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Study of sphaleron transitions by means of the real-time Langevin equation
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Microscopic Langevin evolution is introduced in Abelian gauge field theory. It is studied numeri-
cally in the (1+1)-dimensional Abelian Higgs model at finite temperature. The Brownian behavior
of the Chem-Simons number is established. Sharp transitions between the classical vacua with
dift'erent Chem-Simons numbers are observed. The rate of these transitions depends exponentially
on the temperature, indicating the relevance of the thermal activation theory involving the sphale-
ron saddle point.

INTRODUCTION

Anomalous fermion-number nonconservation in
theories with a nontrivial vacuum structure is receiving
much attention nowadays. ' The most famous example is
the standard electroweak theory where baryonic and lep-
tonic currents are not conserved due to the triangle
anomaly which relates the evolution of the fermionic
charge to the fluctuations of the gauge fields with a
change in the Chem-Simons number. Anomalous
fermionic-number nonconservation, while being severely
suppressed in the vacuum, becomes appreciable in the
high-temperature plasma. ' This efI'ect is based essential-
ly on the fact that classical vacua with different values of
the Chem-Simons number Xcs are separated by a static
energy barrier of nonzero minimal height E„. There-
fore at temperatures less than E„ the thermal activation
theory becomes relevant. It predicts the exponential
dependence of the nonconservation rate on the inverse
temperature.

The static energy barrier separating two neighboring
vacua cannot be represented by an eft'ective potential, but
rather by some functional. The saddle point of that func-
tional is called a sphaleron. The energy Es„„ofthis stat-
ic solution of the Weinberg-Salam equations of motion is
just the minimal height of the static energy barrier
E„=E,h. At temperatures T &E, h anomalous fermion
number nonconservation is calculated semiclassically. It
occurs due to real-time fluctuations of the bosonic fields,
which go through the vicinity of the sphaleron. This
naive physical picture suggests a way to evaluate the rate
of nonconservation directly by looking at the classical
evolution of the system.

The considerations above are fully applicable to the
(I+ I)-dimensional Abelian Higgs model ' whose lattice
version was studied in Ref. 8. The strategy of Ref. 8 con-
tained two steps. First prepare an initial field
configuration corresponding to a given temperature To.
Then evolve the starting configuration according to the
classical equations of motion. This is an isolated system.
Its energy is conserved and determines the temperature:
E = E(To). The average over this time evolution coin-
cides with the statistical average over microcanonical dis-
tribution due to ergodicity. During the microcanonical

evolution sphalerons were observed and counted "by
hand. " The rate of anomalous fermion number noncon-
servation was extracted from the average sphaleron den-
sity.

In this paper an alternative approach is developed. We
study the system at a fixed temperature, that is, one
determined by the canonical distribution. Since we are
interested in the eff'ects of the temperature on the semi-
classical fluctuations, we basically deal with a Hamiltoni-
an system interacting with a thermal bath. Such a system
is known to be described by the Langevin equation. Our
use of the Langevin equation is twofold. On one hand the
Langevin evolution is a formal technical trick to measure
canonical Gibbs averages of various static quantities by
means of the ergodicity relation. On the other hand we
introduce Langevin evolution in terms of independent
physical variables. It incorporates the principal eff'ect of
the interaction with a heat bath during the sphaleron for-
mation in real time. This second point of view allows one
to identify the Langevin evolution with the relevant real-
time evolution. It means that we identify the rate of
anomalous fermion number nonconservation with the
diffusion rate of the Chem-Simons variable.

This sort of real-time Langevin approach was previous-
ly used by us for the evaluation of kink-antikink pair pro-
duction at finite temperature. ' The study of sphaleron
transitions in the Abelian gauge theory that we consider
is somewhat more involved. It needs formulation of the
real-time Langevin equation in terms of the original mi-
croscopic variables that would respect gauge invariance.

In Sec. I we specify the model that we deal with, name-
ly, the Abelian Higgs theory in 1+1 dimensions. Then
(Sec. II) we construct the Langevin equation for the
Abelian gauge theory. The white noise is introduced in
such a way as not to destroy conservation of the electric
current, that is, for gauge-invariant variables only.
Gauge-variant variables evolve microcanonically. At first
sight the whole set of the equations of motion looks pecu-
liar. Langevin evolution leads to a canonical distribution
while the Hamiltonian evolution leads to a microcanoni-
cal one. What is the resulting distribution of our set of
equations'? The answer is simple: the final distribution is
the canonical one —exp( H /T), but with the cons—traint
that physical states be gauge invariant. " The micro-
canonical part of the evolution guarantees that Gauss's
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law (in particular, vanishing of the total charge) is
satisfied by the allowed fluctuations. We do not intro-
duce a random force for the Chem-Simons variable itself.
It may be done in principle but it is not important since it
affects only one degree of freedom. Section III contains
the results of the numerical solution of our set of equa-
tions. The ground state of the theory under considera-
tion possesses a 6-vacuum structure. On the classical
level there are many degenerate vacuum field
configurations with different integer values of the Chern-
Simons variable. At finite temperature we observe explic-
itly transitions between the topologically distinct vacua.
Moreover the direct measurement of the average dis-
placement squared as a function of real time reveals the
Brownian behavior of the Chem-Simons number. We
study the low-temperature domain: T (E, h, where the
semiclassical expansion is valid. The diffusion rate exhib-
its exponential dependence on the inverse temperature
according to expectation. The behavior thus obtained
proves the existence of a finite energy barrier between the
different classical vacua with definite Chem-Simons num-
bers, associated with the sphaleron saddle point. In Sec.
IV we explore the possibility of calculating the rate of the
anomalous fermion-number nonconservation beyond the
semiclassical approximation, in particular in the high-
temperature domain. We present an analytical expres-
sion for the rate suitable for Monte Carlo measurements.
We also study numerically the correlator of the canonical
momentum conjugated to the Chem-Simons variable and
reveal the problem in extracting the rate from the corre-
lator of the operator F„F„ in the real electroweak
theory.

I. THE MODEL

x ~&A. vx, A„~(g/&A, v) 3„, q ~up .

Then the bosonic action is of the form

S=u'f d'x — F2, +la,q+iW. q I'+(Iq I' ,'—)'—
1

(1.4)

The Lagrangian in (1.4) contains only one free parame-
ter g=g /X, which is not renormalized. The scalar con-
densate U enters in front of the Planck coupling con-
stant, so that U is the loop-expansion parameter. One
may choose various dynamical variables related to each
other by canonical transformations. We find polar coor-
dinates particularly useful: y=pe' . On the classical lev-
el (when v is unobservable) the action is

S=fd'x E'+(8 p)'+(B,a+A )' —(p' ——,
')'1

(1.5)

where the electric field E =Fp& serves as the canonical
momentum p„of the vector field: p„=E/g. The other
canonical momenta are

p =2p, p =2p (a+ Ao) .

The canonical momentum of the vector field satisfies the
gauge constraint

(1.7)

So the momentum conjugated to the phase of the scalar
field is just the density of electric charge. We choose the
Coulomb gauge 8& A

&

=0 and resolve the constraint (1.7)
explicitly using the decomposition

We study the (1+1)-dimensional Abelian Higgs model
defined by the Lagrangian of the form 1

Pw =Pm ~~p ~ (1.8)

V(y) =g(lcpl' —u'/2)',

where p, itt, and A„are scalar, spinor, and vector fields,

respectively, and D =8,, +igA . The spectrum consists
of a massive vector particle (m iv =gu ) and a Higgs boson
of mass mH =&2A, u. The gauge-invariant fermionic
current is not conserved due to the anomaly

(1.2)

Equation (1.2) implies that any tluctuation of the fer-
mionic charge is always accompanied by the proper Auc-
tuation of the Chem-Simons number of the gauge field.
Therefore only the bosonic part of Lagrangian (1.1) is
essential. Hence it is considered below. In order to ob-
serve fermion number nonconservation a second in-
gredient is necessary: namely, the 0-vacuum structure of
the ground state. To see that it is indeed a property of
this theory consider the classical vacuum configurations.
Let us look at the Hamiltonian of the system (see Ref. 7).
A rescaling of the variables is suitable:

where p~ is constant in space while Ap determines the
longitudinal component of the momentum p~. Equation
(1.7) then yields

&o(x)=g'f dy b(x —y)p (y), (1.9)

where the Coulomb force 6 in a finite volume of size I is

~(x —y) =-,' lx —yl+(x —~)(y —~)/L, (1.10)

where K is arbitrary constant. ' In the physical Coulomb
gauge the only independent degree of freedom left from
the gauge field is a constant in space which in the finite
volume L we denote as Ai =N/L, so that p—z in (1.8) is
the canonical momentum conjugated to X. From Eq.
(1.2) one can see that this physical degree of freedom is
nothing but the Chem-Simons variable X =2~%cs. The
Legendre transformation of Lagrangian (1.5) leads to a
Hamiltonian of the form

p~+ —f dx p +H",

where the static Hamiltonian (which gives the energy of
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an arbitrary static configuration) is

H"= fdx[ ,'p—'/p'+(B p)

+p'(B,a+N/L)'+ (p' ,' —)']—+H',

H'= —~f dx dy p (x)4(x —y)p (y) . (1.13)

From the static Hamiltonian (1.12) one immediately
obtains the form of the classical vacuum field
configurations. The density of electric charge vanishes
in the vacuum: p =0. The absolute value of the field p
must be constant in space equal I/&2 for the second and
fourth terms in (1.12) to vanish. The gradient of the
phase a must be constant in space and equal N/L —for
the third term in (1.12) to vanish. Now the periodicity of
the fields on the interval [O,L] requires that N should be
integer modulo 2m. Thus the classical vacuum field
configurations are specified by

p =0, p = I /&2, a = 2vrNcs—x /L,

cs 0~+1~+2
(1.14)

i~x/L
y,ps

= — tanh(x /i/2),
2

2&2
sp}1 3

V

(1.15)

The Hamiltonian equations of motion are relatively
simple in polar coordinates:

p = -,'u, + -,'a'. /'p'

pp =2B2p —2p(Ba+N/L)2 —4p(p2 —
2i ),

(1.16a)

a= —,'p /p —2, p =2B[p (Ba+N/L)], (1.16b)

N=(Lp, p = ——f dx p (Ba+N/L) .
L

(l.16c)

From Eqs. (1.16) one deduces that in the gauge theory
a static configuration (with all time derivatives vanishing)
may have a nonzero momentum p if the configuration
has a nonzero density of electric charge. An arbitrary
static configuration is defined by the set (p, a,p, Ncs ).
Now instead of the Hamiltonian evolution (1.16) which
allows one to average over the energy surface we would
like to introduce Langevin evolution to compute Gibbs
averages.

Topologically distinct vacua (1.14) are separated by the
static energy barrier. The field configuration, corre-
sponding to the top of that energy barrier is called a
sphaleron. The explicit form of this static solution of
the equations of motion is

Ncs

y(x, t + e ) —y(x, t )= ——f"s+f„"'"(t, s ) .
7l

(2.1)

Here the regular force comes from the static Hamiltonian
f"s=—BH"/By. The friction coefficient i) determines
how fast the system reaches thermal equilibrium. The
random force, which is essentially a white noise, is a sort
of external field so that the solution of Eq. (2.1) is a func-
tional with argument f"'"(t). The function f""(t) is not,
in fact, specified explicitly. Only the probability distribu-
tion of the magnitude f""at each moment t is known. It
is a Gaussian one with the variance

(f""(t,c)f""(.t, e) ) =225(x —y)e . (2.2)

y„(t +s)—y„(t)= — f„"s+-
ga

g„(t), (2.3)

where a is the lattice spacing, n =0, 1, . . . , L/a, and
g„(t) is a Gaussian random number. Any physical mag-
nitude obtained from the solution of Eq. (2.3) is a func-
tion of c. or, to be more precise, a function of the ratio
(c/2)). Then the final answer which is physically mean-
ingful is given by the limit (s/2)) —+0. So we set 2)=1
below.

Now let us address the case of the gauge theory de-
scribed in Sec. I. According to Sec. I the set of variables
that specifies any static configuration includes

p, e,p, X&s. The crucial step in proceeding from the
Hamiltonian evolution to the Langevin one is the intro-
duction of a random force in whose presence the canoni-
cal momentum is not defined anymore, while the canoni-
cal variable evolves according to Eq. (2.1). This can be
easily done for the gauge-invariant (or "colorless" ac-
cording to the terminology of Ref. 13) p variable intro-
duced in the previous section. Instead of Eq. (1.16a) one
obtains

p„(t +e)—p„(t)= [B p„—p„(Ba+N/L)

—2p„(p„——,
'

) ]ca +
1/2

g„(t),

(2.4)

The variance (2.2) implies that (2.1) is not a conventional
differential equation, since the random force scales as &s.
Therefore only a discrete version of the Langevin equa-
tion such as Eq. (2.1) may be considered in practice.

The probability distribution for y(x, t) satisfies the
Fokker-Planck equation associated with (2.1). That equa-
tion allows one to establish Einstein's relation between
the coefficients q and 3: gA = T, where T is the temper-
ature of the system. Thus the discrete version of the
Langevin equation for the lattice regularized theory takes
the form

1/2

II. LANGEVIN EQUATION FOR THE
ABELIAN GAUGE THEORY

The general Langevin evolution of a scalar field y(x)
obeys the phenomenological equation of the form

where 8 stands for the discrete version of the spatial
derivative, for instance, Ba =(a„+i

—a„)/a. However
there is no way to introduce white noise to the gauge-
variant variable a. Indeed, the canonical momentum p
is just the density of electric charge. One can see that the
appearance of any additional term g on the right-hand
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side (RHS) of Eq. (1.16b) implies nonconservation of the
electric current J,: Bg, =g. Physically it means that the
random force corresponding to the gauge-invariant vari-
able o. simply cannot emerge in a system with gauge-
invariant interactions. Therefore we leave q . ', .E s. (1.16b)
intact. The resulting evolution respects Gauss's con-
straint and conserves electric current. In particular, the
total electric charge vanishes as it should, being a spatial
integral of the total derivative [see Eqs. (1.7) and (1.16b j.

The Chem-Simons variable is gauge invariant (the
operator Ncs commutes with the constraint). Therefore,
in general, the equations of motion for Ncs (1.16c) can in-
clude a random force but the effect of this force must be
negligible in the limit of infinite volume, so we find it gra-

1tifying to observe thermalization of the Ncs variab e
without doing it explicitly through the white noise in the
equation of motion of Xcs.

Thus the set of equations that determines the Langevin
evolution of our system contains Eqs. &~2.(2.4) (1.16b) and
(1.16c). They have been solved numerically.

0
'

IIIIII(I

100 200

FIG. 1. Time dependence of the Chem-Simons variable for
a =1,L =200, (=4, /3=18.

III. NUMERICAL RESULTS

Basically we have considered a system of s zei L =200
lattice spacing a =1 using Langevin step v=0.=0.02 in the
temperature range P = 6 —14, for gauge coupling con-
stants corresponding to /=4, 10, 28. There is a problem
in the implementation of the numerical algorithm associ-
ated with our choice of polar coordinates. They are
singular at the origin which is incompatible with the
discretization of the Hamiltonian. Sometimes when the p
variable gets close to zero the forces on the RHS of Eqs.
(1.16) diverge, which is an artifact of discretization. To
eliminate this problem we use an adaptive Langevin step;
namely, we take a smaller value of c each time the dis-
placement (defined as the product of the force and time
step E) of the canonical coordinate p, a, or N«exceeds
some threshold. Such a procedure is somewhat time con-
suming but it guarantees that we do not affect the dynam-
ics while avoiding a problem at p~0.

The time dependence of the Chem-Simons variable is
shown in Fig. 1. High-frequency oscillations are a nor-
mal mode which is easily traceable from Eq. (1.16c for p
close to the vacuum value (1.14). The frequency of the
oscillations is &g. The beats which are also clearly seen
come from the interaction of this mode with the Higgs
field Auctuation around the vacuum. One can see that athat at
this rather low temperature T =

—,', the system fluctuates
most of the time near one classical vacuum with a definite

= —1&. Then itvalue of the Chem-Simons number (Ncs = —!. en i

jumps to another vacuum with Ncs =+3. This is a so-
called "sphaleron transition" in the sense that during the
jump the field configuration goes near the sphaleron sad-
dle point. Figure 2 shows the real-time behavior of the
Chem-Simons variable on a larger time scale. Many
sphaleron transitions are visible. It is obviously dificult
to calculate the density of transitions "by hand. " So the
question arises of how to determine the transition rate.
Figure 2 looks like a Brownian walk along different topo-
logical sectors. To verify this conjecture we measure the

quantity b,«(t):

~«(t) ——&(N„(t)—N„(0»'&

= lim — dt '
Ncs ~ + ~

—Xcs t '
z~oo 7 0

(3.1)

h«(t) =(t/to) (3.2)

The exponent o. extracted from Figs.
' s. 3 and 4 is o =1.7.

cou ling g. The explanation is obvious. For short mac-
~ 1) the Chem-Simonsroscopic time intervals (when

I I I I I I

10000 ]5000

FIG. 2. Same as in Fig. I but on a larger time scale.

Some typical examples of our numerical evaluation of

different parts. For small values o
epen ence

perfect straight lines in Figs. 3 and 4 which imply the

power law
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variable moves approximately like a free particle with
some average velocity,

b,N= gL (piv ) b,t, (3.3)

which predicts the deterministic power law Acs-t, with
an exponent close to that obtained numerically. Evaluat-
ing the thermal average (pIv) [see Eq. (3.5) below] one
obtains

2~tp=
&ALT

A

a

100

Dif
50—

20—

10—

I I I I I ll I I I I I I I I

n — irnons

Numerical data presented in Figs. 3 and 4 yields
to(/=10)=0. 55, to((=28)=0.22, in perfect agreement
with (3.4).

For large 6cs & 1 one can see other straight lines which
also indicate a power law such as in (3.2). This reveals
the Brownian behavior of the Chem-Simons variable. It
diffuses along the topologically distinct classical vacua.
The three lines in Fig. 3 corresponding to different tem-
peratures are parallel to each other. Therefore the ex-
ponent o. does not depend on temperature while the pa-
rameter t p fixing the diffusion rate changes with T.

At large time b,cs reaches asymptotics (see Figs. 3 and
4), which is a finite-size effect. There is a finite number of
the topologically distinct classical vacua in the finite box,
since the gradient of the phase o; which is adjusted to the
Chem-Simons variable in the ground state is bounded
from above on the finite lattice due to (1.14). Therefore a
big lattice is necessary to have a long and clear straight
line which allows one to extract the Brownian exponent
and the diffusion rate precisely.

The observation of the diffusion of the Chem-Simons
variable provides us with information about the effective
potential V(Ncs). For a potential that grows to infinity
at large Ncs, as in the case of an harmonic oscillator, for
instance, there can be no Brownian behavior (3.2). We

100

Diffusion of Chem —Sirnons
50—

20—

I I I I I III I I I I I III I I I 11111 I I I I I III I I I I I III

1 10 100 1000 10000

FIG. 4. Same as in Fig. 3 for f3=10, /=10, L =100, and
small lattice spacing a =0.25. The exponent o = 1.

observe this obvious fact in our study. The p variable
obeys the ordinary Langevin equation (2.4) so that one
could expect Brownian behavior. However the effective
potential V(p) is unbounded at p —mao and we obtain nu-
merically a fixed value of (p ) whose temperature depen-
dence is shown on Fig. 5. One can see, by the way, that
the scalar condensate decreases as the temperature
grows, which is a typical effect of Higgs's theory. The
power law (3.2) indicates that the static energy barrier be-
tween different topological sectors is finite and the
effective potential V(Ncs) is bounded at Ncs —+ ee. So it
looks like sin(Ncs ).

The Brownian behavior (3.2) implies also that the
Chem-Simons variable is thermalized despite the fact
that we have not introduced white noise in equations of
motion (1.16c) of the variable Ncs. As a double check
one can measure directly, so to say, "the temperature of
the Chem-Sirnons variable. " Note that the Chern-
Sirnons canonical momentum p& enters only in one term
of the Hamiltonian (1.11). This implies that one can
evaluate the Cribbs average of the Chem-Sirnons momen-
turn squared exactly and explicitly:

2=T (3.5)

! I I I III I I I I I III I I I I I III I I I I I III

1 10 100 1000 10000
1 I I I I I III

0. 1

FIG. 3. Brownian behavior of the Chem-Simons variable
b,cs(t) at various temperatures: f3=10, 12, 14; foi the gauge
coupling g = 28; a = 1, L =200.

The LHS of Eq. (3.5) is easily calculated as the Langevin
average. We obtain numerically that the temperature
from Eq. (3.5) follows the one introduced in the original
equation (2.4), being 25%%uo bigger (see Fig. 6). This gives
us an idea of how big the systematic errors of our ap-
proach are. The fact that the actual temperature of the
system exceeds the Langevin one is a well-known artifact
of the discrete version of the Langevin equation that is
considered. ' The discrepancy disappears in the limit
c~0.

The exponent o in Eq. (3.2) does not depend on tem-
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I I I I I i I I I I I I I I I I ! I I
TABLE I.I. Dependence of the Brownian exponent o. on the

lattice spacing a for /= 10, L =200.

0.8,— 1

0.5
0.25

0.66
0.83
1

0.7—

p

0.0 0. 1

I I I I

0.2 0, 3 0.4 0.5 0.6
Temperature

so that to= 1/I . Large values of the lattice spacing in-
troduce systematic errors in the determination of I . We
extrapolate our data to the limit of vanishing lattice spac-
ing and Langevin step size.

Constant I in Eq. (3.6) determines the diffusion rate of
the Chem-Simons variable which we identify with the
rate of anomalous fermion number nonconservation. In
the low-temperature domain T &E,~h under considera-
tion, the rate I was estimated semiclassically ' ' in ac-

FIG.G. 5. Temperature dependence of the scalar condensate
(y y) obtained as an average over the Langevin evolution.

(3.6)

perature for all three values of the gauge coupling con-
stant studied, /=4, 10, 28, but it exhibits a lattice spacing
dependence as measured for /=10. One can see from
Table I that in the limit of small lattice spacing the ex-
ponent o. approaches one. Already at a =0.25 one has
o. =1. No finite-size effects in physical quantities have
been observed in a run with L =400.

The characteristic time to determines the rate of the
transitions between the different classical vacua. In the
limit of small lattice spacing we obtain the conventional
Brownian behavior

mes(r) = rr

Temperature dependence of diffusion ~te

10

I I I

Temperature dependence of diffusion rate

5

10

10
P (Langevin)

FIG. 6. The "temperature of the Chem-Simons variable"
measured according to Eq. (3.5) vs the temperature inserted
originally into the Langevin equation (2.4). The straight line

represents an ideal case where the two temperatures coincide.
Top: for /=28, two lines correspond to e=(0.02,0.01); bot-
tom: for g'= 10, three lines below correspond to
a = [1,0.5,0.25).

(b) ~

8 10 1P 14

FIG. 7. Temperature dependence of the diffusion rate for
diff'erent gauge coupling constants: (a) for /= 10; (b) for /=28.
Solid lines are fits.
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cordance with the definition suggested in Ref. 17. The
expected temperature dependence is of the form

1/2E.I,h
T

E.ph
exp T

I (T)=C (3.7)

where the constant C depends on the gauge coupling but
not on the temperature. To analyze our numerical data
we first transfer the preexponential factor in (3.7) to the
LHS and see whether our numerical data exhibits an ex-
ponential dependence on the inverse temperature. Figure
7 shows that there is a rather wide interval of tempera-
ture where the dots representing our numerical results
follow precisely the exponential behavior. The systemat-
ic errors depicted in Fig. 7 come from the measurements
for various values of the lattice spacing and Langevin
step size. The slope of the straight lines in Fig. 7 deter-
mines the sphaleron mass which is supposed to be 0.94 in
our dimensionless units (1.15). The numerical data are
consistent with this value of the sphaleron mass within
the uncertainties due to the variation of a, c as well as to
the deviation of the real temperature from that intro-
duced in the normalization of the white noise.

We consider the exponential dependence of the
diffusion rate on the inverse temperature as an unambigu-
ous indication of the relevance of the thermal activation
theory involving the sphaleron saddle point.

IV. BEYOND THE SEMICLASSICAL APPROXIMATION

The evaluation of the rate I of the anomalous fermion
number nonconservation in the high-temperature domain
(for temperatures greater than the sphaleron mass) is a
challenging problem. Semiclassical expansion is of no
help. So is the direct observation of sphalerons in the
classical numerical simulations. We discuss here two
ways to deal with the problem.

The first one is based on Affleck's definition of the rate
which originates from the simple quantum-mechanical
example. ' We now use the Hamiltonian formulation of
the (1+1)-dimensional Abelian Higgs theory presented in
Sec. I. The rate I measures the average Chem-Simons
momentum in one direction at the fixed value of the
Chem-Simons variable Ncs =

—,'. This particular value of
Xcs corresponds to the hypersurface separating topologi-
cally distinct vacua. ' To be more precise it defines a
manifold of the finite-energy static field configurations in
the background of which there is a normalizable fermion-
ic zero eigenmode which gets occupied leading to the ob-
servable anomalous fermion number nonconservation.
This consideration is not based on the semiclassical ap-
proximation and therefore can be used in the high-
temperature domain. So, by definition rate I" is given by
the functional integral

num
den

dX dp~
num= I DrpD@* Dp Dp* p&&(p~)&(& —~)exp( P~»—

27T
(4.1)

where D stands for the measure of the functional integration, den is a partition function given by the same functional
integral as for the numerator num but without a preexponential factor and the Hamiltonian H is given by Eq. (1.12).
Consider the possibility of calculating the integral (4.1) by means of Monte Carlo simulations. For this end we need to
recast the preexponential factor in (4.1) in a less singular form.

An essential point is that integration over the Chem-Simons degree of freedom in (4.1) may be done explicitly:

1num= DrpD@* Dp Dp* exp[ PH(happ, p~ =—O, Xcs = —,')
L

(4.2)

The partition function den can be also represented by the functional integral over the scalar field and its canonical
conjugated momentum only. This is because the integral over Chem-Simons variables X,pz is Gaussian [see Eq.
(1.12)j. One obtains the following form for the partition function:

den= Dy Dcp Dp Dp* 2 y
' exp —H~ yp

exp —/3L ([y~~ && aa &&+

where ~~y~~
= f dx y rp/L. The rate I is recast in the form suitable for Monte Carlo measurements:

I =den ' DyDcp*Dp Dp* 0 exp —H,& y,p

~L Pg

(4.3)

(4.4)

(4.5)

where n is a phase of the scalar field and
« Ba » —= fdx q& yea/ fdx qr y. One can also restore in-

tegration over the Chem-Simons degree of freedom and
represent the rate as a thermal average of the operator 0
with the original integration measure introduced in (4.1).

Thus we conclude that the rate of the anomalous fermion
under nonconservation in the (1+1)-dimensional Abelian
Higgs model may be, in principle, computed by means of
the Metropolis algorithm. However the exponential form
of the operator 0 basically implies large uncertainties in
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where the correlator of the Chem-Simons canonical
momentum may be evaluated as a Langevin average such
as Eq. (3.1). For instance if it goes like

= T
(p~(t)p~(0) ) = exp( y t ), —

I. (4.7)

with some y for large t, one immediately obtains
I =2(Tly. The result of our numerical evaluation of
the correlator (4.7) presents however a new point, name-
ly, high-frequency oscillations (see Fig. 8). Therefore the
integral in Eq. (4.6) is a small number originating from
the cancellation of large ones. Unfortunately this implies
a large uncertainty in extracting the diffusion rate from
the correlator of the Chem-Simons canonical momen-
tum. This conclusion is in fact a very general one. Our
study of the correlator (4.7) demonstrates the difficulties
one meets in extracting the rate I from the correlator of
the operator I'„ I"„ in the real case of the standard elec-
troweak theory.

SUMMARY

In this paper we have introduced real-time Langevin
evolution in the Abelian gauge theory. It is based on the
explicit separation of the gauge-invariant and gauge-

such a computation.
The second way to study the high-temperature domain

is to measure the diffusion rate of the Chem-Simons num-
ber as it was performed in the preceding section in the
case of low temperatures. Our numerical simulations for
P=6, 4 show that the average displacement squared Acs
of the Chem-Simons variable reaches quickly the region
of the finite-size effect that one can see in Figs. 3 and 4.
The very big lattice which would allow for the larger
values of the Chem-Simons number is necessary to study
the diffusion rate in the high-temperature domain. This
makes it time consuming to deal with even (1+1)-
dimensional gauge theory. Meanwhile our study of some
quantum-mechanical toy model' with a periodic poten-
tial shows excellent agreement with expectations: name-
ly, the thermal activation behavior of the rate at low tem-
peratures and power law 1 —T (see Refs. 4 and 18) in the
high-temperature domain.

To reduce systematic errors one can try another way to
determine the diffusion rate. Differentiating expression
(3.1) with respect to time and using the first of Eqs.
(1.16c) one obtains

I—:lim pcs(t) =2/ L lim f dr(pz(t)pz(r) ),
f —w oo oo P

(4.6)

1 ~ 0

Autocorr elation of Pcs
t

0.5--

0 0---

—0.5

0 20 40 60 80 100

FIG. 8. Real-time correlator of the canonical momentum
conjugated to the Chem-Simons variable for /=10, P=14,
a =0.5, L =200.

variant degrees of freedom. By construction gauge-
invariant variables obey the conventional Langevin equa-
tion while gauge-variant variables evolve microcanonical-
ly so that the resulting distribution is canonical with the
constraint that the physical states be gauge invariant.
We identify Monte Carlo time of such an evolution with
physical real time which enters as an argument of the
average squared displacement that characterizes a
Brownian walk. In the (1+1)-dimensional Abelian Higgs
model our numerical simulations reveal sharp transitions
between topologically distinct vacua with different in-
teger values of the Chem-Simons number. The Chern-
Simons variable is shown to exhibit a Brownian behavior.
Its diffusion rate depends exponentially on the inverse
temperature in the low-temperature domain that we con-
sidered. This indicates the relevance of the thermal ac-
tivation theory involving the sphaleron saddle point.
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