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Generalized Riemann g-function regularization and Casimir energy for a piecewise uniform string
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The generalized g-function techniques will be utilized to investigate the Casimir energy for the
transverse oscillations of a piecewise uniform closed string. We find that the g-function regulariza-
tion method can lead straightforwardly to a correct result.

The study of vacuum fluctuations, as embodied in the
Casimir effect, ' has been a subject of extensive research.
The Casimir energy may be thought of as the energy due
to the distortion of the vacuum. This distortion may be
caused either by some background fields, or by the pres-
ence of boundaries in the spacetime manifold. Early
study of the Casimir effect of a membrane was performed
by Kikkawa and Yamasaki, and some work on this sub-
ject has been done by us. " Recently, Brevik and Nielsen
studied the Casimir energy of the transverse oscillations
of a piecewise uniform string. They regularized the
zero-point energy by means of the exponential cutoff
method and concluded that "The regularization pro-
cedure in the present problem is more delicate than what
one may expect beforehand. Thus, a straightforward ap-
plication of the Riemann g-function regularization
method would lead to an incorrect result. " In this paper,
the generalized Riemann g function will be utilized to in-
vestigate this topic. We find that, with the application of
the generalized Riemann g function, the g-function regu-
larization method would lead to a correct result.

We start by introducing a generalized Riemann
function. The analytical continuation for the Riemann g .
function g(s) is not difficult because of the functional re-
lation or so-called reAection formula. A function which
in a sense is a generalization of g(s) is defined by

1
g(s, a)= g (0&a &1, Res ) 1) .

„=, (n+a)'
This function reduces to g(s) when a = 1, and to
(2' —1)g(s) when a =

—,'. For Res) 0, we have

I (s)=(n +a)' J x' 'e '"+' dx
0

Hence,
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if the inversion of the order of summation and integration
can be justified; and this is guaranteed by the absolute
convergence if Res& 1. Now we consider the integral

s —1 —az

I (s,a) =I dz,c e' —1

where the contour C starts at infinity on the positive real
axis, encircles the origin once in the positive direction ex-
cluding the points +2i~, +4i~, . . . , and returns to posi-
tive infinity. Here z is defined as exp[(s —1)lnzj when
the logarithm is real at the beginning of the contour; thus
I(lnz, a) varies from 0 to 2~ round the contour. We can
take C to consist of the real axis from ~ to p (0 & p & 2~),
the circle ~z~ =p, and the real axis from p to ac. On the
circle, the integral tends to zero with p if Res) 1. On
making p —+0 we therefore obtain

—e' 'I (1 —s) z' 'e

2' l c 1 —e

Equation (5) provides the analytic continuation of g(s, a)
over the whole plane, and g(s, a) is regular everywhere ex-
cept for a simple pole at s=1 with residue 1. Expanding
the loop to infinity, the residues are at +2m~i; hence, if
Res(0, we have
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If s is an integer, the integrand in I(s,a) is one valued,
and I(s,a) can be evaluated by the theorem of residues.
We come to the following expressions of g(s, a):

B„+i(a)
g( —n, a) =-

n+1
g( —1,a ) = —

—,
'

( a —a + —,
' ),

g(2n, 1)= —
—,
'

( —1)"B„
g(1 2n, 1 )=-

2n

where B„(a) is the Bernoulli polynomial and B„ is the
Bernoulli number.

It may be worth emphasizing that the generalized g
function g(s, a) is the fundamental g function associated
with the piecewise uniform string, while g(s) is the funda-
mental g function associated with the uniform string.
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By using the conditions of continuity of transverse dis-
placement and elastic force across the two junctions
cr =O, L (L =L,+L„)and o =L„one can get the disper-
sion equation

(1—x) cos(coL —2coL, ) —(1+x) coscoL +4x =0, (9)

where x = T, /T„. With the parameter y =L „/L„it is
convenient to rewrite the dispersion equation (9) in the
form

The composite string model consists of two parts I and
II, endowed in general with different lengths (L, and
L„), tensions (T, and T„) and mass densities (p, and
p„), although adjusted in such a way that the velocity of
sound always equals the velocity of light. Let

iffy=

i'(o, ~)
be the transverse displacement of point o. at time ~. Tak-
ing into account right- and left-moving waves in regions I
and II, we have

EI+ II Euniform (12)

where EI+» is the zero-point energy for parts I+II, and

E„„;&„ is the zero-point energy for a uniform string.
Unfortunately, the dispersion relation will not be solved
in full generality; we shall solve it in some special cases.

(i) We consider the special case of x = 1, which corre-
sponds to a uniform string. From Eq. (9) we have
co„=2~n /L (n = 1,2, 3, . . . ), and the Casimir energy is

oo

Euniform 2 X g ~n
2 I

27T
g( —1, 1)=—

L ' 6L

where the factor 2 takes into account that the mode co, is
degenerate.

(ii) The x —+0 case implies that T, ~O, if T» is as-
sumed finite. From Eq. (9), we get two sequences:

mn

substitution x ~1/x; hence, we shall only consider x in
the interval 0 &x & 1 in the following. According to Ref.
5, we define the Casimir energy for the composite string
as

~ 2 1+x
sincoL, sin(ycoL, )+F(x)sin coL, =0,

where F(x) is defined as

(10)

m.n

(n =1,2, 3, . . . ) .

F(x)= 4x
(1—x)

For definiteness we take L, to be the smaller one of the
two lengths, so that y ~ 1. The Casimir energy is a very
useful concept; it may be viewed as the "zero-point ener-
gy" of the vacuum. In order to calculate the Casimir en-
ergy of the transverse oscillations of a piecewise uniform
string, we must determine the frequencies ~ of the possi-
ble transverse oscillations once the quantities x, L, and
L, are given. Note that Eq. (11) is invariant under the

I

The Casimir energy is

E= g( —1, 1 ) + g( —1, 1 ) — g( —1, 1 )
2LI

'
2LII L

1

24L y
g+ ——2

(iii) In the y =2J + 1 (J = 1,2, . . . ) cases, the frequen-
cy equation can be reduced to

J
sin cuL, g

j=O

2J+1 1 2J+2 1 J+1
2. +1 +—2. +2 F(x) (1—sin coL, ) +— . +1 F(x) '( —sin coL, ) =0 .
J 2 2 J

(16)

In the present case, the general structure of the frequency
spectrum is found as follows. First, the dispersion equa-
tion (16) has one degenerate branch, given by

mn
CO-

L

(0,—,'], j =1,2, . . . , J. The value of P is found by explicit
calculation from Eq. (16) once x and J are given. The
zero-point energy for regions I+ II is

E,+„=E(degenerate branch)+QE(double branches)

Next, there are J nondegenerate double branches, ob-
tained by solving an algebraic equation of degree J in
sin coLI. Each double branch corresponds to a definite
solution for sin mLI. The frequency spectrum corre-
sponding to such a branch can always be expressed in the
form

7r(p +n),
co L ~(l f3, +n), —

1=2—
2

n+ — g g (p +n)

+ g (1 P/+n)—
n=0

(19a)

where n =0, 1,2, . . . and p is a number in the interval By using Eqs. (1) and (7), we find
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217(J + 1 ) m J(2J+1)
6L

J
[pj+(1 p—)) ] . (20)

+ g [g( —l,pj)+g( —1, 1 —p, )]J In the y=1, x%0 case, the dispersion relation (10)
reduces to cosmL=1. The Casimir energy is

m(2J+1)J ~J y [pp+(I p )p]
6L 2L .

)
~ J 6L

(19b)

E = g( —1, 1)— g( —1, 1)=0 .
2m 2m'

L ' L (21)

Then the Casimir energy is
(iv) In the y =2J cases, the frequency equation can be

reduced to

2J —2 2J+1
(1 coscoL—, )

' g (coscoL, )~+(coscoL, +1) g 2. +1 (coscoL, ) ~ (cos coL, —1)J
j=0 j=O -' +'

r

2J 2J+1—[1+F(x)] g (coscoL, )~+(coscoL)+ 1) g 2. + 1
(coscoL, ) J '(cos coLt —1)~

j=0 j=o -' +' r —O

(22)

The structure of the spectrum is similar to (iii). There ex-
ists one degenerate branch from the factor 1 —cos~L&.

2''n
L

I

By using Eqs. (1) and (7), we have

Next, there are 2J nondegenerate simple branches from
the quantity in large curly brackets in Eq. (22). Each of
these branches correspond to

~ 2J+I+ g [g( —1,P) /2 ) +g( —1, 1 —
P~ /2 ) ]

m(P +2n)
Li

~(2—P. +2n)
L(

(24)

~J(4J+1)
3L

~ 2J+1
gL

(26)
where n =0, 1,2, . . . and p. is a number in the interval
(0,1],j=1,2, . . . , 2J. The value of p. is found by explicit
calculation from Eq. (22) once x and J are given. The
zero-point energy for regions I+ II is

E&+«=E (degenerate branch)+gE (simple branch)

1 2m=2 — g n
2 LI „

Then the Casimir energy is

1TJ(4J + 1 ) 17(2J + 1 ) y [pp+( p )p]
3L 8L j=l

(27)

2J oo oo

+— g g ( 2n +P~. ) + g ( 2n +2 —
P~ )

n=0

In conclusion, we have used the generalized Riemann
g-function regularization method to get the correct ex-
pression for the Casimir energy of a piecewise uniform
string. This method is rather formal in nature than the
exponential cuto6'method used in Ref. 5.
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