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Spherically symmetric thin walls

M. Khorrami* and R. Mansouri*
International Centre for Theoretical Physics, Trieste, Italy

(Received 10 September 1990)

Assuming a continuous ansatz for the metric we solve the Einstein equation for a thin wall direct-
ly by using the method of distributions. The same results as the thin-shell formalism of Israel are
regained.

Here we report on a simple and direct way of solving
the Einstein equation for a spherically symmetric thin
shell of mass, with any equation of state. Given any
spherically symmetric thin shell with the (2+ 1)-
dimensional timelike history X, we ask for the metric of
the entire spacetime and the dynamics of the shell (see
Fig. 1). Assuming the spacetime to be otherwise free, the
exterior metric (g„)will be Schwarzschild and the inte-
rior one (g„, ) fiat. This problem has been solved by Isra-
el' using the Gauss-Codazzi formalism, relating the sur-
face stress-energy tensor of the shell to the exterior cur-
vature of X. Since then this method has been used by au-
thors interested in the dynamics of domain walls. ' The
thin-shell formalism of Israel circumvents the application
of the theory of distributions.

Now Geroch and Traschen show that, at least for
(2+1)-dimensional walls, one can even use discontinuous
metrics as solutions of the Einstein equation. This leads
to nonlinear operations with distribution-valued tensors.
On the other hand, the validity of thin-shell idealization
has been examined. This is because of the work of Ray-
chaudhuri and Mukherjee indicating that thick walls do
have stress-energy tensor components that are orthogonal
to the wall. It was required that these components
should vanish in the zero-thickness limit. Widrow treats
the Einstein-scalar equations for a thick domain wall
with planar symmetry. He then takes the zero-thickness
limit for his solution and shows that the orthogonal com-
ponents of the stress-energy tensor vanish in that limit.
The same question has been studied for general domain
walls by Garfinkle and Gregory. They expand the cou-
pied Einstein-scalar equations that describe the thick

gravitating wall in powers of the thickness of the wall.
The solutions of the zeroth-order equations reproduce the
results of the usual Israel thin-wall approximation for
domain walls.

The direct method we are going to use has already
been applied to plane walls leading to the same results as
the Gauss-Codazzi formalism. In the case of a spherical-
ly symmetric thin shell we proceed as follows. First we
write the exterior Schwarzschild and interior Bat metric
in the form

s2 =e"'"dt evIr~dr ——r2(dg +sin gdtp )+

2M dt2 — 1 —2M
r r

—r (d0 +sin 9dy ),
and

ds =dt dr r(d 0 +—sin 0@—) . (2)

r=a(r, t), t=b(r, t),
upon substitution in (2), leads to

ds =(b, —a, )dt +2(b, b „—a, a „)dtdr

—(a „b„)dr —a (d0—+sin 8dy2) . (4)

Now, we obtain, for the conditions of continuity of the
metric at X,

/3~ —ct~=e~~+~ 2(/3 /3
—ct ct )=0

2 ~2 —v(R )

This metric is discontinuous at X defined by r =R (t).
However, the discontinuity is an artifact of coordinates
chosen, and can be removed by an appropriate coordinate
transformation. The transformation

where

FIG. 1. Spherically symmetric thin shell with (2+ 1)-

dimensional timelike history X.
and A =a(R (t), t).

These equations can be solved to find

557 1991 The American Physical Society



BRIEF REPORTS

y
—

2( +y2+ R 2 —v(R )R 2
)

y
—2R (e v(R) Qy2+R 2

)

13
—

y 2(ev(R)~y2+R 2 R 2
)

p =y 2R (1—e v(R)~y2+R 2
)

(6)

T"'=yS"'5(r —R (t)), (15)

(u")=(y ', R, O, O),

where the overdot denotes the differentiation with respect
to proper time of the observer u". Now, from (12) and
(13) we can easily obtain the desired relation between T"'
and S":

where

( e v( R )
—v( R )R 2

)
) /2

2
(7)

where y is given by (7).
Substitution from (8), (10), (11), (13), and (14) into (15)

gives
Now, after establishing the continuity of the matrix at X
we can write it as a distribution:

g =g„+ 0(r —R)+g„6(R —r), (8)

where g„+ and g„can be read off'from (1) and (4).
This metric is regular and can be differentiated for-

mally. It turns out that the erst derivative of it is propor-
tional to the step function. Its second derivative enters
linearly in the expressions for curvature and Ricci tensor.
The Ricci tensor vanishes in the exterior and interior of
the shell and is just proportional to 5(R r) T—here. fore,
it suSces to calculate just terms in the second derivative
of the metric which are proportional to 6. This leads to

(T„)=y

2e 2v~

—y 'Ro

—y 'Ro-

e Rcr
0
0

0 0

0
0

R sin L9

X5(r —R) .

The Einstein field equation

R„=a.( T„,' Tg„)——

(16)

(17)

combined with the continuity conditions (6) then leads to

R~= —
—,'R 4[(X UW), R, +R e'(v „e U„+—2V, )

—R+ e U,R, ]5(r —R),
Ro) =+—,'R [(X UW),

—R (e"W, —e U, )]5(r —R),

R = (+e'+R —+1+R ),2 ds

—R =&1+R' &e"+R'—.
2

(18)

(19)

'[4R'+(X'UW) „—R'e ( —v, „e + W, , )

+R e (2V, + W, R, )]5(r —R),
R 22

=
—,
' [e (2R +X, ) +e X,R, ]5(r R)—,

R33 sin OR22,

(9)

The equation of state of shell Quid r=r(o ) added to these
field equations determines R, o, and ~ as functions of
time. From (18) and (19) we obtain

doR =Rpexp
~0 o —r(o )

8 =b —awhere U =b, —a „V=b,b, —a, a „,
X=—a .2

Now we have to specify the energy-momentum tensor
of the shell. We take the shell matter as ideal Quid with
o. and ~ as surface energy density and tension, respective-
ly. The unit spacelike normal to X will be called n". The
induced three-metric is

R =Ro
Op

' —1/2(1 —I )

or R
Ro

—2(1—1 )

(21)

For dust shell, I =0, we obtain

The equation of state ~=I cr, where I is a constant
satisfying 0 ~ I ~ 1, is of special interest. In this case (20)
leads to

Ap~ =gp~+ npfl ~ (10)

S" =cru "u +r(h"' u "u ), u "u =—1,
where the vector field u" represents the Quid motion on
X. S" is related to the energy-momentum tensor T" by

S" = dlT" (12)

The surface stress-energy tensor of the shell X will then
be written as

(22)

o. =const . (23)

From Eqs. (19) and (1) we can obtain the mass of the
shell, M, as a function of R, its derivative and o. :

which is the well-known result of Israel. ' For domain
wall, I = 1, we obtain the result of Ipser and Sikivie:

(n)') =( —e R, —y 'e",0,0), (13)

where l is the proper distance through X in the direction
of the normal n" For the .metric (8) the vectors n" and
u" are given by

M = +1+R
2

(24)

which is the same as that obtained by Israel' and Ipser
and Sikivie.



BRIEF REPORTS 559

o. R
4(2 (T—R )

(25)

The condition of staticity leads obviously to positive
pressures. From (18) and (19) we obtain
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