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A quantum-mechanical approach is used to study high-momentum-transfer reactions in which a nu-

cleon is knocked out of a target nucleus. It is found that the nuclear interactions of the wave packet pro-
duced in such a hard interaction may cancel, so that the nuclear medium is transparent. Expressions for
the effective wave-packet —nucleon interaction and the corresponding distorted waves are presented. An
analysis of existing (p,pp) data at beam momenta from about 5 to 12 GeV/c suggests that only the nu-

cleon and Roper resonance components of the wave packet contribute to the scattering amplitude. The

(p,pp) data and our theory imply that color-transparency effects in the (e, e'p) reaction may be significant
at relatively low-momentum transfers of Q =3—6 GeV .

I. INTRODUCTION

This paper is concerned with high-momentum-transfer
(greater than about 1 —2 GeV/c ) nuclear processes which
proceed by the emission of a single fast nucleon from the
nucleus. Examples are the semiexclusive (e, e'p) and
(p,pp) reactions occurring on nuclear targets. We con-
sider only those experiments in which the detected pro-
tons have enough energy to ensure that no pions are pro-
duced.

The semiexclusive experiments under consideration
here are special. For such cases [1,2], the nucleus will be
anomalously transparent to nucleons. The arguments are
based on three main points.

(i) To obtain an appreciable amplitude for a high-
momentum-transfer reaction on a nucleon leading to a
nucleon, the colored constituents must be close together,
i.e., small objects are produced in high-momentum-
transfer exclusive processes.

(ii) If the constituents are close together, their color
electric dipole moment is small and the soft interactions
with the medium are suppressed; i.e., small objects in-
teract weakly.

(iii) If the particle stays small it can escape from the
nucleus without further interaction.

The particle suffers no distortion when all three condi-
tions are satisfied. Any of the conditions may be con-
sidered controversial. The medium is thus "transparent, "
leading to the name "color transparency. " Color
transparency is expected to hold even when the
projectile-nucleus optical potential is not small.

Color transparency has generated much interest from
theorists [3—8] and experimentalists [9,10]. This is be-
cause of the arguments [1,2] that the existence of color
transparency is a testable prediction of quantum chromo-
dynamics (QCD). There is also some hope that calcula-
tions of proton-proton scattering [11] using perturbative

QCD will provide the guidance necessary to implement
the qualitative ideas regarding color transparency.

The main purpose of the present paper is to study how
color transparency arises as a function of momentum
transfer (or energy if the scattering angle is fixed). The
aim is to help experimentalists to find color transparency
by using experiments over a range of energy. At the
lowest energies there is no transparency (the nucleus acts
as a black disk) and standard nuclear-physics techniques
are valid. At the highest energies available perturbative
QCD applies (one hopes) and color transparency will be
observed. A successful treatment of the energy depen-
dence of color transparency therefore requires a correct
treatment of both relatively low- and high-energy phys-
ics. Thus, it seems that an approach using both hadronic
and quark degrees of freedom is inevitable.

Our procedure uses the ideas [12] of soft (dipole) gluon
exchange and color neutrality to model the interaction
between the quarks in the fast ejected particle (ejectile)
and the bound slowly moving nucleons. One obtains the
ejectile-nucleon cross section o of Eq. (21), for example.
This is an operator depending on the transverse separa-
tion b of the quarks in the ejectile. The evaluation of this
operator in a hadronic basis, combined with the eikonal
propagation of the ejectile through the nucleus is used to
construct the ejectile-nucleon effective cross section, Eq.
(33). Previous authors [3,13,14] postulated reasonable
forms of the effective cross section. Here we provide an
underlying derivation. It turns out that our Eq. (33) is
not very different than previous hypotheses, even though
the input 0. is different. Furthermore, our underlying
quantum-mechanical framework will eventually allow im-
provements of the present qualitative, simplified treat-
ments of o. and the baryon wave functions.

We previously developed [8] an approach to color
transparency based on a quantum-mechanical treatment
of the wave function of the ejectile in the nucleus. The
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action of a high-momentum-transfer operator on the
struck nucleon creates an object which has a small spatial
extent. This small object can be described as a coherent
sum over nucleon excited states, m, i.e., as a wave packet.
In that case, the small size is described as a destructive
interference between the different states [8] and depends
on the relative phases of the states of the wave packet. If
the important states in the wave packet have similar en-
ergies the important relative phases vary slowly with time
and the wave packet remains spatially small. Alternately,
we say that assuming all the energies are equal allows one
to employ closure (completeness) to do the sum over
states, m; this is the so-called closure approximation.

Our argument seems to rely on the use of hadronic
rather than quark degrees of freedom. The hadronic
basis is a convenient tool to evaluate matrix elements;
moreover these matrix elements may be measured in in-
dependent experiments. We intend to use and stimulate
new measurements of the matrix elements relevant for
color transparency in future work.

Even though we stress use of the hadronic basis, the
color transparency phenomena is certainly a consequence
of the quark-gluon nature of QCD. Indeed, one way to
argue for the validity of our closure approximation is to
use perturbative QCD factorization theorems [15,16].
Such theorems allow the separate treatment of the hard
and soft interactions. In perturbative QCD we expect
that the minimum possible number of hard interactions
occur. Hard final-state interactions would increase the
number of hard interactions from that minimum; hence
the final-state interactions between the ejectile and the
nuclear medium are of a soft, low-momentum-transfer
nature. The soft interactions do not have very large ma-
trix elements between baryons of low and high mass, ac-
cording to the quark model. This is why the closure ap-
proximation is expected to be valid. This is explained
more in Sec. III.

Note further that the closure approximation is not ex-
pected to be valid for those inclusive processes in which
hadrons with a very broad range of internal energies are
produced. Thus most inclusive processes are not expect-
ed to exhibit color transparency.

We now come to an outline of the paper. In Sec. II we
review and restate the idea that an object produced in a
high-momentum-transfer reaction is small. The physics
of the closure approximation is discussed in Sec. III. Our
quantum-mechanical approach to the propagation of the
ejectile through the nucleus is presented in Sec. IV. The
ejectile-nucleon cross section is introduced and used to
evaluate the ejectile-nucleus interaction U in Sec. V. The
closure approximation is used to compute amplitudes in
Sec. VI. In our present model, the approach to color
transparency is controlled by a 1/Q dependence [Eq.
(28)]. In Sec. VII the expression for the effective interac-
tion between the ejectile and the nucleus is derived and
the eikonal approximation for the baryon propagation
discussed. In Sec. VIII we present our numerical results
and compare with the (p,pp) data of Carroll et al. [9].
These data are used to predict color transparency eff'ects
in the (e, e'p ) reaction. The work of Ref. [3] was the first
to treat the color transparency of the (p,pp ), (e, e'p ) and

(rr, re) reactions in a unified numerical fashion. Our nu-
merical results are similar to those of Ref. [3]. A discus-
sion and summary are presented in Sec. IX.

II. HARD INTERACTIONS PRODUCE A SMALL
OBJECT

—Q/6
—Q/6

—Q/6 Q/6

FICx. l. An example of a high Q~ process, (y*p,p) in the
Breit frame. The quark lines are labeled by the momentum
components parallel to the photon momentum Q.

Consider a process in which a photon interacts with a
free nucleon and transfers a large momentum Q to it; see,
e.g. , Fig. 1. The full field-theory calculations are more
complicated and generally require treatment of gluon ra-
diation or Sudakov effects [17]. Here we follow Mueller
[13]. The nucleon Breit frame is used, since in this frame
the photon transfers no energy. If the photon is absorbed
by one of the partons (quarks) the momentum Q/3 must
then be transferred to each of the other quarks in order
for the momentum to be divided equally between the
(three) partons. The gluons that transfer the momentum
are off shell by Q/3, so by the uncertainty principle they
exist for only a time 3/Q and travel a distance of c times
this. Thus the partons must all be within a distance
3c/Q. Hence the object is small if Q is large.

The above simplified reasoning may not be applicable
for the experiments which do not have asymptotically
large momentum transfer. At moderate values of Q,
effects of nucleonic pointlike configurations [14] (PLC)
which involve quarks existing in the same location may
be responsible for the form factors. In either case, small
sizes are relevant.

It is worthwhile to obtain a simple formula that
schematically portrays the physics of the diagram of Fig.
1. We consider, for simplicity, a system of two quarks
[18] and obtain one essential feature: the form factor is
determined by the properties of the wave function at near
the origin. This is used in our calculations below.

We model perturbative QCD calculations of form fac-
tors, such as that of Brodsky and Lepage [16]. In that
work, the high-momentum components of the meson
wave function are dominated by the eff'ects of a one-
gluon-exchange interaction, V,~. Thus our focus is on
the gluon propagator, whose inverse is q ~ +q

~~

—
q o.

Since there is no net energy transfer in the Hreit frame,
the average value of the change in the quark energy is
zero. Hence, qo=0. The longitudinal momentum of the
quark can be written as xQ/2, and for each quark the
average value of the change in this quantity is Q/2. Thus
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= Q/2. Proper form-factor calculations are most easi-
ly carried out in momentum space. Here we are con-
cerned with the sizes of fast moving objects and therefore
work in coordinate space. Thus we introduce the vari-
able b which is the transverse separation between the
quarks, and is conjugate to the transverse-momentum
variable k~. Since

q~~
and qo have been fixed, the only

remaining dependence is on q1. Thus, the coordinate-
space interaction V,z looks like

d2 iq& b

V,~(b) =
(2~) qi+(Q/2)

a sum of baryon resonances. There is a component that
is a nucleon: the overlap between the small object and
the nucleon is the nucleon form factor.

We now illustrate these ideas by making a schematic
calculation of an elastic form factor. For simplicity, we
again consider a system of two quarks that is struck by a
spacelike photon of four-momentum —

Q .
In perturbative QCD the central idea is that the one-

gluon-exchange interaction is the origin of the high-
momentum components [16]. Then the form factor can
be approximated [21] as a matrix element of V,ir between
unperturbed confined wave functions. Thus Eq. (1) shows
that the form factor at high Q is determined by the
probability for quarks to be close together.

To proceed we need a model of the unperturbed wave
functions. Keeping just the transverse part of the wave
functions, the ground-state (nucleon, N) and first-
excited-state (Nz ) wave functions are given by

Equation (1) tells us that the longitudinal-momentum
transfer Q/2 acts as a mass for the transverse propaga-
tion. Thus the transverse separation varies like 1/Q and
the object is small.

We have handled the x dependence by an averaging
procedure. This could be dangerous since the explicit in-
tegration may include regions of small x which may have
an unusually large contribution. We assume that Su-
dakov eff'ects [17] suppress such contributions. Thus we
do not treat possible end-point singularities that could
cause perturbative QCD to be inapplicable [19]. The as-
sumption that this x dependence is not essential is also
made in some recent work [7]. Our main point here is to
stress the importance of the region with b =1/Q. This is
obtainable even without details of the proper integration
over' X.

In calculating the amplitude for a system with X —1

quarks, X —1 such factors appear and reproduce the—2(1V —1)
well-known [20] scaling Q ~ expected from quark
counting rules.

Immediately after the collision, the transverse size of
the small object is of order 2/Q. Such an object is not a
nucleon; we shall find it convenient below to express it as

F(Q') =F~ ~(Q') = (NI TH IN ), (4)

and we take the hard-scattering operator TH to be

TH=V, ~ .

We next use Eq. (1) so that

(blNg &=(1—b2/bH2)(blN&,

where b is the transverse coordinate. The parameter bH
is the rrns size of the hadron which is taken as 1 fm. For
the sake of simplicity, we used the (two-dimensional) har-
monic oscillator. The state IN+ ) is the first excited state
of this model. It is a radial excitation, so we call it the
Roper resonance and denote it with an R. A calculation
using realistic properties of observed resonances will be a
subject of a future investigation. For now, we just use the
idea that excited states exist.

In general, the form factor F(Q ) is given by an over-
lap

F(Q ) ~ j d b e Ko(Qb/2) — 1—
Q2/4 Q2b2

P 6 G-eQ fm

Q2/4 Q2b2

The integration is carried out by using the asymptotic form of Ko shown in Eq. (1). Since Q »(1/bH ) it is safe to ap-
proximate the Gaussian by a power-series expansion. The expression is completed by converting the units of Q to GeV
and b to fm.

If Q is large enough, one again sees the expected quark counting rules [20]. Furthermore the requirement that the

Q term vanishes,

Q
' » (0.6 GeV2 fm2) /bH, (7)

provides a crude necessary condition for the validity of the quark counting rules. For a system of N partons the form—2(N —1)
factor has a leading behavior of Q ~ with a Q correction term. For N partons the numerical factor in Eq. (7)
varies as N„—1. In the following we assume that the validity of Eq. (7) is sufficient for perturbative QCD to be valid.
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We shall also need to know an expression for the inelastic form factor defined by

F, ( Q ) = ( Ni,
*

i TH N ) .

Using the wave functions of Eqs. (2) and (3) and the operator V,ir of Eqs. (1) and (5) leads to

—b Ib 1F ~ (Q )~ f d b e (1 b —lbH)KO(Qb/2)—N~, N
Q 2/4

O. 6 Ge+2 fm2

Q'bH

Thus, the elastic and inelastic form factors are equal

F . (Q') =F(Q') . (10)

This is caused by the equality of the model wave func-
tions [Eqs. (2) and (3)] at b =0.

The reader who has experience in computing form fac-
tors using perturbative QCD might be shocked by the ap-
pearance of Eqs. (6) and (9). But no substantive
difference is intended. The standard procedure [16] is to
integrate over the transverse-momentum variables first,
obtaining a final expression that is an integral over the
longitudinal coordinates. Our procedure is to integrate
(via using an average value) over the longitudinal vari-
ables first [22], obtaining a final expression that is an in-
tegral over transverse spatial coordinates. This is done to
emphasize the influence of the transverse size which is
relevant for color transparency effects.

III. EXPANSION TIME

Consider the time required for a small baryon to ex-
pand to its normal size. In the rest frame of the ejected
particle this time t,- is expected to be about equal to the
time it takes a quark to orbit the hadron [1]. For light
quarks this is of order ~/AQcD The ejected particle has
a large velocity in the laboratory frame, so time dilation
increases the expansion time to (E/M)t;. Here M is the
mass of the nucleon and E its energy in the laboratory
frame. The exact value of t, is not very important, be-
cause of the large y=E/M time dilation factor. For
large E the expansion time is long enough for the ejected
particle to leave the nucleus before expanding. The argu-
ment also works in the rest frame of the hadron. In that
case the nucleus is Lorentz contracted, so its small longi-
tudinal size allows the fast nucleon to escape before it be-
comes large.

The arguments just presented contain a hidden as-
sumption. To see this consider an alternate argument. In
the nuclear rest frame the object produced in the hard in-
teraction has a transverse size the order of 1/Q [23]. By
the uncertainty principle, the partons have a spread in
transverse momentum of order Q which is about the same
as the longitudinal momentum. Thus if the object has
moved forward 1 fm, it will have a radius of about 1 fm.
In this case, the object will expand and therefore interact
long before it can leave the nucleus. This second argu-
ment depends only on the uncertainty principle. The first
argument breaks down because the nucleon mass M is
used to compute y. Immediately after the collision we
are not. dealing with a nucleon. Instead the ejected object

I

can be regarded as a coherent sum of baryon states [8].
Thus the mass that enters in computing y should be not
M, but rather the mass of intermediate state which is of
order Q. Thus, it appears there is no time dilation and no
color transparency.

The color transparency phenomena can be regained if
only the low-lying states of the coherent superposition
are relevant for experiments that detect a final proton. In
that case, all of the masses M* are of the order of the nu-
cleon mass M and each is much less that Q. Thus the ob-
ject does escape before expanding. For y ))1, the condi-
tion on the masses M* can be restated in terms of' the

)fcMandelstam energy s as M* /s « 1. This is well satisfied
for excited states produced diffractively in pp ~pX reac-
tions [24].

Why should only low-lying states (M* /s « 1 ) be
relevant? Certainly the initial hard interaction produces
all states with an energy up to =Q. Consider a com-
ponent ~m ) of the ejectile wave packet. This component
is relevant if final-state interactions with the nuclear
medium, U, cause a transition to the proton

~
N ), i.e.,

(m~U~N)WO. If U is a soft (low momentum transfer)
operator, the matrix element (m ~U~N) becomes very
small for very-high-energy states ~m ). This is expected
in quark models, since quark wave functions of high-lying
states have nodes which suppress matrix elements of
(smooth) soft low-momentum-transfer operators such as
U [25].

To complete the argument that the expansion time is
long, we need to show that U really is a soft operator.
This follows from the ideas about perturbative @CD
(PQCD). In this theory high-momentum transfer occurs
via the fewest possible numbers of hard interactions.
Consider for example, the proton electromagnetic form
factor. In that case at least two hard interactions are re-
quired to get the three quarks moving at high speeds in
the same direction. In PQCD multiple-scattering terms
with two hard and any number of soft interactions are
favored over three hard interactions. This is because, the
third hard interaction would introduce a factor of order
A&CD/Q . Thus any additional interactions with the nu-
cleus must be low-momentum-transfer ones [26].

Note the importance of the exclusive nature of the pro-
cess. If we were concerned with inclusive processes and
the final state were not a proton but a rapidly moving set
of highly excited hadronic states, the relevant intermedi-
ate states would also be highly excited. In that case, the
closure approximation would not hold, the expansion
would be rapid and color transparency would not be ob-
served.

The crucial role [8] of the interaction with the nuclear
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ejecti le

AB+ Zk
A —

1

FICy. 2. The high Q process, (y*p,p) for a nucleon in a shell
model orbit n. The Born B and first scattering ST terms are
shown.

FIG. 3. Coordinates describing the interaction between the
ejectile and the nucleus.

medium is stressed in the present work. However, our
argument also rests firmly on specific notions regarding
quark-gluon dynamics. ST =&pIUGTH(Q)Ia&, (13)

IV. FORMALISM

In this section we present a quantum-mechanical ap-
proach that can be used to compute the cross section for
ejectile-nucleon interactions. This changes as the ejectile
expands during its motion through the nucleus.

To be definite, consider a high-momentum-transfer
process in which a photon of three-momentum q is ab-
sorbed and a nucleon of momentum p leaves the nucleus.
As usual, q = —Q . A special case is that of quasielastic
kinematics. Then, the detector is set so that p=q. In
that case, in the absence of final state interactions, the
struck nucleon is at rest before the collision. Our previ-
ous work [81 employed such kinematics. The present
equations are more general. For the moment, we consid-
er knockout from only a single shell model orbital, denot-
ed by o, . The necessary incoherent sums over all the oc-
cupied orbitals are done below.

Let the amplitude be defined as At, the two lowest-
order terms are shown in Fig. 2. In the first, or Born
term B the proton escapes without interaction. If full
color transparency is obtained, this is the only term to
survive. The first correction to the Born term is the
scattering term or second term denoted by ST . To the
stated order we have

A, =B +ST
The Born term is given by

B =&pITH(Q)Ia&=F(Q')&p —qla&, (12)

using the notation of Sec. II. The born term has a form
resulting from the use of the nonrelativistic separation of
internal and center-of-mass coordinates. The form factor
F(Q ) includes the integral over internal coordinates, the
factor & p —

qI a & is the Fourier transform of the bound-
state wave function. We shall be concerned with situa-
tions such that p=q, so Eq. (12) is reasonable. Specific
effects of spin are ignored here and throughout this work.

The second term is denoted by

where 6 is the Green's operator for the emerging small
object (ejectile). This object is not a nucleon, but rather a
wave packet of which the nucleon is just one component.
The wave packet is in the relative coordinates and corre-
sponds to the sum over baryon resonances discussed in
Sec. II. It is formed by the action of the hard absorption
operator, TH on the bound nucleon.

The operator U represents the interaction between the
ejected baryon and the nuclear medium. The nuclear in-
teraction can change the momentum of the ejectile and
also excite or de-excite the internal degrees of freedom.
That is, U acts in the product space of the internal
(quark) motion and the ejectile center-of-mass motion, see
Fig. 3. Its matrix elements are written as

U„(B,Z)= I d'b&Xlb&U(B, Z;b)&bIm &, (14)

where the internal baryon states are denoted by Im &,

with the nucleon as IX&. Note that the Im & are eigen-
states of the internal Hamiltonian and can only be
changed through interactions with an external potential.
B and Z are the transverse and longitudinal distances be-
tween the ejectile and the nuclear center and b denotes
schematically the transverse separations between the
quarks in the fast ejectile. Our present numerical calcula-
tions employ a simplification of using only two quarks in
the baryon. Once again, we neglect the dependence on
the internal longitudinal coordinates. The operator U is
of central importance in our procedure, and the next sec-
tion is devoted to explaining and hypothesizing a form
for this operator.

Inelastic form factors enter into Eq. (13) and are
defined as in Eq. (8):

F (Q')=&mIT (Q)IX& .

Here the index m denotes a nucleon N or any excited nu-
cleon N* or A.

The explicit representation of the ST term of Eqs. (11)
and (13) is

ST
m =N, N*, A

lpZ

J d B dZ dZ' Uz (B,Z)G (Z, Z')e'~ &B,Z'Ia &F z(Q ),(2~) (16)
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where p =
~p~ and

( g 2+ 2)1/2 (17)

The eikonal Green's function for the emerging baryon in
a state m is

A-l A-I

ip (Z —Z')

G (Z, Z') =8(Z —Z')
»5'm

with

(18)

p =p +M —M

Here M is the nucleon mass. Equation (16) is our method
of computing the quantum diffusion effects of Refs.
[3,13,14].

Our intent is to evaluate the full scattering term. How-
ever, it is useful to compare that term with one in which
the excited states are ignored. This is the distorted wave
(DW) approximation [or distorted wave Born approxima-
tion (DWBA)] under which

ST Dw—:f d B dZdZ'e '~ U~1v(B, Z)G~(Z, Z')

Xe'~z (B,Z'~a)F(g2) . (20)

Numerical comparisons between the amplitudes ST and
ST D~ are provided in Sec. VII.

V. THE EJECTILE NUCLEAR INTERACTION U

To proceed it is necessary to devise a model for the in-
teraction U. This is essentially the product of the
ejectile-nucleon total cross section by the probability to
find a nucleon (nuclear density).

The first step is to model the ejectile-nucleon cross sec-
tion (imaginary part of the forward ejectile-nucleon
scattering amplitude) o as [12]

o(b)=o b 2

bH
(21)

Note that b is the quantum-mechanical position operator,
representing the transverse separation of the quarks in
the baryon. The usual nucleon-nucleon cross section is
o., and b~ is the nucleon rms radius. The matrix element
of o. in the normal proton then yields the expected value,
o. For a small ejectile, the factor (blbH) leads to a
cross section smaller than o. This describes the effects of
color neutrality. Moreover, the operator b has off-
diagonal matrix elements that lead to excitation of nu-
cleon resonances.

The main point of Eq. (21) is that the ejectile-nucleon
cross section vanishes for small values of b, but takes on a
standard size for larger values. The form (21) is not
meant to be detailed representation of the nucleon-
nucleon interaction. However, it is useful for our first
evaluations of color transparency effects.

The combination of the quantum-mechanical b depen-
dence of Eq. (21) along with the eikonal propagation of
the ejectile Eq. (16) leads to an effective ejectile-nucleon
interaction that depends on the distance Z —Z'.

A-) A-l

FIG. 4. Soft-gluon exchanges leading to an effective ejectile-
nucleon cross section varying as b .

The factor —i enters since U depends on the ejectile-
nucleon transition matrix. The factors 2E and —,

' are stan-
dard kinematical factors.

VI. CLOSURE LIMIT

In this section we compute the quantity ST of Eq. (13)
in the limit where closure is valid. This is relevant since
color transparency occurs if ST vanishes.

Suppose that p are approximately the same for all
states m contributing significantly to the sum appearing
in Eq. (16), one may use closure to perform the sum over
m. (This is the "closure approximation. ") The necessary
condition for the validity of closure [8] is discussed
below.

When closure is valid, p =p and Eq. (16) can be
rewritten as

A crude phenomenological justification for the expres-
sion (21), see Fig. 4, is that the interaction is generated by
the exchange of soft gluons provided by the nuclear medi-
um; these are "dipole" or E1 gluons. Two such ex-
changes (each providing a factor of b) are needed so that
the ejectile remains a color singlet. Povh and Hufner [27]
found that hadron-proton total cross sections and for-
ward angular distributions (slope parameters) are closely
related for c.m. energies &s ~15 GeV. This indicates
that hadron-proton cross sections vary as the square of
the hadron radius, and provides some support for our
chosen form.

Kopeliovich, Litov, and Nemchik [28] have investigat-
ed the quadratic b dependence of the hadron-proton in-
teraction. They consider the form of Eq. (21), another
obtained by computing two-gluon-exchange diagrams,
and a third form that is essentially linear in b /bH.

In our calculations below, we mainly use the quadratic
form, but check that the linear and other forms produce
similar numerical results.

The ejectile-nucleon interaction can be used to con-
struct the ejectile-nucleus interaction, U. We find

0 b2
U(B,Z;b ) = —i2E p(B,Z)—

2 b2
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m=N, N
f d'Bdzdz „,U (Bz) . (B,z'I )F. (g').

(2'�) 2ip
(23)

Notice that the exponentials have vanished and that the
propagator has reduced to a step function divided by 2ip.
The only m dependencies are in U& (B,Z) and F &(Q ).
Let us then define the quantity S as the sum of the I-
dependent terms. Hence,

mately independent of m. The relevant idea is that U is a
soft interaction that does not connect the nucleon ground
state to excited states, I, of high mass. The difference
between p and p the momentum of the outgoing proton
is Ap =p —p with

S= gU~ (B,Z)F ~(Q ), (24) bp ="t/E M,„—+E —M= ——(M —M )/(2E) .

which has the explicit representation [using Eqs. (14) and
(4)]

S= f ( X
~
b ) U( B,Z; b )K ( gb /2 ) ( b

~
X )d b . (25)

In writing the above equation we have ignored the (con-
stant) proportionality factors that relate TH and the func-
tion Eo. This is done throughout the remainder of the
paper. These factors are common to all the cross sections
and divide out in the ratios we plot.

The basic idea is that the function Ko is non-negligible
only for small values of the separation b and vanishes for
larger b, while the opposite is true for the function U. U
is a long-range soft operator because all of the hard in-
teractions are contained in the operator TH (here
represented by the function Ko ).

The use of Eq. (22) for U allows one to write S as

—b2gb2 2S= i2E p(B—,Z) f d'b e K~(gb/2) . (26)

036 V fmS=—i2E p(B, Z)F(Q )— (27)

To be explicit, we compare the closure result with the
standard DW expression (obtained by setting b /bH to
unity). The scattering terms are related by

The factor b /b~ provides the suppression that leads to
color transparency. %'ithout it the above integral would
yield the nucleon elastic form factor times the standard
value of U, the so-called optical potential.

Note that we will ultimately evaluate Eq. (13) by using
an intermediate complete set of baryon states. Thus
b /b~ is to be treated as a quantum-mechanical opera-
tor.

Evaluation of the integral of Eq. (26) leads to

R~(M —M )

2 6E
(30)

The above criteria, derived in a time-independent
fashion, is compared with the time-dependent approach
of [1] in Ref. [8]. It is shown there that the requirements
for the validity of closure are essentially the same as
those for the escape time (y t; ) to be sufficiently small.

VII. EVALUATIONS

The next step is to make an explicit evaluation of the
scattering term. A11 of the inputs here are specified.

The oscillator model [Eqs. (2) and (3)] that represents
the baryon wave functions is of special use here because
the interaction Uis proportional to b . Since

b' X&=b'( &) —l&g &), (31)

(29)

Since Ap decreases as E increases, Ap vanishes. Then
closure will hold, and color transparency will be obtained
for large enough values of E.

To see how large is "large enough, " examine the m
dependence of the eikonal Green's function of Eq. (18).
There is a factor of 1/p times an eikonal phase factor.
The term 1/p is essentially the saIne as 1/p for the en-
ergies and masses of interest here. However, the require-
ment that there is no p~ dependence introduced by

ip (Z —Z')
eikonal phase factor, e, provides a much more
stringent criterion. This is because this variation is
governed by the nuclear rms radius R„, and 8„))I/p.
Nuclear form factors vary as 1 —

q R z /6, so one requires

a, clos ~p„2 a, DW (28)

If the condition Eq. (9) that perturbative @CD applies,
then S essentially vanishes. In the closure limit, the
scattering term ST is proportional to S and it too van-
ishes.

Next we turn to the question of the condition necessary
for the closure approximation to be accurate. To do this„
examine the quantity p for large values of the energy E
of the outgoing nucleon. One can use closure or com-
pleteness to do the sum on m in Eq. (23) if p is approxi-

only the ground X state and first excited X* state (i.e.,
the Roper resonance) enter into computing the scattering
term Eq. (16) ST . Equation (31) is an exact conse-
quence of our model for the baryon wave functions, Eqs.
(2) and (3). Other choices of wave functions (i.e., hydro-
genic) lead to a more complicated superposition, but the
coe%cients of the ground and first excited states are by
far the largest [30].

Using the baryon wave functions and elastic and inelas-
tic form factors of Sec. II along with Eq. (31) in Eq. (16)
leads to the result



ENERGY DEPENDENCE OF COLOR TRANSPARENCY

e '~ z eaST = —F(Q') f d'B dZp(B, Z), f dZ'e '~' '
' '

(Z, Z')e" &B,z' a&,
(2~) r 2

,gz, z )=
Pi

(33)

where the notation is simplified by defining an effective
cross section o.,z. This term is

(
—

)& q Ir&

o,@Z',Z)
exp —f dZ'- p(B,Z')

(2~)' ' z 2

(38)

i(p —p, i&z —z&o.,@Z,Z')=cr(1 —e '
) (34)

is valid. The exponent contains the distance Z' —Z
which can be as large as the nuclear diameter. According
to Eq. (29) (with E=p), the exponent varies as the nu-
clear radius divided by the momentum p. At values of p
large compared to the reciprocal of the nuclear diameter
the argument of the expotential function in Eq. (34) ap-
proaches zero, the effective ejectile-nucleon cross section
o,z vanishes, and color transparency is obtained.

The next step is to include terms beyond the first order
in U. It is then worthwhile to define a bit of formalism.
Start with the general expression for the amplitude to
knock out a bound nucleon of state o. from the nucleus.
This is the knockout amplitude:

The notation p i is an abbreviation for the momentum of
the outgoing N~ so that p& =p + ~ An overall factor of

E/p is ignored on the right-hand side of Eq. (32), but is
included in the numerical work. Equation (10), which in-
corporates the similarity of the nucleon and first excited
states for b =0, has been used in arriving at Eq. (32).

It is useful to examine the effective cross section of Eq.
(33). The corrections to closure appear in the presence of
the factor p/pi and in the exponential. The quantity
p /p &

—1 is very small for the energies and masses
relevant here. Thus it is safe to replace p/p& by unity
and the approximation

If the standard DW approximation [recall Eq. (20)] were
used, the nucleon inelastic excitations would be ignored
and the wave function would be

ip r

& IV, &."'= ' „,-pI —x(B,Z)t,(2~)'" (40)

y(B,Z)= —f dz'p(B, Z') .
oo

(41)

These equations for the wave functions are the central
formal results of this paper. The effects of perturbative
QCD can be included by using a wave function g of a
standard form except for the use of the effective ejectile-
nucleon cross section cr,z, Eqs. (33) and (34). The utility
is that these scattering wave functions can be used to
compute any reaction involving outgoing protons. Con-
sider the (p,pp) reaction. Then the amplitude can be
written as

It is also useful to display the wave function for outgoing
boundary conditions:

&rig, &'+'

z, a,@Z,Z')
exp —f dZ' p(B,Z')

(2~)'" 2

u.=F(g')'-'& q, I J, Ia &, (35)

where

&rl J, lr'&—:&(r —r')e"' (36)

Here ' '& g is the adjoint of the scattering wave func-
tion with incoming boundary conditions. The compar-
ison of Eqs. (32) and (35) shows that to the present order
the scattering wave function is given by

—ip r
'-'&q„Ir&= ' „, 1 —f dz' '(z, z)p(B, Z )

The above is only the first Born approximation, however,
its form is suggestive of the first term of the optical po-
tential approximation to the full eikonal multiple-
scattering series. Thus one sums an important series by
exponentiating the right-hand side. Then

Here the interaction between the incident and bound nu-
cleon is represented by the operator t.

We are now prepared to calculate the cross sections for
the (y*,p) and (p,pp) reactions in which a nucleon is
knocked out of an orbital o, . Most experiments measure
a process in which a nucleon can be knocked out of any
(partially) occupied orbital. Then the relevant quantity is
an incoherent sum such as

do~gAf I~.

Note that this is the correct quantum-mechanical ex-
pression. The semiclassical treatment of Farrar et al. in-
volves ratios of cross sections obtained by integrating the
product of the absolute squares of the bound and scatter-
ing wave functions. Our numerical evaluations of Eq.
(43) allow us to determine that the semiclassical approxi-
mation is accurate to a few percent in the (e, e'p ) reac-
tion, but only to about 25% in the (p,pp) reaction. In
both cases the effect is energy independent for the ener-
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gies relevant here. The quantum-mechanical calculation
is needed at lower energies.

In the following sections we shall be concerned with
the ratios of full and distorted wave cross sections to the
Born cross section. The calculations are performed by
obtaining orbitals a from the harmonic-oscillator shell
model with oscillator frequency co =41 MeV/2 '

VIII. NUMERICAL RESULTS

0.6

Ae {p,pp

I232 /
0
~Born

The ratios of cross sections obtained with our formal-
ism are presented in this section. The first ratio of in-
terest is obtained by dividing the cross section obtained
from our wave-packet (full coupled-channel) formalism
by that from the Born approximation. A ratio of unity
indicates that the medium is transparent. Another ratio
is obtained by comparing the cross section obtained in
the standard DWA (just the nucleon in the intermediate
state) with that of the Born approximation. The curves
obtained with the DWA are called "standard" in the
figures. Our theory is compared with the results of the
(p,pp) experiment of Carroll et al. in Fig. 5. Ratios of
der Idt( =90') in the c.m. obtained with Eq. (43) are plot-
ted. The proton-proton transition matrix t is assumed to
provide a constant that divides out of the ratios. The
cross section o. is taken as 40 mb. This represents the to-
tal pp cross section including elastic scattering. Events
resulting from elastic pp scattering are considered to be
removed from the beam due to nuclear inelasticities. The
imaginary part of the pp transition matrix includes pro-
cesses in which the struck bound proton is knocked out
of the nucleus. The exact number of such processes
counted in an experiment will depend strongly on the ex-
act conditions of the experiment especially energy resolu-
tion. Since the results are largely determined by first-
order perturbation theory the effects of the interaction
will scale linearly with the value of 0. used.

For the (p,pp) calculations, p(R) of Eq. (22) is taken as
a square well. The numerical results are not very sensi-

tive to this choice (a few percent for Al).
In our model, the ejectile is a superposition of many

states, but only two contribute to the (p,pp) reaction.
One is a nucleon. The other is an excited state, with a
mass that we treat as the only free parameter. This
second state could represent the 6, the actual Roper reso-
nance, or the average of the lowest p-wave X* reso-
nances. Thus in Fig. 5 we show the results with three
different values of its rest mass. The lines give the result
when we have used Q =p&,b for the incident momentum
and Q/2 (there are two exiting nucleons) for the exit
momentum. This assumes that the struck nucleon has no
momentum. The crosses (mass 1440-MeV intermediate
state) and filled boxes (mass 1232 intermediate state) are
obtained using the experimentally obtained values of
momentum of the struck nucleon. The experiment is
shown by the open boxes. By far the best agreement in
the region below 10 GeV comes when 1440 MeV, the
Roper mass, is used. Thus if this experiment is really see-
ing color transparency the condition that the mass
difference between the Roper and the nucleon be small
compared to the energy of the outgoing proton is
sufficient for closure. For a 5 intermediate state the rise
due to the onset of color transparency occurs at too low
an energy, while for an intermediate state of mass 1770
MeV the rise occurs at energies greater than that of the
energy of the experiment. None of the curves we show in
Fig. 5 display any sign of the effect decreasing drastically
with increasing momentum as the data does.

A downturn in the ratio of cross sections could be pro-
duced if a higher-energy state contributes with the oppo-
site sign. We explore this possibility in Fig. 6 which
shows results when two excited baryon states are includ-
ed. One is again the Roper but with the coupling in-
creased to 1.2930 times the original matrix element of the
operator U. The other has mass 2186.5 MeV and cou-
pling —4. 36. These parameters are the result of a fit.
This does give a reasonable description of the data, but
this is only a curiosity since we do not have a model
which will give these values of the parameters.

The use of an interaction U that varies as some power
of b other that two or the use of another set of baryon

0.6

"A&

0.2—
l77Q

xx~" 0.4—

Qi
0

t

5 10
p~, ~ {Gev)
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0
~ Born

O2~
l

FKx. 5. Various models of the 'Al{p,pp) reaction; see text
for explanation: Energy dependence of ratios of do. /dt. The
nurnerators are calculations using the color transparency or
DW (Glauber) calculations defined in the text. The denornina-
tor is the Born approximation. The pp scattering angle is =90
in the c.m. The open boxes are the experimental data of Carroll
et al. [9].
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FIG. 6. Eftect of an arbitrary third resonance on the
Al{p,pp) reaction.
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FIG. 7. The (e,e'p) reaction for a ' C target: Energy depen-
dence of ratios of forward (p =q) values of d o. /dt. The
numerators are calculations using color transparency or the
DW (Glauber) calculation defined in the text. The denominator
is the Born approximation to the forward value of do. /dt. The
numbers refer to the values of M, in MeV. The notation "stan-
dard" refers to the DW or Glauber calculation.
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wave functions would lead to coupling to more states. A
brief investigation using an interaction U that varies as b
and the harmonic-oscillator basis states reveals that the
closure approximation would be valid at some perhaps
slightly higher energy and a smooth rise towards color
transparency would still be obtained. Modifying U by in-
cluding a factor of ln(b) is computed to have little effect
at the energies of interest.

We next explore the use of the (e, e'p) reaction which
should be simpler to understand than the (p,pp) reaction
[31]. Indeed, the central feature of the Ralston-Pire ex-
planation [6] of the (p,pp) energy dependence involves
the specific oscillatory s-dependence of the pp interaction
at high energies. Such an s dependence has not been ob-
served in studies of the interaction between a proton and
a virtual photon. The Brodsky —de Teramond [5] ex-
planation of the (p,pp ) reaction involves a proton-proton

0 3 t I I I 1 ( I I i t I 1 I I t I )

5 IO l5 20
photon mome~turn Iq I

(Gev)

FIG. 9. The (e,e'p) reaction for a ' Fe target: Ratios of
cross sections to Born approximation cross sections.

resonance at energies near the threshold for cc produc-
tion. One can perform the (e,e'p) reaction for high-
momentum-transfer kinematics that avoid this resonance.

Thus we present results for a (e,e'p) reaction on the
nuclear targets ' C (Figs. 7 and 8), Fe (Fig. 9), and

Au (Fig. 10) as a function of Q =q. The quantity p(R)
used to obtain U of Eq. (22) is taken to be of the standard
Wood-Saxon (Fermi) form. The proposed experimental
[10] (quasi-elastic) kinematics are used, so that Q is the
magnitude of the momentum of the outgoing proton
which is the same as that q of the incident virtual photon.
The photon energy co is then given by co=(Q +M2)'~ .
Except for Fig. 7 the ratios shown are those of angular
distributions integrated over the direction of the outgoing
proton.

In Fig. 7 ratios of forward (p=q) values of do. Idt are
presented. A comparison of Figs. 7 and 8 shows that
color transparency effects for fixed angle der /dt and the
integrated angular distributions are different. In general,
the effects of color transparency occur at relatively low
values of Q. This is because of the assumption that the
(p,pp) data of Carroll et al. displays the effects of color
transparency. In that case, it is reasonable to use the rel-
atively low mass of 1440 MeV to compute the momentum

Q (GeV~)
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FIG. 8. The (e,e'p) reaction for a ' C target: Ratios of cross
sections to Born approximation cross sections.
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FIG. 10. The (e,e'p) reaction for a ' Au target: Ratios of
cross sections to Born approximation cross sections.
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p, . Note also that the effects of color transparency are
more likely to be observed using a lighter target. This,
along with the energy dependence needed for complete
color transparency, is qualitatively described by the cri-
terion of Eq. (30). The relevant experiment will be done
at the Nuclear Physics at SLAC (NPAS) facility in the
near future [10].

IX. DISCUSSION AND SUMMARY

We briefly review the assumptions, procedures and
findings of the quantum-mechanical approach to color
transparency presented here. First, we agree with the
standard analysis [1,2] that perturbative QCD (PQCD)
does indeed predict that the nuclear medium becomes
transparent at some high-momentum transfer Q . The
required value of Q is presently unknown, and cannot be
computed reliably. Thus, data must be used to determine
the conditions necessary for the validity of PQCD. The
interpretation of the data will not be simple, since the
many nonperturbative effects disappear at different rates
with increasing values of Q . Hence it is important to
use as many different reactions as possible. The (p,pic)
and (e, e'p) processes are studied here, but other good
possibilities include (vr, rrp ) and (K,Kp ).

It is also possible that color transparency will be ob-
served for Q too small for PQCD to be valid [14]. In
this case as well more experiments are needed.

Our approach is completely quantum mechanical and
avoids the use of semiclassical approximations. Hadronic
degrees of freedom are found to be useful in our calcula-
tions, but the underlying dynamics are those of the quark
model and perturbative QCD.

The arguments for color transparency are based on
three main points.

(1) Small objects (ejectiles) are produced in high-
momentum-transfer processes. This seems solidly based
on the uncertainty principle and relativity. Small objects
are important at high-momentum transfer, even if PQCD
is not strictly valid [14].

(2) Small objects interact weakly. This seems true for
field theories such as QED or QCD which have a concept
of neutrality. However, it is dificult to know how weak.
We have used the Gunion-Soper [13] effective ejectile-
nucleon interaction that varies as b /bH, where b is the
separation between the quarks in the ejectile and b~ is
the standard hadronic size. Other forms yield similar re-

suits. The present calculation is qualitative, but our
quantum-mechanical framework can also be used for
more detailed calculations as information about the in-
puts is improved.

(3) If the particle stays small it can escape from the nu-
cleus without further interaction. This point is the focus
of our investigation. The use of the form b /bH leads to
the effective ejectile-nucleon interaction of, e.g. , Eq. (33).
This interaction is small if the closure approximation
defined in the Introduction is valid. When the closure ap-
proximation is accurate the effective-ejectile nucleon in-
teraction vanishes.

The (third) condition that the ejectile escape the nu-
cleus before expanding has been shown to be equivalent
to the closure approximation [8]. Identifying the expan-
sion time condition or equivalently the phase coherence
condition [8,32] with the closure approximation makes it
easier, at least in principle, to assess the validity of the
approximations. Here we have used calculations made
without the closure approximation to show how the clo-
sure approximation becomes more accurate as the energy
and momentum transfer increases. Our work stresses the
crucial role of the final (or initial) state interaction allow-
ing the closure approximation ever to be valid. In addi-
tion we find, based on the comparison with the data of
Carroll et al. [9], that color transparency can be under-
stood as an interference effect between nucleon and Rop-
er intermediate states in a coupled channel calculation.
Our computations are consistent with the data below 10
GeV, but at higher energies additional physics is needed.

Moreover, we showed that a partial validity of the clo-
sure approximation, leads to partial transparency. As a
result, significant enhancements over standard distorted
wave approximations are obtained at fairly modest values
of Q . Thus future experiments with diverse beams could
verify the existence of color transparency and elucidate
perturbative QCD.
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