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Pion interferometry and intermittency in heavy-ion collisions
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We study the expectations of the conventional theory of soft hadronic interactions, based on the Reg-
geon calculus and on the generalized optical theorem, for the Bose-Einstein correlations between identi-

cal pions. The attention is mainly focused on heavy-ion collisions, where the presence of large nuclear

scales significantly improves the predictive power of the theory. We find that the interferometry image

of the "radiating source" is that of a pancake, with a nuclear transverse size and a hadronic longitudinal

size. The implications of our results for the studies of intermittency are pointed out. A tentative exten-

sion of this discussion to hadron-hadron collisions is also presented.

I. INTRODUCTION

We shall discuss the theory of Bose-Einstein correla-
tions among pions produced in collisions of very energet-
ic heavy ions. Some consequences of our results for the
recent studies of intermittency will also be presented. We
shall use the general framework of the Reggeon theory
[1],but we shall adopt a rather pedagogical presentation
to make the paper readable for nonexperts. This work is
a direct continuation of Refs. [2,3], where some partial
results have already been obtained.

The interest of heavy-ion collisions resides in the possi-
bility of creating hadronic systems with high matter den-
sity. In this unusual regime one expects new phenomena
to occur and to yield precious information on the nonper-
turbative QCD dynamics. Unfortunately, these dense
systems must be ephemeral and the observation of the
new physics very indirect and, consequently, rather
difficult. This is well illustrated by the case of the J/P
suppression. The idea is beautiful [4], and it has received
experimental support [5]. Hence evidence for quark-
gluon plasma formation has rapidly been claimed. How-
ever, it was found later that similar effects are expected
from conventional dynamics. After a long debate the in-
terpretation of the data remains uncertain [6].

It is obvious that in order to extract from data a signal
of new physics one must know what is the background,
by which we mean the expectation of the conventional
picture of hadronic interactions. A reader may object at
this point that there is nothing like a conventional picture
of soft hadronic interactions, that there is only a variety
of models, which are all equally founded (or rather un-
founded, since we do not have any, even approximate,
control of nonperturbative QCD, apart from lattice cal-
culations, which are not suitable for high-energy produc-
tion processes). We strongly disagree with this opinion.
The Reggeon theory, together with the (generalized) opti-
cal theorem [7] and supplemented by a few empirical
rules derived from phenomenology, adequately summa-
rizes the bulk of knowledge accumulated during the last
30 years on soft hadronic interactions. This is an
effective theory, since it does not refer to the microscopic
degrees of freedom, but it is self-consistent and incorpo-

rates the constraints of quantum mechanics (such as uni-
tarity or quantum interference). It is unable to answer all
relevant questions, but the answers it does give are cer-
tainly not ad hoc and should be taken seriously.

In Sec. II we present a heuristic model which at high
energy is equivalent to the Reggeon theory as long as one
neglects Reggeon interactions and quantum interference.
We then give some plausibility arguments which tend to
explain the modifications expected from quantum in-
terference and derived later on. The full understanding
of these results, obtained in Sec. III and only summarized
at the end of Sec. II, requires some familiarity with the
basic concepts of the Reggeon theory. Section III can be
omitted in erst reading, especially by readers who are not
interested in technicalities. In Sec. IV we compare our
results with data and discuss their implications for the
behavior of scaled multiplicity moments used in the stud-
ies of intermittency in heavy-ion and hadron-hadron col-
lisions. A final summary and conclusions can be found in
Sec. V.

II. HEURISTIC REVIEW AND A FIRST SUMMARY

At high enough (although not asymptotic) energies, the
Reggeon theory leads to a simple picture which enables
one to reproduce the salient features of multiparticle pro-
duction in soft hadronic interactions. We present this
picture below using a language which should be easily un-
derstandable for nonexperts. Explicit reference to the un-
derlying theory will be avoided. A more theoretical dis-
cussion is postponed to Sec. III. We shall come back to
phenomenology in Sec. IV.

Let N(q) denote the observed density of produced
pions. Here q denotes the transverse-momentum vector
qr and the rapidity y of a secondary, q =(qr, y). The
one-particle inclusive spectrum is obtained by taking the
average of N(q):

The physical picture mentioned at the beginning of this
section consists of regarding N(q), in the so-called cen-
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tral rapidity region, as a superposition of a fluctuating
number of "elementary" densities (representing radiation
from individual "chains, "or "strings" as one often writes
in the literature). This refiects the composite nature of
colliding hadronic systems, which implies the occurrence
of subcollisions involving difFerent constituents. What we
call an "elementary density" is the density corresponding
to a subcollision. The number n of subcollisions is distri-
buted according to some probability P (n).

A crucial ingredient of the whole picture is that parti-
cles belonging to distinct strings do not interact with
each other. Within each string there are only short-range
correlations in rapidity. The strings are simple universal
building blocks. The choice of projectile and target only
influences the probability of creating a given number of
strings, viz. , P(n).

More precisely, we write
n

N(q)= g N (q) .
(x=1

(2)

Here N (q), a=1, . . . , n, are the elementary densities
mentioned above. We assume that the densities N (q, )

and N&(q2) are, for all q, and q2, statistically indepen-
dent, provided a&18. Furthermore, for all a, N (q, ) and
N (q2) are statistically independent, provided the rapidi-
ty distance ~yt

—
y2~ is much larger than some energy-

independent, universal correlation length AsR.
Assuming that all elementary densities have the same

average, i.e., & N (q) ) =i, (q) for any a, we obtain for the
one-particle inclusive spectrum defined in Eq. (1)

I, (q)= g P(n)ni, (q)=&n)i, (q) .

Until now, our discussion has been classical, in the
sense that we have neglected quantum interference. A
truly convincing discussion of the latter requires dealing
with amplitudes, not probabilities, and will be carried out
in Sec. III. However, even without going to a more
rigorous framework one can easily guess what kind of
corrections to the probabilistic model presented above
will be generated by quantum statistics.

The two-particle Bose-Einstein correlation vanishes
rapidly when the relative momentum of the two particles
becomes large. The interference between particles be-
longing to the same string produces an extra short-range
correlation which adds to csR(qt, q2). Only the sum of
the two is observable. However, one also expects in-
terference between particles emitted from difT'erent

strings. The corresponding contribution to the observ-
able inclusive spectrum is again proportional to the com-
binatorial factor & n (n —1)). Indeed, for identical pions,
we shall find, instead of (6),

I2(q t, q2 ) =It (q 1 )I i(q2 )

+[&n(n —1))/&n ) ]C (q„q )I

+&n )csR(q„q2),

where CBB(q„q2) vanishes when y, y2l »ABE
CBB(q,q) = 1.

A partial result for CBB(qt, q2) has been obtained in
Ref. [2] for the case y, =y2. Our study of the general
case yields, in first approximation, the following result at
high enough energy and for A, B ))1:

Likewise, taking the average of the product N(q, )N(q2)
(for qi &q2,' see Ref. [8]), one further obtains

BE(ql q2) BE('ql q2) xp[ ~TR pit / ]

b =qi —q2,
(8)

I2(q„q2) —= & N(q, )N(q2) )

=
& n (n —1))i,(q, )i, (q2)+ &n )i2(q„q2), (4)

where

i2(qt, q2)—= &N (qt)N (q2))

1 1 (q 1 )1 1 (q2 ) + csR(q 1 'q2 )

a d csR(qt q2) rapidly vanishes when yi —
y2 ))AsR.

The first term on the right-hand side of (4) results from
the possibility of choosing the two observed particles in
two distinct strings. The combinatorial significance of
the factor &n(n —1)) is obvious. Equation (4) can also
be rewritten

R ~it
=R q R ii /( R ~ +R ii ) . (9a)

When 3 «8, it is the radius of the smaller nucleus
which controls the correlation:

where cBE(q,q)=1 and R~B is a nuclear scale depending
on R z and Rz, the root-mean-square radii of the collid-
ing nuclei. We also find that the function cBB(q„q2),
which contains the whole dependence on ~yt

—
y2~ gen-

erated by quantum interference, is actually independent
of nuclear parameters. In particular, the correlation
length A~E is universal.

Assuming Gaussian forms of nuclear densities, we find
the analytic result

Rq~=R~, 3 &&B . (9b)

I2(qi, q2) =I,(q, )Ii(q2) & n ) /& n )

+&n )csR(q„q2) . (6)

The deviation of the right-hand side of (6) from a simple
product of one-particle average densities is the observable
correlation function. A long-range rapidity correlation
emerges because & n )W & n ) and the short-range one of
Eq. (5) is multiplied by the factor &n ). The physical
significance of all this is discussed at length in Ref. [8].

When precise predictions are needed, it is easy to re-
peat the calculations with a more realistic input, having
recourse to a numerical computation. Using Saxon-
Woods densities, one then finds that (9b) is actually a
better approximation to R ~it than (9a) for 0-Au or S-Ag
collisions, just to give two representative examples.

Corrections to Eq. (8) have been estimated and will be
presented in Sec. IIIC. At this point it su%ces to say
that the corrections are not important enough to change
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our conclusions.
The regime relevant for heavy-ion collisions is

(n ) ))1. For a collision of two heavy ions with atomic
mass numbers A and B, one finds from (3) that

&& [1+3ciiE(yi —y2)/2&qT &Rgs] . (12)

The shape of the rapidity correlation induced by quan-
tum interference is independent of nuclear parameters,
but its strength is inversely proportional to R zz.

The aim of the next section is to derive the results sum-
marized above. A reader who is not conversant with the
basic ideas of the Reggeon calculus can skip this section
[especially Sec. IIIC, where we calculate corrections to
(8)] and go over directly to Sec. IV.

III. BOSE-EINSTEIN CORRELATION
IN REGGEON THEORY

A. General framework

In Reggeon theory the hadronic diffraction is described
in first (Born) approximation by the exchange of a quasi-
particle called the Pomeron. The latter is strongly cou-
pled to hadron sources, and therefore the description of
elastic hadron-hadron scattering requires considering
multi-Pomeron exchanges. If mutual interactions be-
tween these Pomerons are neglected, one is led to the pic-
ture of Sec. II. Indeed, the cross sections for producing
multiparticle final states are obtained by taking the
discontinuities of the elastic amplitude, in other words by
"cutting" through the exchanged Pomerons. One cut
Pomeron yields what has been called in the last section
an "elementary" density.

The strong coupling of Pomerons to hadron sources
inevitably generates an interaction between the Pomerons
themselves. The simplest such interaction and the only
one which has been experimentally observed is the
triple-Pomeron coupling. However, the coupling
strength is experimentally found to be small
(r =0.05+0.01 GeV '; cf. Ref. [9]), and this interaction
is of little importance for the bulk of multiparticle pro-
duction at accessible energies [the dimensionless parame-
ter controlling the perturbative expansion in r is propor-

so that, up to a factor of order unity, ( n ) ~z is given by
the ratio of the heights of rapidity plateaus in 3-8 and
X-N collisions, which is known to be large.

It is clear from Eq. (7) that for (n ) )) 1 the last term,
viz. , ( n )csR(q, , qz ), becomes small compared to the oth-
er terms on the right-hand side [remember Eq. (3)].
Thus, using (8), we rewrite (7) as

I 2( qi, q 2)=I i(q&)I i( q2)((n )/(n ) )

X [1+cBE(q„q,)exp( 6'TR—„'ii/3)] . (11)

Integrating out the transverse momenta and remember-
ing that hadronic scales involved in cBE are small com-
pared to R zs, we get, for identical pions and ( n ) ))1,

I~(yi, y2)=Ii(yi)I)(y2)((n )/(n ) )

tional to (r /a )log(s)]. Triple couplings involving
Pomerons and other Reggeons have been measured too.
The indirect interaction between Pomerons induced by
these couplings is also of little relevance at present ener-
gies. The magnitude of direct higher-order Pomeron cou-
plings is, strictly speaking, unknown. However, essential-
ly all existing data on hadron diffraction and soft produc-
tion processes have been successfully described neglecting
these interactions. In the context of multiparticle pro-
duction, phenomenology uses the "dual parton model"
[10] (DPM) or the conceptually equivalent "quark-gluon
string model" [11] (to quote the most familiar examples),
which have both been abstracted from the Reeg eon
theory along the lines discussed in Sec. II and which are
commonly adopted by experiments to estimate the soft
background.

The neglect of Pomeron interactions can be rational-
ized using topological expansion arguments, first put for-
ward by 't Hooft [12] and further developed by Venezi-
ano [13]. In a gauge theory with SU(N) symmetry, the
Feynman diagrams can be classified according to their to-
pology and one finds a common suppression factor 1/X
for each new handle. There is a correspondence between
this topological expansion and the loop expansion of the
Reggeon theory: A new loop can be regarded as a new
handle, and therefore loops are suppressed in the large-X
limit, which is usually a good guide in strong interaction
physics. Actually, the scenario is more subtle, since phe-
nomenology favors the "supercritical" Pomeron, with in-
tercept above unity: e=—a(0) —1=0.1 or so. A Pomeron
line propagating from the bottom to the top of a Reggeon
diagram yields a factor s'. Thus, when the energy be-
comes large enough to have s'/N =1, such an extra
Pomeron line is not supressed. In particular, multi-
Pomeron exchanges between the target and projectile
cannot be neglected. However, generic Pomeron interac-
tions produce loops extending over a fraction of the total
rapidity interval and are suppressed. Of course, at truly
asymptotic energies these topological arguments become
irrelevant when e & 0.

The inclusive k-particle cross section can be found us-
ing the generalized optical theorem and is given by a
discontinuity of the appropriate k ~k forward scattering
amplitude. Considering the absorption corrections to
this amplitude in the framework of the Reggeon theory,
Abramovski, Gribov, and Kancheli [14] (AGK) have
discovered a remarkable cancellation: Neglecting the in-
teraction between Pomerons, one finds that the single-
particle inclusive cross section is given by the unique dia-
gram shown in Fig. 1, while only the two diagrams of
Fig. 2 contribute to the two-particle cross section. It is
obvious from Fig. 1 that the 2 dependence of the density
of particles produced in hadron-nucleus collisions in the
central rapidity region is Ii(y) —A o,„ /cr;„, w. ithout any
shadowing. The fact that data show little shadowing is
actually a strong argument in favor of the neglect of
Pomeron interactions at present energies.

One can show [8] that, apart from factors correspond-
ing to the insertions on Pomeron lines, the magnitude of
the discontinuity represented by the diagram of Fig. 1 or
2(a) [Fig. 2(b)] can be interpreted as (n ) [(n (n —1))],
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low-mass excitations at the top and bottom vertices are
relevant. High-mass excitations will be considered in Sec.
III C.

B. Calculation to one-loop order

FIG. 1. Optical theorem states that the inclusive cross sec-
tion for A +B~m.(q&)+anything is equal to a discontinuity of
the forward amplitude for A +vr+B~ A+~+B. At high en-

ergy this 3~3 amplitude is dominated by Pomeron exchanges
(wiggly lines). The contributions of all diagrams, other than the
one shown in the figure, cancel when interactions between
Pomerons are neglected (AKG cancellation).

The Reggeon theory is from the outset formulated in a
kinematical regime where energies are so large that one
can consider all momentum transfers as transverse. In
our case there are four-momentum insertions in the
Pomeron lines, and we must check whether the Reggeon
theory formulas do apply without any modification.

Let us fix our notations. The four-momentum of the
incident nucleus A (8) will be denoted pz (pz ). The cor-
responding masses are m ~ and m~. Let the masses of the
intermediate states produced at the top and the bottom
vertices of Fig. 2(c) be M~ and Mz, respectively. Consid-
er the "process" where two nuclei 3 and 8 interact by
the exchange of a Pomeron, get converted into two excit-
ed systems on the mass shell and produce in the central
rapidity region a "pion pair" with four-momentum 6
(our rapidities will always be defined independently of
mz and mz,' hence the "central region" refers to the ra-
pidity location half-way between a nucleon in 3 and a
nucleon in 8). Studying the kinematics of this process,
one finds after some algebra that the invariant momen-
tum transfers carried by the Pomeron, before and after
the insertion of 6, read

where n denotes the number of cut Pomerons. In the dis-
cussion of heavy-ion collisions, we are therefore primarily
interested in the diagram of Fig. 2(b). If the two observed
particles are identical pions, the 4—+4 amplitude should
be symmetrized and a new contribution represented in
Fig. 2(c) appears. In this case, when b, =q& —q2%0, there
are insertions of four-momenta +6 into the Pomeron
lines. In the next subsection we shall calculate the one-
loop amplitude of Fig. 2(c) for b,&0, assuming that only

k = kr + ( 6+—/p ~ ) ( M ~
—m ~ )

—(g+/p+)2M2 —~k~~

and

(k +b, ) = —(kr+ b, r ) +(6 /p~ )(M~ —m~ )

where

(13a)

(13b)

B = (M& —~ & )(Ma —ma )/(PAP& +P & P& ) (13c)

l

2 2

FICx. 2. In analogy to Fig. 1, we show here diagrams
representing (4~4) forward amplitudes whose discontinuities
add up to give the full two-body inclusive cross section for
A +B~~(q& )+~(q&)+anything (neglecting interactions be-
tween Pomerons): (a) generates short-range correlations only,
(b) is responsible for long-range correlations, and the presence
of (c) is due to Bose-Einstein interference. For heavy-ion col-
lisions (a) can be neglected (see text).

is the familiar minimum momentum transfer (p
—are the

light-cone variables p +p ). We conclude that the in-
variant momentum transfers, at high enough energy, de-
pend on the transverse components of 6 only.

This simple kinematic observation has an important
consequence. The only dependence on 6 which survives
at very high energies comes from the pion-Pomeron ver-
tices, which are universal, in the sense that they do not
depend on what happens at the top and bottom vertices
of the diagram. This is why the shape of rapidity correla-
tions induced by Bose-Einstein interference is indepen-
dent of nuclear parameters.

The cross section corresponding to the diagram of Fig.
2(c) is a familiar one-particle-exchange cross section
modified by the insertion of the two pion-Pomeron ver-
tices P(q, , qz, k) and g(q2, q, k):
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cr(2c;b)=(16/so) f dv„dvigu d kTP (yo y~ kT)P [ya yO kT+~T]

A(kT vA )~B [kT+~T vB ]491 'V2 kT)4(e2 ei kT) (14)

Here

P (y, k T ) =exp Iy [a( —k T )
—1 ] ]

we find

d&w &w kT ~w

is the Pomeron propagator and the invariants N~(~) are
discontinuities of the Pomeron-A (8) forward elastic am-
plitudes. The variable v~(~) =k.p~(~)/m~(~) is the ener-

gy transfer carried by the Pomeron in the rest frame of
2 (8), the rapidity yo = (y, +y2)/2, and the parameter so
is a hadronic scale of the order of 1 GeV . We have
neglected the dependence of li on ko I . Indeed, energy-
momentum conservation and Lorentz invariance imply
that in two dimensions a four-point function can depend
on the (transverse) masses and on a single other invariant
only. However, according to Eqs. (13), the transverse
masses of the Pomerons are negligible, Note that the
dependence of i' on kT involves a hadronic scale which is
small compared to the nuclear one controlling the loop
integration and can actually be also neglected, even at en-
ergies where the Regge slope a'y is not large. The pres-
ence of the nuclear scale improves the predictive power
of the Reggeon theory: The detailed structure of hadron-
ic vertices, which are almost unconstrained by the theory,
becomes irrelevant. The overall normalization of the
right-hand side in (14) is at this point arbitrary and will
be fixed later on.

The precise meaning of the neglect of high-mass excita-
tions of our intermediate systems is that the nuclei can
possibly be broken, but without production of other par-
ticles than liberated nucleons. Hence the nuclear vertices
can be treated nonrelativistically, provided one works in
the rest frame of the target nucleus. The function
X(k, v) can be regarded as the cross section of a process
where some probe is scattered off the nucleus with
momentum transfer kT, the energy transfer ko =v being
small compared to the target mass. Let U(x) be the
effective "potential" of probe-nucleus interaction. Hence
the cross section is given by the familiar formula

=u (kT) 3+ g (i ~e
" li ), (19)

mXn

where u(kT) is the Fourier transform of V(x). We repeat
these known arguments [15] for the sake of completeness.

Introducing the nuclear ground-state wave function
%'(x„.. . , x, ), one, of course, has

= f Qd'x, lq'(x„, x )I'e' ' "

J
(20)

If one represents the nucleus as a gas of independent par-
ticles,

~
%(x„.. . , x„)~

=Q p(x, ),
J

one gets

(21)

(i~e "~i)=A(A —l)F (k ),
mWn

with

F(kT)= f d x p(x)e

(22)

(23)

In the Gaussian approximation one writes

p(x)=(3/2irR& )
~ exp( —3x2/2R~ ), (24)

F(kT)=exp( —Rzkr/6) . (25)

where R ~
= (x ) ' is the root-mean-square radius of the

nucleus. Neglecting the longitudinal component of k, we
finally write

The corrections to the right-hand side of (22) come from
correlations between the constituent nucleons. However,
these terms are of order 0 ( 2 ). Since we are interested in
the leading behavior as 2 increases, we drop all these
terms. In other words, we concentrate our attention on
the coherent interaction of the Pomeron with the nucleus
in the diagrams of Figs. 2(b) and 2(c). Note that this does
not mean that nuclei act coherently in the multiparticle
production process. The optical theorem and AGK cut-
ting rules enable us to reduce the discussion of the in-
coherent multiparticle process to the elastic-scattering
problem involving coherent interactions of Pomerons
with nuclei.

It is time now to fix our normalizations. We do this by
noting that the first term in the square brackets in (19)
corresponds to incoherent interaction of individual nu-
cleons of A. Let us normalize the elastic scattering am-
plitude so that the optical theorem reads

(16)

where Ef, are the energies of the final and initial nuclear
states and U(x) is the sum of terms describing the in-
teractions with individual constituent nucleons located at

U(x)= g V(x —x ) . (17)

Using the closure property of the final states,

2
NI , kxxxI(f Jd'x e ' UIx) i S(E~+x F., ), —

f
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O'„,= 8sr Imf (0). The dimensionless Pomeron-nucleon
vertex P(kT) is defined by the one-Pomeron-exchange
amplitude

f, (k T)=ls 'p (k )P(y, kT) .

In the eikonal model

(26) LI

f (kT)=(i/4ir) Jd b e (1—e'~), (27)

the amplitude f, (kT) is obtained by linearizing with
respect to y and the forward two-Pomeron-exchange am-
plitude reads

f2(0)= (i/—2~) J d'kT f, (kT)f, ( kT) —. (28)

Comparing (28) with (14) (at b, =0) and (19) and
remembering the factor 8m from the optical theorem, the
fact that there are two ways of inserting the pion-
Pomeron vertices g, and finally the factor —2 from the
AGK cutting rules, one concludes that v(kT)=p(kT). It
is known that the eikonal model is a realistic approxima-
tion to XX scattering, and we use it here without hesita-
tion.

With the conventions adopted above, the single-pion
inclusive spectrum as given by the diagram of Fig. 1 is

FIG. 3. (a) Diagram represents a Pomeron-~(q& )-Pomeron-
~(q~) vertex appearing in Fig. 2(c) when the two pions are wide-

ly separated in rapidity; the exchanged object (dotted line) has
unnatural spin parity 0, 1, etc. , and its Regge intercept is
close to zero. (b) The standard diagram representing the contri-
bution of the central six-point vertex of Fig. 2(a) to the dynami-
cal two-body correlation function, when the two pions are wide-

ly separated in rapidity; the exchanged object (dotted line) has
Regge intercept close to ~.

Il (q) = Svrso
' ABP (0)P(y, O)g(q, q, O)/o zB . (29)

Integrating in (14) over kT using (29), and setting

4(q»q2 0)=4(qi ql o)f(ql q2) (30)

XI l (q l )I l (q2 )CBE(q l, q2 )

X exp( —Lz.R „B/3), (31)

so that f(q, q)=1, one obtains the contribution to
I2(q„q2) from Fig. 2(c):

M2(q„q )=2[(n(n —1)/(n ) ]

may add to R„(viz., Rii) the slopes of hadronic vertices
including the Regge slope o.'y.

Let us now discuss what can be said about the function
CBE(q l, q2 ) For ly l

—
y2 l

» 1, the amp»tude g(q„q„O)
is represented by the Reggeon diagram of Fig. 3(a), where
the exchanged object has negative G parity, the spin-
parity assignment 0, 1+, etc. , and consequently a Regge
intercept close to that of the pion. Hence,

g(ql, q2, 0)-e' " ", lyl —y2l»1, (35)

where

( n ( n —1 ) /( n ) =3o z /&4m(R z +R il )

and

(32)

where e =a (0)—1. Since a (0)=0 and two factors g
enter into the definition of cBE [cf. (30) and (33)], we ex-
pect that

cBE(q„q2 ) —exP( —
ly l

—y21/ABE)

f d kT P& (kT )F&(kT+ 6T ) —exp( —bTR && /3) . (34)

In the Gaussian approximation for the form factors, one
has a strict equality, apart from a normalization factor,
and RzB is given by (9a). When realistic shapes of form
factors are used, one has to calculate the convolution nu-
merically. For not too large ~AT~, the result can be well
represented by a Gaussian as in (34) but R„ii is usually
somewhat larger. The results given in Sec. II follow from
Eq. (31).

We have neglected hadronic radii as compared to the
nuclear ones for the sake of simplicity. This is certainly
legitimate for A, B large enough, but in applications one

cBE(q„q2)=f(q„q2)f(q2, ql ),
and, of course, cBE(q,q) = 1. Note that the last, exponen-
tial factor in (31) results from calculating the following
convolution integral:

(36)
with A~E=0. 5. This argument is analogous to the stan-
dard one, which uses the diagram of Fig. 3(b) to find the
behavior of the dynamical short-range correlation

csR(q l, q2 ) -exp( —
ly l

—y21/&sR) ly l
—y21»1

(37)

with AsR=2. It is interesting that, at least at large rapi-
dity separations, cBE(q„q2) is much steeper than
CSR(ql~q2)

C. High-mass excitations

We shall now consider the case where, for example, the
intermediate mass Mz ))m„[still being much smaller
than the total c.m. system energy, since there must be
enough rapidity space for the two Pomerons in Figs. 2(b)
and 2(c)]. The Reggeon diagram of Fig. 4(a) yields a con-
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(42)

This constraint being found, the calculation of o (4b:A) is
a standard exercise in Reggeon theory [a sharp cutoff as
in (42) is sufficient for our purposes; a more precise con-
sideration of the damping of the longitudinal-momentum
transfer by the nuclear form factor gives similar results].
One finds, using the conventions of Ref. [9] for triple-
Reggeon couplings,

cr(4b;&) =0 (2c;&=0)(3/2R„)re

where

X exp( —A~TR o2/3), (43)

r = [(&ppi&ip3pg3 )/p']&m( i i127J3) (44)

FIG. 4. In Sec. III 8 it is assumed that only low-mass excita-
tions occur in the bottom and top vertices of the diagrams
shown in Figs. 2(b) and 2(c). The lower halves of Figs. 4(a) and
4(b) are nothing but high-energy models for the vertex function
appearing at the bottom of the diagrams of Figs. 2(b) and 2(c)
when high-mass intermediate states are produced in the
Pomeron-nucleus collision. As discussed in Sec. III C, only the
diagram of Fig. 4(b) is relevant when the mass number 3 is
large {the Reggeons r~ are not necessarily Pomerons). As shown
in Sec. III C, taking into account high-mass excitations corrects
the results of Sec. III 8 by a few percent only.

3'p
M~ =2k p~ =2dmxko = ~soe (38)

M 2kl pL 2kopL spe2 (39)

[note that ko —kL =O(1/s) according to (13a) and there-
fore ko=kL, furthermore, po is small by assumption].
From the above relations one easily finds

tribution proportional to 3 instead of 3, and we there-
fore focus our attention on the diagram of Fig. 4(b)
(where the Reggeons r i p 3 are not necessarily Pomerons).

We assume again that the interaction of the bottom
Reggeons with the nucleus can be treated nonrelativisti-
cally in the nucleus rest frame. Thus the energy po
transferred by the Reggeon in this frame is very small.
However, the longitudinal momentum transfer pi is not
necessarily small, because the mass M of the produced
particles is not necessarily small compared to Mz. Let us
denote by (yi, y~) the rapidity interval where the secon-
daries corresponding to the cut Reggeon r

&
are produced.

We have

(the bottom loop is cut in all possible manners) and

Q~

&o ~&2 ~&& ~&w
exp[~ (y —y )

+(@~+@3)y,]dy, dy2 . (45)

Here e; =1—a, (0) and P, —:P, (0) is the coupling to the
nucleon of the Reggeon r, . The signature factor is denot-
ed g;, and r,"k is the coupling of the three Reggeons
r, —r —rj, . It is appropriate to set the Pomeron intercept
to unity, since all rapidity intervals are small for collision
energies of current interest. Obviously, the dependence
of o(4b;b, )

.on b, T results from the integration in the
upper loop. We have already mentioned the fact that this
A„dependence is controlled by the scale of the vertex
function which falls the least rapidly with kT. In our
case it is the PPr, vertex, which is known to be even so-
fter than a generic Regge residue, so that Ro is relatively
small, Ro = 1 GeV ', say

We see from (43) that at b, =0, o (4b;b, ), compared to
o.(2c;6), is supressed by the factor R „~. Hence we shall
neglect in the following the correction to cr(2b) from the
diagram of Fig. 4(b). However, the suppression factor
disappears once the cross sections are integrated over A.
Let us put together the contributions from diagrams of
Figs. 2(b), 2(c), and 4(b) and integrate the resulting
I2(q„qz) with respect to the transverse momenta qr, and
qz.2. The result of the integration of o(4b;b, ) is some-
what uncertain, since all factors in the integrand depend
on hadronic scales and the function cBE(qi, q~) is un-
known. We shall neglect the dependence of
exp[ AzRO/3] aild cBE(qi q2) on the transverse mo-
menta, as compared to that of the factor I&(qi)Ii(q2),
overestimating in this way the correction due to
o (4b;6). The result of the integration is

I2(y, ,yz)=I, (y, )I, (yz)[(n(n —1))/(n ) ]

e foal /pL (40) X j 1+[3cBE(yi —yz)/2(qT )R ~~s ](1+5)],
To ensure a coherent interaction of the Reggeons r2 3
with the nucleus (in order to get a contribution propor-
tional to 3 ), pi must be small:

(46)

which is essentially the same as (12), except for the
correction 5 given by

piR~/&3~1

or, using (40),

(41) (47)

Before estimating 5, from the triple-Regge data, let us ob-
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serve that 6=0 if the Reggeons r„rz, and r3 are either
P' or co, with intercept a(0)=0.5. Indeed, from parity
conservation r

&
must be P' and r2 = r2. But then the sig-

nature factor Im(ig2g~) vanishes. In triple-Regge phe-
nomenology [9], one writes the cross section for
a +b ~c+X in the form

(48)

Consider the case r& =r2=r3=P as an example. With
the conventions of Ref. [9] chosen in this paper,

Gppp(0) =477113

Using /3 =4 GeV, Gppp(0) =2.65 mb/GeV from Ref.
[16] (this yields r =0.066 GeV ', slightly larger than
0.05 GeV ' quoted in Sec. III), y0=4 (corresponding to

the laboratory energy per nucleon of 1000 GeV), and
R ~

= 3 fm, we find 5 = —1.8 X 10 . The correction is
smaller at lower energies.

Similar estimate can be obtained for other choices of r, ,
i =1,2, 3. The full estimate for 6 at 1000 GeV and for
Rz =3 fm is about —3%. This correction should be
multiplied by 2 if the high-mass excitation of the other
nucleus is also taken into account and if 2 =8.

The main lesson from the exercise carried out in this
subsection is that the corrections coming from high-mass
excitations are of the order of a few percent and are nega-
tive. These corrections are small and will be neglected in
phenomenological applications.

IV. PHENOMENOLOGICAL APPLICATIONS

A. Interferometry parameters

Let us now discuss our expectations for the inter-
ferometry parameters. For ( n ) )) 1 we get, from Eq. (7),

E J d XI& +(q&, q2)/ Jd—XI& (q& )I& (q2)=1+FBF(q& —q2),

where X=q, z-+ q 2~ and

FBF(q) —q2) = J d XI) (q) )I) (q 2) CBF(q), q2) /f d X I , (q) )I) (q—q) .

(50)

(51)

As in experimental papers, the normalization K has been
chosen so that the right-hand side is 1 when the two par-
ticles are far away from each other in phase space.
Neglecting corrections calculated in Sec. III C, one has
CsF(q, q)=1. We have found that these corrections are
negative, but very small, for heavy-ion collisions. The
calculation of the corresponding corrections for high-
multiplicity XN collisions would lead us beyond the scope
of this paper, but we do not expect them to be large.
Neglecting these corrections altogether, one has
FBF(0)=1. In the interferometry language this means
that the chaoticity parameter A, equals unity. This is
compatible with NA35 data [17,18] on central nucleus-
nucleus collisions, but is at variance with the UA1 high-
multiplicity data [19]. In this last case we do expect k to
be less than unity, because (n ) is not large enough to
neglect O(1/(n ) ) corrections to the right-hand side of
(51). The formalism presented in Sec. IV C enables one to
estimate (n ). One finds that the highest rapidity densi-
ties observed by UAl correspond to (n ) =8—9. Hence
we would not be surprised if A, were less than unity by
10%—20%. However, the lowest observed value of the
chaoticity parameter is A, =O. 15.

We would like to conclude that UA1 data point toward
some new dynamics. However, we are rather reluctant to
do so. The measurement of A, is a delicate thing. There
are notorious ambiguities associated with the definition of
the "reference sample" [20], not to mention all other
purely experimental difficulties. Also, the determination
of k does depend on the assumed shape of the BE correla-
tion. Furthermore, every projection operation tends to

decrease the observed A.. One such projection is explicit
in (51). Another one results from putting together all
pairs with 5qL ~ 0.2 GeV/c [19],which corresponds to a
rapidity resolution 6y of the order of unity. Now the
equality CsF(q, q)=1 is consistent with CsF(q&, qz), de-
pending not only on hz and y&

—y2, but also on hru(X)
and (y, —yz)w(X), where u (X) and w(X) are unknown.
The integration over rapidities yields an effective X pro-
portional to ABF/6y. The Regge arguments of Sec. III B
suggest that AB~ is significantly smaller than unity.
Furthermore, the integration in (51) is sensitive to the un-
known function w(X). These two projections could
perhaps explain the smallness of the effective A..

Note also that a decrease of X with multiplicity report-
ed by UA1, considered as a genuine dynamical effect, ap-
pears rather strange. Indeed, for all other quantities (in-
termittency slope, interferometry radius, etc.), the multi-
plicity dependence observed in proton-antiproton, when
extrapolated to high multiplicities, yields estimates quali-
tatively consistent with nuclear data. Here the value of k
drops from X=0.4—0.5 at low multiplicities to A, =0.15
at large multiplicities [18],while it is found to be close to
1 in O-Au collisions [17].

The parametrizations used by experimenters to fit their
data are not really natural from our point of view. The
parametrization using the single invariant Q = (q &

—
q2 )

seems too restrictive. Independently of any model, only
the invariance with respect to longitudinal boosts is ex-
pected in the central rapidity region. The parametriza-
tion of Ref. [18] using b, r and b, L (but transformed to the
center of longitudinal-momentum frame of each pair) un-
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necessarily mixes the transverse and longitudinal degrees
of freedom. We propose to write FB~(q, —q2) as a prod-
uct of factors depending on y&

—
y2 and q&T

—
qzT, respec-

tively, for example,

FB~(q, —q, ) =exp( —
ly~

—y2I/'A R—T&'T/2) . (52)

For small rapidity separations this form is, of course, not
a theoretical prediction, but just a simple guess. The pre-
diction is that A is universal, i.e., independent of 3 and
8, while R T

= ( —,
'

)
' R „ii, where R ~s is given by (9) for

nucleus-nucleus collisions. As already mentioned, this es-
timate has been obtained neglecting the contributions to
RT from hadronic vertices and, strictly speaking, holds
only when R~~ is large enough. A more realistic esti-
mate for A ((8 (the case of main physical interest) is
easily found:

RT=[2R~/3+R~/3+(RT ) ]'i, 2 ((8, (53)

where R~ is the nucleon radius and RT is the inter-
ferometry radius in a high-multiplicity XX collision.
Rz- is expected to be a "hadronic scale, " thus of the or-
der of 1 fm or so; we are unable to predict anything more
precise. The increase of RT as one goes from hadron-
hadron to nucleus-nucleus collisions is an unescapable
consequence of the theory.

The value of R T at midrapidities reported by the NA35
Collaboration for 0-Au (8. 1+l. 6 fm [17] is 3 times larger
than expected from our conventional theory. This ap-
pears very exciting. Unfortunately, the preliminary re-
sult [18] of the same group for S+Ag is RT=4.6+0.7
fm, much closer to our expectation, which is 2.4 fm when
the asymptotic estimate is employed and becomes 2.9 fm
when (53) and RT = 1.4 fm (from Ref. [19])are used.

NA35 data also indicate that the rapidity correlation is
affected by the sizes of the colliding nuclei, at variance
with the expectation of the theory considered in this pa-
per. However, it is not quite clear what the result would
be if the experimenters used the parametrization we pro-
pose. It is important to check this point. Every disagree-
ment with the conventional theory is potentially very in-
teresting.

At this point let us mention the suggestion [21] that
large interferometry radii can be due to the production of
resonances. This is a possibility. However, the rate of
production of resonances in the central region mildly de-
pends on the nature of the targets. Therefore, it is
dificult to see how resonance production could lead to
"abnormally" large interferometry radii in nuclear col-
lisions and to radii of the order of 1 fm in hadron-hadron
collisions. Note, however, that the momentum resolution
in most studies of BE correlations in hadron-hadron col-
lisions is considerably worse than that in NA35. Reso-
nance production produces a sharp spike in the inter-
ferometry signal at very small values of relative momen-
turn. While this spike could not possibly have been seen
with the UA1 setup, it can perhaps contribute to the
large radii observed by NA35. The spike in question is
independent of the atomic mass numbers of the colliding
objects and will not be further discussed in this paper,
where we focus our attention on nuclear effects. Let us

only emphasize that high-resolution measurements of the
shape of the interferometry signal in XX collisions would
be very helpful in interpreting the heavy-ion data.

B. Intermittency slopes in nucleus-nucleus collisions

X [1+3G(5/AB~)/4(qT )R„~] . (54)

We have multiplied the second term in square brackets
by an extra factor of —,

' because we consider here arbitrary
charged pions, while the BE correlation is only present
for identical ones. Assuming, for simplicity, an exponen-
tial form of CBp, i.e.,

ciiE(y 1 yp ) =exp( —
ly &

—
y2 l /ABE)

we have

(55)

G (x)=2(x —I+e ")lx (56)

As shown in Sec. III B, one expects AB~=O. 5 at large dis-
tances. Nothing guarantees that the exponential shape
(55) with AB~=0. 5 is also adequate at small ~y,

—yz~.
We shall use it below to get a tentative estimate, also
quoting the result obtained setting ABC=1.

Using (qT) =0.16 (GeV/e) together with the values
of R ~~ given by (9b), we obtain the effective intermitten-
cy slope $2, defined as 6 InF2/b, ln(1/5) for a given range
of 6, always chosen to be the same as that used by experi-
menters in their fits. From now on, if not stated other-
wise, Pz will denote the slope parameter for arbitrary
charged pions. We calculate the rms radii from the inter-
polating formula [23]

R~ =0.822 ' +0.58 fm . (57)

For 0-Au collisions we find, for the range 2) 5) 0. 1 (cf.
Ref. [24]),

Pz=0. 005 for ABi, =0.5,
/~=0. 003 for ABp= 1 .

(58)

When A and 8 are changed, Pz is predicted to scale with
R~~. In particular, for S-initiated collisions, the above
values of $2 are scaled down by R o ~„/R s ~„=0.7.

The studies of intermittency [22], more precisely of the
variation of the scaled multiplicity moments with the de-
creasing size 5 of the rapidity (or pseudo rapidity) win-
dow, are a source of precious information on the short-
range structure of rapidity correlations. In this section
we discuss the consequences of Eq. (12) for the behavior
of the moment F2 = (X(X—1) ) /(N ), for the simplest
case of a central nucleus-nucleus collision, where the con-
dition (n ) ))1 is met and (12) is expected to be a very
good approximation. Strictly speaking, our derivation
holds for an average collision. However, the only thing
which changes when only central collisions are con-
sidered is the probability distribution of n, so that the es-
timate given by (32) no longer holds. Integrating (12)
with respect to rapidities in the range —6/2 (y &,

y2 (5/2, one gets

F( 5)=((n')/(n )')
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The above estimates of p2 are reduced when hadronic
contributions to R~B are not neglected. This is a 30%
reduction if RT is 1.4 fm, as claimed by UA1 in Ref.
[19].

Note that (54) is obtained from (7) when (n ) is so
large that the last term, of order (n ), can be neglected
compared to the first two terms, which are of order ( n ) .
Once one is in the large ( n ) regime, changing the degree
of centrality only affects the factor (n )/(n ) in (54),
which is irrelevant for the intermittency slope. This ob-
servation is pertinent for central and semicentral 0-Au
and S-Au collisions. On the other hand, for O(S)-Em col-
lisions, we expect some decrease of p2 with increasing
(n ) (also as one goes from average to central ones, even
for S-Au).

The above tentative estimates of the intermittency
slopes are in the same ballpark as the data of the EMU01
Collaboration [24]. However, these data seem to indicate
a decrease of $2 with increasing centrality and also an in-
crease of $2 with increasing projectile size. These
features, if confirmed with better statistics, would point
toward some collective e6'ect of a new type. However, in
view of the poor accuracy of the present data, such con-
clusion is premature.

As a final remark, we would like to emphasize again
the point already made in Ref. [3]: In heavy-ion col-
lisions the short-range correlations are dominated by the
BE eff'ect and therefore we predict pz

+—=2/2, the inter-
mittency slopes should be twice larger when only identi-
cal instead of arbitrary charged pions are observed.

C. Tentative discussion
of intermittency slopes in hadron-hadron collisions

We now turn to hadron-hadron collisions. Of course,
this extension of our discussion involves extra uncertain-
ties. Furthermore, our prediction is that the chaoticity
parameter k is not far from unity when very large multi-
plicity events are selected. If the value X=0.15 of UAl
Collaboration is taken literally, our theory simply does
not apply. In Sec. IV A we expressed already our doubts
concerning the interpretation of this small A. . In this sec-
tion we shall assume that the small eftective value of k
indeed results from an experimental bias, and we shall
proceed disregarding this result. Thus the following dis-
cussion is necessarily very tentative.

Let us start with central proton-antiproton collisions,
i.e. , with high-multiplicity selection, where the (n ) )) 1

regime is approached. Results, both for BE inter-
ferometry and intermittency slopes, are available from
the UA1 Collaboration [19] for values of I, (y) up to 10.
At the highest rapidity densities, UAl finds

N(q)=N, (q)+ g N, (q), (61)

and, consequently,

I, (q)=i, „(q)+(n —1)i„(q) . (62)

For identical pions simple algebra leads to

2('ql 'q2) 1('ql )Il('q2 )+(CLR+~CBE+CSR )(q 1 q2 )

(63)

CLR(q„q2)=((n ) —(n) )il, (q, )i„(q2) (64)

is the long-range correlation,

CsR ( q 1 'q2 ) sR ( q 1 'q 2 ) + ( 1 )c sR ( q 1 'q 2 )

is the short-range correlation, and

B(q„q2)= ((n —1)(n —2) )i„(q, )i„(q2)

+(n —1)[i„(q,)i„(q2)+q2~q, ] .

(65)

Clearly, for N, (q) =N, (q), Eq. (63) reduces to Eq. (7) of
Sec. II.

Integrating over transverse momenta and over rapidi-
ties in the range —5/2 (yl, y2 (5/2, and using (59), we
get, for arbitrary charged pions,

$2=0.009 for ABE=O. S,
$2=0.006 for ABE=1 .

The UA1 value in the same 5 range is $2=0.007. Strictly
speaking, the ( n ) )) 1 regime is not really reached in the
UA1 data. The rapidity densities they observe are large
in hadronic standards, but still much less than those pro-
duced in heavy-ion collisions. Thus the neglect of terms
of order (n ) in (7) is a rather crude aproximation and
the slope given by (60) is presumably underestimated.

Consider next the fully inclusive data, i.e., without
high-multiplicity selection, for which the dynamical
short-range correlation is important. We have to include
an extra eff'ect, which has been neglected in Sec. II for the
sake of simplicity. Phenomenology indicates that in
hadron-hadron collisions the total available energy is un-
equally partitioned among the di6'erent strings. In the
dual parton model (DPM) one string (involving valence
constituents) takes a large fraction of the available energy
and the rest is equally shared by the remaining ones (in-
volving sea or gluon constituents). This finite-energy
effect should be taken into account when (n ) is not
large. Equation (2) then becomes

FEE( b, T )-exp( —R Tb, T /2 ), R T = 1.4 fin .
2(~) +gLR+gBE (~/ABE)+gSRG(~/ASR)

(59)
where

(67)

We can use Eq. (54) after replacing R~B /3 by the ha-
dronic parameter R T/2. Here we have to rely exclusively
on data since the theory is unable to make any quantita-
tive prediction about CBE(q„q2). Using (59) and (54), we
get for the intermittency slope in the range 1)6)0. 1

and, for ( n ) ))1,

gBE

gSR —CSR /H 2

((n —1)(n —2) )h, 2+( n —I )h, h,

2II'(q,')R,'

(68a)

(68b)

(68c)
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Equation (67) reduces to Eq. (54) when (n ) ))1. Here
csR is the strength of the dynamical short-range correla-
tion and AsR is the corresponding correlation length, H
and h, ~„~ are the heights of the observed and s(v)-string
rapidity plateaus, respectively.

In the DPM one has at collider energies h, =2. 1,
h, =0.9, and ( n ) =2, which yield the (pseudo) rapidity
plateau height H =3. The variance of n can be directly
related to the experimentally measured values of the
long-range forward-backward correlation and of the mul-
tiplicity moment C2~ in the forward or backward rapidi-
ty interval under consideration. Indeed, one has

gLR bFB(C2F (69)

Since we are interested in the central rapidity region, we
use the experimental values [25] of b„s and C2~ in the
pseudorapidity intervals 1~ ~il~ ~2, which are close to
g =0 and are separated by a rapidity cut of two units that
removes the short-range correlation. Using b„B
=0.412(11) and C2+ = 1.85( 1 ), from the UA5 Collabora-
tion, we get g„R =0.35.

Let us tentatively set ABz =0.5 and AsR =2, the values
expected from Regge arguments at large rapidity separa-
tions (As&=2 is actually a more realistic effective correla-
tion length than As&= l. 1 used in Ref. [3]). From (68b),
with RT=1.4 fm and (qT)=0. 16 (GeV/c), we get
gBF =0.045. The constant gsz is determined from the
UA1 experimental result [26] F2(1)=1.617(13). We get
gs& =0.283. As a cross-check we first compute from Eq.
(63) the value of R (0,0)=C(0,0)/H, where C(y&,y2) is
the full correlation function. We get R (0,0)=0.68 to be
compared to the UA5 value [25] 0.68(2). The contribu-
tion of the BE correlation is 5R (0,0) =gBF and is there-
fore small. Computing the intermittency slope $2 in the
interval 1)5) 0. 1, we find $2=0.014 to be compared to
the UAl value [26] $2=0.011(2).

We turn next to like-charged pions, in order to calcu-
late the slope $2 . We again use (67), but with gBF mul-
tiplied by 2. We keep of course, the same gLR as before,
and we determine gsR from the experimental value [27]
F2 (1)= 1.542(14). We get gsR =0.165. We finally ob-
tain Pz =0.015, to be compared to the UA1 result

=0.011(3 ).
Had we chosen the value AB&= 1, instead of AH~=0. 5,

the above estimates would become $2 =0.012 and
=0.011

As a final comment, let us mention that, in our ap-
proach, we do not have enough information to consider
the finite statistics distortion [28] of the above estimates.
The intermittency slopes corresponding to an infinite
statistics can be calculated from the two-particle in-
clusive spectrum, as we have done. The finite statistics
distortion depends on the multiplicity distributions in ra-
pidity windows of varying size. The knowledge of these
multiplicity distributions is equivalent to the knowledge
of correlation functions of all orders, i.e., to the
knowledge of an infinity of parameters. The theory we
have considered has no power to predict these parame-
ters. A priori, it can accommodate a wide variety of pat-
terns, and it seems virtually impossible to estimate the

finite statistics distortion without adopting an ad hoc
model.

V. SUMMARY AND CONCLUSIONS

In this work we have studied the expectations of the
conventional picture of soft hadronic interactions for the
Bose-Einstein correlations between like-charged pions.
We used the framework of the Reggeon theory combined
with the generalized optical theorem. Our strategy,
motivated by the topological 1/N expansion, has been to
neglect interactions between Pomerons (except in Sec.
III C, where it has been checked explicitly that the
triple-Pomeron interaction is indeed irrelevant for our
problem) or, using a more pictorial language, between the
radiating "strings. " We focused our attention on
nucleus-nucleus collisions. There is no point to insist on
the intrinsic interest of these collisions; the subject is
among the most topical ones. However, it is perhaps not
commonly realized that the appearance of nuclear (hence
large) scales considerably improves the predictive power
of the conventional theory. The most unambiguous re-
sults in Reggeon theory have been obtained in the asymp-
totic limit where all hadronic parameters are small com-
pared to the Regge slope a'y. Here a similar role is
played by the nuclear radii. One should remark, that
such a large scale is absent in high-multiplicity hadron-
hadron collisions. Thus, although the latter share some
features in common with nuclear collisions, predictions
concerning them are less reliable.

Our results for pion interferometry in nuclear col-
lisions are easy to summarize: (1) The correlations be-
tween transverse momenta are controlled by the size of
the smaller of the colliding nuclei; (2) the rapidity corre-
lations are universal, in the sense that they are insensitive
to nuclear parameters; (3) the chaoticity parameter A, is
close to unity (actually smaller than 1 by a few percent).
Thus the interferometry image of the "source" is that of
a pancake, with a nuclear transverse size and a hadronic
longitudinal size.

The interferometry data have been discussed in Sec.
IV A. The value of the chaoticity parameter is compati-
ble with A, =1 in collisions of nuclei. The transverse size
of the source is larger than in XX collisions, actually
larger than we expect. However, the large diFerence ob-
served at XX midrapidities between radii for 0- and S-
initiated reactions cast some doubt on the significance of
the disagreement (especially that the transverse radius
observed using S as the projectile is not very diFerent
from our expectation). Moreover, it seems that the longi-
tudinal size of the source is larger than that observed in
XA". If confirmed, this result would require some uncon-
ventional dynamics. In this context we propose a new
parametrization of the Bose-Einstein correlation, which
is more natural from the theoretical point of view [see
Eq. (52)].

In the theory we have explored, there is an inescapable
relation between pion interferometry and intermittency in
collisions involving heavy nuclei. Indeed, in this case, the
only relevant short-range rapidity correlations are those
generated by quantum interference. And the so-called in-



PION INTERFEROMETRY AND INTERMITTENCY IN HEAVY-. . . 715

r
L

FIG. 5. Diagram represents a contribution to the two-body
inclusive spectrum, which involves Pomeron interactions and
survives the AKG cancellation. Processes of this kind could
perhaps be introduced to mimic unconventional dynamics.
Such diagrams are neglected in this work because of the absence
of evidence for interactions between Pomerons, which are
strong enough to be relevant for our problem at presently acces-
sible energies (see Sec. III A).

termittency, in hadron production, is a manifestation of
short-distance structure of rapidity correlations. This
point has been discussed in Sec. IV B. Our estimated in-
termittency slopes are in the same ballpark as the ob-
served ones, but certain trends of the data seem to be at
variance with our expectations (e.g., a decrease of the
slopes with the increasing degree of centrality of col-
lisions). For completeness, we also discuss in Sec. IVC
the intermittency slopes observed in collider data.

The experimental situation can be summarized by say-
ing that there are several indications of a failure of the
conventional dynamics, but more work is necessary to
convert these indications into a clear evidence. Let us be
optimistic, and let us suppose that this evidence will soon
be available. Would it be possible to "upgrade" the con-
ventional approach, so as to embrace the new informa-
tion? This would require introducing interactions be-
tween Pomerons such as in Fig. 5. The problem is then
to get large interferometry radii. In the diagram of Fig.
2(c), in a sense, the secondary particles receive informa-
tion about the size of the projectiles from the loop in-
tegration. As shown in Ref. [2], this mechanism no
longer works in the diagram of Fig. 5. However, it might
be that the secondaries receive information about the size
of the projectiles from the dependence of the central ver-
tex on the number of coupled Pomerons. It seems possi-
ble to introduce such interactions [29], but it is not clear
whether this can be done without generating unwanted
effects (such as important shadowing in particle produc-
tion off nuclei). Furthermore, such an approach seems
unavoidably ad hoc. Reggeon theory can accommodate
new interactions, but its predictive power is then rapidly
lost (at least at finite energy). We are therefore inclined
to think that a proper understanding of deviations from
the background behavior described in this paper will be
impossible in a purely S-matrix theory and will require a
new insight into the early stage of the development of the
collision process. We would be happy if our conclusions
were perceived as an encouragement by experimenters
working in this field.
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