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Nonperturbative fermion propagator in massless quenched QED
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The Schwinger-Dyson equation for the massless fermion propagator in quenched four-dimensional

QED is solved for different forms of the fermion-photon vertex. A nonperturbative, analytic solution
that is multiplicatively renormalizable and self-consistently related to the vertex by the Ward identity is
obtained. Its behavior is quantitatively diA'erent from that found in the simple ladder approximation, for
instance.

I. INTRODUCTION

Even a well-known gauge theory, such as QED, is real-

ly only understood in the perturbative regime. Indeed, it
may have a quite surprising nonperturbative behavior if
the coupling is much larger than —„', [1,2]. To learn

whether such results are real consequences of such a
four-dimensional field theory requires a systematic inves-
tigation of the approximations needed to make such non-
perturbative studies tractable. For lattice computations
this means a careful study of finite-size effects and of fer-
mion mass extrapolations as well as the more obvious
dependence on the number of lattice sites. In the contin-
uum calculations we consider here, this involves different
questions: in particular, the effect of the truncations and
renormalizability of the Schwinger-Dyson equations.

Here we study the massless fermion propagator in
four-dimensional quenched QED (QED&). This is, in

principle, one of the simplest problems one can look at
since the photon propagator is assumed bare and conse-
quently the coupling e is unrenormalized. Nevertheless,
the full fermion propagator is nontrivial. The
Schwinger-Dyson equation for the fermion propagator
S~(p), illustrated in Fig. 1, is given by

iS~ '(p) =iSF '(p)

2

j d k y"SF(k)I"(k,p)h„(q),
(2ir )

where SF(p) is the bare fermion propagator, I"(k,p) the

full fermion-boson vertex and, with q =k —p, the photon
propagator is

)LI V

gPv(q) gPv
q q

q "q'
4

where the bare propagator has V(P ) = 1, Eq. (1) is an in-
tegral equation for the fermion function V(p ) which de-
pends on the Ansatz assumed for the vertex. We now
proceed to consider different forms for I in Sec. II and
discuss our results in Sec. III.

g being the covariant gauge parameter. We render the
loop integral in Eq. (1) finite by introducing an ultraviolet
cutoff A.

In general, Eq. (1) involves two fermion functions: its
mass and wave function, which can, in principle, be
determined self-consistently provided the 3-point vertex
I is known. Of course, the full vertex satisfies its own
Schwinger-Dyson equation which relates it in turn to a
4-point function and we have the start of an infinite
hierarchy of nested equations. The truncation of this sys-
tem at the level of the fermion propagator requires an
Ansatz for the vertex in terms of the known functions of
the fermion propagator.

If such Ansa tze for I involve only odd numbers of y
matrices, then Eq. (1) can have massless solutions and it
is these we study for simplicity. Then with

SF(P)= V(p')

II. THE FERMION-BOSON VERTEX

k-p Let us first consider the most commonly used approxi-
mation I =y [2,3]. Equation (1) is then

col=1+ I dy 9'(y) 8(x —y) —+8(y —x)—X
V(x) 4~x o x y

FIG. 1. Schwinger-Dyson equation for the fermion propaga-
tor in quenched QED. The straight lines represent fermions
and the wavy lines the photon. The solid dots indicate full, as
opposed to bare, quantities.

where x =p /A, y=k /A, and no=e /4m. . Self-
consistent solutions of this equation have been found nu-
merically by an iterative procedure. The results are
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shown in curves I in Figs. 2(a) —2(c) as functions of
momentum for diA'erent couplings in the Feynman gauge,
/=1 as an illustration. In the Landau gauge /=0, as is
well known, the loop integral vanishes [Eq. (3)] and so

2 =V(p ) = 1 at all momenta. In all other gauges for momen-
ta close to the ultraviolet cutoff A, the form of V(p )

inevitably agrees with the lowest order in perturbation
theory. However, it is quite difI'erent as the ratio p /A
decreases.

Though we have found nonperturbative solutions for
29'(p ), these violate two fundamental principles. The first

is a basic property of gauge theories: namely, the Ward-
Takahashi identity. This requires that the vertex and fer-
mion propagator are related by

q"I „(k,p) =SF '(k) —SR '(p)

The second is multiplicative renormalizability that re-
quires that there exists a factor Zz '(1ti. /A ) that makes
2( /A ) independent of A, to give the renormalizedcg I 2 2 2

fermion function

I I 1 1 1 I 1 1 I VR(p /1p )=Z2 '(A /p, )V(p /A ),
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2where p is the renormalization scale. This implies a
"renormalization-group How" requiring

(6)

On both counts the vertex I "=y" violates these condi-
tions, except trivially in the Landau gauge when we recall

2 =V(p ) = 1. For instance, the ratio of Eq. (6) with
/2 — 2p' =10p is shown in Fig. 2(d) as the curve I for ac= l.

It is not independent of p . Clearly, such a simple vertex
is unacceptable.

To go beyond this we note that the Ward identity Eq.
(4) provides us with a powerful nonperturbative con-
straint on the full vertex. This specifies part of the vertex
called the longitudinal component I L, while leaving the
transverse part, defined by q "I~T=0, unconstrained. The
requirement of no kinematic singularities uniquely fixes
I ~1 to the Ball-Chiu form [4]:

I I 1 I I I I I I I

10
p/A

10

FIG. 2. The solutions of the Schwinger-Dyson equation for
the fermion function 2 as a function of p /A for the three ver-
tex approximations. Curve I is for the bare vertex, curve II for
the Ball-Chiu vertex, and curve III for the full vertex for three
di5'erent couplings ao in the Feynman gauge (/=1). (a) —(c)
have o.o =0.5, 1, and 2, respectively. (d) shows the ratio
V(p' )/P(p ) with p' =10p for the case o.0=1.

1 1+—
V(k )

1

&(p')
(k +p)"(k+P )

2 p2

with I /T(p, p) =0. Simply setting I "r =0, so 1 ~ =1 ~z, Eq.
(1) becomes
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1

V(x )
=1+ dy 0(x —y)g —+0(y —x)g— + — —1 0(x —y) —+0(y —x)—ao i y x 2(y) 3 P(y) x+y y y

4~x o x y V(x) 4 V(x) x —y x x
(8)

The solutions of this equation for a range of couplings are shown as curves II in Figs. 2(a) —2(c), once again for the
Feynman gauge, g= 1. Though now the vertex satisfies the Ward identity, the function V(p /A ) is not yet multiplica-
tive renormalizable. In Fig. 2(d) is shown the ratio of Eq. (6) again as curve II. At low momenta this ratio is seen to be
Hat as required by multiplicative renormalizability. This happens because the solution is power behaved there. Howev-
er, this is not matched by the behavior at larger momenta where the solution is again perturbative.

It has recently been shown that the transverse part of the vertex is crucial for multiplicative renormalizability [5,6].
In Ref. [6] it was proposed that this should have a simple form:

C(k,p)[y"(k —p )
—(k+pY'(k —P)]

&(p')
I ~z-(k, p) =-=1 1 (9)

V(k )

where C(k,p) =(k '+p )/(k —p ) is the massless limit ensuring multiplicative renormalizability in the perturbative
region for both leading and next-to-leading logarithms. Treating this I z as a non-perturbative Ansatz and adding this

to I il' of Eq. (7) to give the full vertex in Eq. (1) yields

= 1+ I dy 0(x —y)g —+ 0(y —x)g—
V(x) 4irx o x y V(x)

3 V(y) x +y
1 —c

4 P(x) x —y

(x —y)'
x+y 0(x —y) —+0(y —x)—

X X
(10)

The solutions of this equation are shown in Figs.
2(a) —2(c) as the solid lines III for a range of couplings
with (=1. Remarkably, the result is seen to be multipli-
catively renormalizable for al/ momenta, not just in the
perturbative region, as is illustrated in Fig. 2(d). Though
the results for V(p /A ) for the three forms of the vertex
we consider are qualitatively similar, all vanishing as

p —+0, their quantitative difference is quite dramatic, as
would be well illustrated on a plot with linear scale. In
particular, the final form III falls to zero more quickly at
small momenta than the 1adder approximation result.

The fact that vertex III gives an exactly multiplicative-
ly renormalizable fermion function means that Eq. (11)
must be soluble analytica11y. This is readily checked to
be

2 y

1+aors/8ir

where

a,g/4~
1+aog/8' .

for the unrenormalized fermion function. Simply replac-
ing A by p gives the renormalized form as multiplica-
tive renormalizability requires:

2 y

V~ (S"/V') =V~ (I)
p

(13)

With c—:CA =(x +y)/(x —y) of Eq. (9), the second set
of terms in Eq. (11) cancels and, this equation greatly

simplifies to just

1 aors 1 A' dk V(k')=1+ —+
V(p') 4~ 2 I ' k' V(p')

where VR(1) is fixed by the renormalization prescription.
Of course, for o,o&&1 our solution reproduces the well-

known renormalization-group-improved perturbative re-
sult with V~(1)=1:

uog/4a

V~ (p'/p') =
p

Equation (13) is however a genuinely nonperturbative
answer valid at all momenta.

III. DISCUSSIQN

This calculation focuses sharply on the important role
the form of the vertex plays in determining the fermion
propagator beyond the perturbative regime. Remark-
ably, we have found a self-consistent, analytic solution to
the coupled problem of the fermion propagator and its in-
teraction in massless quenched QED~. The results are
nonperturbative, the vertex and propagator exactly relat-
ed by the Ward identity, and the fermion function is mul-
tiplicatively renormalizable. This solution is quantita-
tively different from those found that violate these impor-
tant constraints. Though this result is for a massless fer-
mion, the success of this approach bodes well for future
attempts to find a nonperturbative solution for the com-
plete fermion propagator in four-dimensional gauge
theories.
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