESSES

In this section, we present our calculations of the pion
form factor and the ~sr transition form factor. First we
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must resolve the diFiculty of dealing with light mesons.
The physical masses of m and u are both very much
difkrent from their total constituent masses; the weak
binding requirements of constructing the quark model
states of vr and w cannot be satisfied. We present here

a prescription that we believe can correct this problem.
We begin with the observation that in the transition

X(qgq2) ~ Y'(q3(99), shown in Fig. 1, the following iden-
tity relates quark energies and momenta in the rest frame
of X:

rk. (k+p) k p (k+ p) p= (E,.+„—E„+m, —m, ) I
1 ~

I
+ 2(mg —ms).

Eg+p + m3 Ep + nag (Ep+ m, )(E,+p+ m, ) )
The terms E& and Ek+& are the energies of the decay and recoil quarks respectively. Recall that if X and Y are both
weakly bound mesons, we have mq + m2 —Mx, m2 + ms —M~, and E~ —Mx —EI„.+z —Ez. Equation (8) then
reads

k (k+p) k p r (k+p) p
Z~,p+m, Ep+in, ' " "'

I, (Zp+mi)(Z~~p+m3))

If X and Y are not weakly bound mesons, Eq. (9) no longer follows simply from (8). Nevertheless, as we shall show,
it can be taken as a, prescription for dealing with the binding problem of the quark model in light meson transitions.

The condition of current conservation in the m+ —+ x+ transition matrix element is

(~+{~)I&~J;,-I~+(~')) =0, ~ = ~ —~'. (10)

which, in the x+(Ir') rest frame, becomes

Eg+p+m Ep+m rk (k+p) k p2Ek+„2' ( EI.„+„+m Ep+ m

(E —m—)I 1+
I

=0, (11)(E, + m)(EJ,+„+m) y

where P is the relat, ive momentum wave function of the
'7r .

Numerically the left-hand side of Eq. (11) does not
quite vanish (it peaks at about —0.2 GeV near zero re-
coil and dies off at large recoil); we will use it to specify
the current conservation in Eq. (10). If we calculate
the pion form factor without this condition, we find that
it is an increasing function of —q at —q = 0 which
means it will exceed one for a small range of —

q . With
the current-conservation condition, however, this is cor-
rected. Note that Eq. (9) reproduces (ll) for sr+ —+ vr+;
it is then reasonable t, o treat (9) as a prescription which
serves the same role as (ll) in other light-meson tran-
sition processes. Our procedure is then to correct for
the binding problem by replacing the left-hand side of

(9) by its right-hand side in any light-meson form factor
calculated in the rest frame of the initial meson.

A T116 PjOIl fOl'1.11 fBCCOl

The hadronic matrix element (z+(k)IJ„' Ix+(k')) has
the general covariant expansion

( +(k)IJ;"'I + (I'')) = (k' + &) f-(&') + (k' —k) &-(&')

(12)
with two form factors f„(q") and g (q2)"to be evaluated
for q = (k —k')' ( 0. Current conservation of (10)
requires f~(q ) = (~+(I')I Jo'"I7r+(k'))/(E + m ) and
g (q ) = 0. The nonvanishing form factor f (q ) is then
given by

Ep+p+ m E„+m (k+ p) pp4 (p)4 (p+ 2 ) + (E )( ))I (13)

where k is the recoil momentum in the initial sr+(k') rest
frame and is chosen to be along the z direction. The
quark masses m„and mp are given by m„= mp —m =
0.33 GeV, and the energy and momentum terms in (13)
are given by

2

E. = m. +, IkI = gE.' —m'. ,2m '

Ep ——Qp2+ m~, Ek+p —Q(k+ p)2+ m2.
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B. The uvr transition form factor

For the ~x transition, we need (7r (k)~ J„' ~~(k')), the
dipole tl'ansitloil ITlatl'ix eleli1ent fol' q: (k —k): 0
to t„, = (m —m ) . It has the covariant expansion:

(~'(k)
~
J„-~~(k')) = f..(q')ts„„..."(k'+ k)"(k'

(14)

with one form factor f (q ). Using the prescription
given by (9), we obtain

f--(q ) = v
Al ~

dud (1)4-(V+ —,'k)
k+1 p

fAQ) + 707f (k+ p) p I& +Iy
E + m (Eg+p + m)(Ep + m) g (Ep+p + m)(Ep + m)

where p = 2.79e/(2MP, . t „), k is the recoil momentum
of z in the u rest frame and is again chosen to be along
the z direction. The energy and momentum terms are
given by

~k~ = QE2 —m2
2nl

Ep ——/p 2+ m2, Et-+„——Q(k+ p)2+ m2.

0

0.B
8

C. Discussion

In Eqs. (13) and (15), P and P„are the relative mo-
mentum wave functions of the z and the 4); they are taken
to be Gaussian wave functions with variational parame-
ters [18] P„=P = 0.31 GeV. Recall that the derivation
of the relative momentum wave function of the meson
is in the nonrelativistic and weak binding limits. We
should therefore adopt, in the momentum wave function,
an expression for the recoil momentum ~k~ with the weak-
binding assumption explicitly put in it. We note that if
~ and z are both weakly bound mesons, they will have
masses equal to the total constituent masses rn + m =
0.66 GeV. We shall use then, but only in the momentum
wave function,

0.4

0.2

0
0

1.2

1.0

LH

O.B
8

—0.6

2 2-q (GeV )

as the relativistic form of ~k~, and 0.4

[kf = Qt —q' 0.2

as the nonrelativistic form of ~k~. The t term in (16)
and (17) is defined with physical meson masses; this will
maintain the full kinematic region of q when it is time-
like. ln the case of the pion form factor t = 0 while for
the ~7r transition form factor t = (m —m ) .

Figure 2(a) shows the quark-model calculations of
f (q ) in (13) using the relativistic and the nonrelativis-
tic forms of ~k~ [Eqs. (16) and (17)] in the momentum
wave function. Also shown in Fig. 2(a) are the data
[21] for f (q ) Note that t. his calculation of the pion
form factor gives a result which is too small at large re-

0
0

2 2-q (GeV )

FIG. 2. The quark-model calculation of the pion form fac-
tor f (q ) compared to experiment [21]. The top curve em-
ploys the nonrelativistic form of the recoil momentum in the
momentum wave function; the bottom curve employs the rela-
tivistic one. (a,) shows f~(q ) from Eq. (13). (b) shows f~(q )
from Eq. (13) but with the factor 2/m E /(E + m ) = 1.
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In Fig. 3, we show the results of our calculated ~x
transition form factor f (q ) in Eq. (15) using the rela-
tivistic and the nonrelativistic forms of ~k~, Eqs. (16) and
(17), in the momentum wave function. Also shown in Fig.
3 are the data [22] for f (q ) together with that from the
~ ~ x p width of [23] 717 + 43 keV at q = 0. The two
forms for f (qz) both agree very well with experiment
over a wide range of q2 but fail after q2 ) 0.2 GeV~. Us-
ing the relativistic form of ~k~ gives a cu ~ ~ 7 width of
about 695 keV while the nonrelativistic one gives a value
of about 792 keV; both results, however, are within two
standard deviations from experiment. According to Fig.
3, there is definitely no preference between the use of the
nonrelativistic and the relativistic form of the recoil mo-
mentum in the momentum wave function. However, Fig.
3 shows clearly the need to maintain the fully relativistic
meson and spinor normalizations in the quark-model cal-
culations. Any attempt to fix these normalization factors
at zero recoil will mal&e f (0) far too high. It would be
useful to have another experiment to look at this process
since the quark model seems to fail at the high q end of
the range.

IV. EXCLUSIVE HEAVY-MESON PROCESSES
FIG. 3. The quark-model calculation of the ~x transi-

tion form factor f „(q ) compa, red to experiment [22]. The
top curve results from using the nonrelativistic form of the re-
coil momentum in the momentum wave function; the bottom
curve uses the relativistic form. The dashed line is the predic-
tion of the vector-dominance model with a pole at mz ——770
MeV and is normalized at q = 0 using [23] 1 (ur ~ x 7) = 717
keV.

coil compared to the data. This comes from the factor
2+m E„/(E + m ) in Eq. (13) which goes down too
fast with q~. An obvious way of bringing the two curves
into line with the data is to fix this factor at zero recoil,
i.e. , set 2/m~E /(E + m. ) = 1. The results are shown
in Fig. 2(b). In this figure, f (q ) from the nonrelativis-
tic form of ~k~ in (17) agrees very well with experiment
over a wide range of q, whereas the one using the rel-
ativistic form in (16) is still suppressed and goes below
experiment at large recoil, Thus, there is some prefer-
ence for the use of the nonrelativistic form of the recoil
momentum in the momentum wave function here.

After fixing the above normalization factor of f (q2)
at zero recoil there is no longer any need to introduce
a correction factor I/z to the momentum wave function
[18] in order to bring the calculated result into line with
data. The role of the correction factor 1/a seems to be
taken over by the recoil dependence of spinor normaliza-
tions; the calculation is perhaps cleaner than previously
expected.

We see from the agreement with the experimental re-
sults of the pion form factor f (q ) that there may be a
slight preference for the use of the nonrelativistic form of
the recoil momentum ~k~ in the momentum wave function
even in the large recoil region. The pion form factor is
a tricky calculation for the quark model though, due to
the binding energy problem. In the ~z transition form
factor f ~( q)

zit is not possible with the present data
to resolve this question. In all cases, the nonrelativistic
form of ~k~ gives less suppression to the form factors in
the region of large recoil.

For the pion form factor the full use of the relativistic
normalization does away with the need to introduce an
extra parameter to bring the curve into line with the
data. This parameter seems to play an important role
[18] in the semileptonic decays B ~ X„ transitions.

Are there any lessons from the light mesons that could
be applied to the exclusive B system? At first glance
it might not seem so since the range of available energy
is very much larger. However in the kinematics it is of-
ten the relative size of the squares of the meson masses
which mat ters and even for the u and x the heavier one
is suKciently dominant.

One way to try to settle this issue is to look for Dalitz
pairs in the process B ~ I~*e+e and track the data
across the Dalitz plot from the region of low recoil mo-
mentum to the highest at q,= O. The full matrix element
for B ~ Ii*e+e with QC4 corrections is given by [9,
24, 25]

4Gy n 27')
M~ ~.,+, =V,*, Vqt, —(I&*~sp„bL, ~B)(Ates" e + Ase7"eL) — A2(I&' )sio„„q"brr )B)ep",e

~
.

2 4' q2

The diA'erential width of B ~ K*e+e is calculated, ignoring the electron mass, to be
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dl (I3 ~ I~'e+e ) n2G2~, 3 3 (= 96, l«*, «il'lkl' (IAi+ —,'Asl'+ —,'IA31')~7 —4mi«[(Ai+ ,'A—3)A3j+Tf + 2 lA'2l Af
d~z' q'

where

T2 ( Ii — I'g. )' ( 3q'mI, .), , 2mpkl' m~ —m~

(19)

» +» "B™~., 3(7n~ —m")mK ll ' 'm~. (mI7 —m~. )
mI7 —277ig, —

q mII + 377iig —q
2 2 2 2 2 2

2 3 3 + 3 2 2
277lIQ ~ 2 m' ~

2 I 2 i q 4m'' 3(mI7 mK, ) l 2 2q ma lkl q'(mII + 3m'. —q')
2 g mIr ) mIr. (mII —m/. )' mIr *(mI7 —mIr. )

Here, fi, fz, fs, Ti, Tz, and Ts are form factors intro-
duced in the Appendix. The quantities Ai, Az, and A3
are coefFicients responsible [9,24] for the QCD corrections
to the 6 ~ s process.

There are contributions from the diagrams involving
b ~ sp and also from diagrams involving Z and W ex-
changes. In Fig. 4 we show how use of the diA'erent
forms of exponents give possibly measurable eAects as
we go from the region of zero recoil (large q ) to the
large recoil at q = 0 appropriate for the exclusive decay
B —+ I&*y. Although the branching ratio is small —these
are rare decays —there is a significant diA'erence as we get
below (q/mI7)' = O.I.

In Fig. 5 we show the expected behavior of the parts

of the differential branching ratio coming from the y,
Z, and W' contributions. Note that in Fig. 5 the total
contribution does not equal the sum of the y and Z +
W contributions because of various interference eA'ects

among the QCD correction coefficients.
In recent papers [26j it has been pointed out that

heavy-quark symmetries could relate the data on the
semi leptonic decays D ~ I~ e+v and D ~ Iw *e+v
and provide information relevant to the exclusive decay
B ~ I~*y. However, there is the problem that the 8
quark may not be suFiciently heavy to apply these sym-
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FIG. 4. Differential branching ratios for B ~ A''e e
The top curve uses the nonrelativistic form of the recoil mo-
mentum in the momentum wave function; the bottom curve
uses the relativistic form. The parameters used are mt, ——120
GeV, scale p, = 5 GeV and Agco = 150 MeU.

FIG. 5. Differential branching ratios of B ~ A 'e e
with the nonrelativistic form of the recoil momentum. The
solid line corresponds to the total contributions from all of the
y, Z, and W diagrams, The dotted line corresponds to the
contribution from the p only and the dashed line comes from

the Z and W'. Note that the sum of the dotted and dashed
lines does not equal to the solid line because of various inter-
ference effects among the @CD-correction coefficients.
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metrics to the I~*. There is also the important prob-
lem of continuation of these symmetries from zero-recoil
momentum across the Dalitz plot to the largest recoil
q = 0. It has been suggested [27] that the relations
among the operator matrix elements might be valid over
the full kinematic ranges even for transitions of the type
6 ~ s. From the very different type of behavior shown
in Fig. 5 this might seem very unlil»ely. Now, although
the heavy-quark symmetries are derived in the large-mass
limit, many of the relations have been known to hold in
at least an approximate sense in models such as the quark
model. Here we will use our quark model to evaluate the
extent to which the heavy-quarl» symmetries hold even in
the presence of mass corrections. The symmetries relate
the form factors in the following ways [26]:

1.0

0.6

0.4

0.2
0 0.2 0.4 0.6 0.8

T] — T2 —273 — 274
—2(m~~ —m~~. )

(m~ + m~. )' —
q

—1 2(mt' + m~. )
1 2 2 2

(m~ + m~. )' —q'Pljg + Olg ~

2

Pljg 77l+ (2o)

Figure 6 shows the plot of individual terms in Eq. (20)
times +4m~m~. using the form factors as calculated in
the Appendix. The equalities hold very well, with less
than about a 15' discrepancy, across the whole kine-
matic region to q2 = 0, The small discrepancy is caused
by the ambiguity in choosing between m~. and m, in the
symmetry relations [26] where the derivation assumes the
heavy-quark mass constitutes most of the meson mass.
Note that the choice between relativistic and nonrela-
tivistic kinematic structures in the momentum wave func-
tion affects the form factors in the same way; it does not
spoil the agreement in Fig. 6,

Using the heavy-quarles symmetry relations Eq. (20), we
can write the differential width dI'(B ~ I~*e+e )/dq
in term of one form factor, say Tr(q ). We see from Fig.
6 tha, t Tq decrea. ses from a, value of about 0.23 GeV
at zero recoil to about 0.08 GeV at the maximum
recoil region while the differential width has components

2 2
q /m B

FIG. 6. Plot of individual terms in the symmetry relations
Eq. (20) using the nonrelativistic kinematics in the momen-
tum wave functions. From the top curve to the bottom at
q = t we show /4mr3mr, *times T-r, 2T4, 2T—3, 2(ma+
mr, - ~ )fz/[(mp + mr;. ) —q ], 2(my ——fnr -)Tq/Kmg +.
mr; ~ ) —q ], fi/(ms—+ mr;*), 2 f3/(m g —mr; ~ ) .

which vary dramatically. This difference between the y
and Z+ W contributions near q = 0 in Fig. 5 is caused
by the kinematic factors in Eq. (19). The fact that the
heavy-quark symmetries hold across the full kinematic
range would seem to bear out the conclusion [27] that
possible symmetry-breaking high-pT tails do not affect
the behavior of the form factors. Kinematic effects in
these processes, however, are extremely important.
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APPENDIX

The hadronic matrix elements relevant to the transition B ~ I~* are given by

(It*(k)mesio-„, q" btriB(k')) = fr(rt )ie„„), e*'k'"k + [(m~ —mIt. )e„* —e* q(k'+ k)„]fg(q )

2
+e' q

k' —k „— 2 2
k'+k „3q

7A@ 7A~ +
(Al)

(I~'(k)is&„bL, iB(k')) = Tr(q )ie„z e*'k'"k + (m~ —m~. )T&(q )e* + Ts(q )e* q(k'+ k)„+T4(q )e* q(k' —k)

(A2)

ln the nonrelativistic quark model, the above form factors are calculated to be

E~ E~ 1
dp Pngrr. Q, Bg 1+ + —+ —k p+

cr, ski~ n, cry,

p+ p2

O.'s 0,
(AS)
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( g)
/m@ EIg +

7TLQ —7l tIQ»

~k~' 1 1 5 E~(k p+ p)dpg~glgBBg E~+ + —+ —
~

k p+
ns ns nb) ning

(A4)

fs(~') = m~ —mK. l (mK. + mgyE~. )
dp ~PIg. B,Bg —mph' + +E~. + ma ~ ) ns

mK» + 77l jg Egg+ ( 1 1

n&)

(k P+I.')
nsnb

(A5)

T, (v') = 1 1 1 11
dpP~WK B.Bg —+, ———

l

k. p
n, ~k(' n, nt )

(A6)

V m+
mg l+~g»

k p+pz
dp QBQI;.B,By —1+

nsng
(A7)

T3(~') = m~. +m~ m~. (1 1
dpda&c B.B~ , I

—+ —k p-
Esc* + mz-

m~- —mar (k p+ p, ) m~. (E~- —mg) (p + p„)
EK» —~&» ns n /k[2 nsn

(A8)

T4(~') =
~

m~. —m~1 m~. 1 1
dp $11)1;-B,Bt, k p-

E~- + mIr- ) /k/~ n, ng

+ m~-+ m& (k. p+ p,')
EIS» mK» nsny

where the energy and momentum terms are given by

m~. (E~. + rn~) (p'+ p„')

[k[2 ngny
(A9)

2 2 2 2 2 2Blg + IBID g ( ( 2 g 7Agg m~ + g
K'

2m+ I
— K» K» & Y 2m+ )

2+m,', E, = g(k+p)z+m'

n, =E, +m„ ny —Eg + 'Alp) Oq
E, +m,

2E,

md
sa = sa(v), ss' = sK (p+ k

~$ + md

[1] B.A. Campbell and P.J. O'Donnell, Phys. Rev. D 25,
1989 (1982).

[2] T. Inami and C.S. Lim, Prog. Theor. Phys. 65, 297
(1981); 05, 1772(E) (1981).

[3] S. Bertolini, F. Borzuma, ti, and A. Masiero, Phys. Rev.
Lett. 59, 180 (1987).

[4] N. G. Deshpande et al. , Phys. Rev. Lett. 59, 183 (1987).
[5] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Phys.

Rev. D 18 2583 (1978); Ya.. I. I&ogan and M.A. Shifman,

Yad. Fiz. 38, 1045 (1983) [Sov. 3. Nucl. Phys. 38, 628
(1983)].

[6] B. Grinstein, R. Springer, and M. Wise, Phys. Lett. B
202, 138 (1988).

[7] B. Grinstein, M.3. Savage, and M. Wise, Nucl. Phys.
8319, 271 (1989).

[8] R. Grigjanis, H. Navelet, P.J. O'Donnell, and M. Suther-
land, Phys. Lett. B 213, 355 (1988).

[9] R. Grigjanis, H. Navelet, P.J. O'Donnell, and M. Suther-



750 PATRICK J. O'DONNELL AND HUMPHREY K. K. TUNG

land, Phys. Lett. B ZZ3, 239 (1989).
[10] R. Grigjanis, H. Navelet, P.J. O'Donnell, and M. Suther-

land, Phys. Lett. B ZZ4, 209 (1989).
[11] R. Grigjanis, H. Navelet, P.J. O'Donnell, and M. Suther-

land, Phys. Lett. B 237, 252 (1990).
[12] T. Altomari, Phys. Rev. D 37, 677 (1988).
[13] N. Deshpande, P. Lo, J. Trampetic, G. Eilam, and P.

Singer, Phys. Rev. Lett. 59 183 (1987). Note that a
term is missing in their expression of fq (0). Bringing back
the missing term will increase their branching ratio by a
factor of about 3.

[14] C.A. Dominguez, N. Paver, and Riazuddin, Phys. Lett.
B Z14, 459 (1988).

[15] T.M. Aliev, A.A. Ovchinnikov, and V.A. Slobodenyuk,
Phys. Lett. B 287, 569 (1990); 237, 527 (1990).

[16] See, e.g. , P.J. O'Donnell, Rev. Mod. Phys 53, 673

(1981).
[17] J. Sucher, Rep. Prog. Phys. 41, 1781 (1978).
[18] N. Isgur, D. Scora, B. Grinstein, and M. Wise, Phys.

Rev. D $9, 799 (1989).
[19] C. Hayne and N. Isgur, Phys. Rev. D Z5, 1944 (1982).
[20] P.J. O'Donnell, Phys Lett. B 175, 369 (1986).
[21] C.J. Bebek et a/. , Phys. Rev. D 17, 1693 (1978).
[22] V.A. Viktorov et a/. , Phys. Lett. B 102, 296 (1981).
[23] Particle Data Group, J. J. Hernandez et a/. , Phys. Lett.

B 239, 1 (1990).
[24] M. Sutherland, Ph. D. thesis, University of Toronto, 1989.
[25] W. Jaus and D. Wyler, Phys. Rev. D 41, 3405 (1990).
[26] N. Isgur and M. Wise, Phys. Lett B Z32, 113 (1989);

237, 527 (1990); Phys. Rev. D 42, 2388 (1990).
[27] N. Isgur, Phys. Rev. D 43, 810 (1991).


