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We study 2+1-dimensional Chem-Simons gauge theories with external magnetic Beld B and
the self-interaction ~g~ of the matter field. It is shown that the system has three phases
depending on the strength g of the self-interaction. They are the symmetry-preserving phase
for g & g„and the symmetry-breaking phase for g & g & —g„with +g, the critical coupling
constants. When g & g & 0 the system has an excitation with gap; when 0 & g & —g,
its spectrum develops the absolute minimum at a nonzero momentum. The corresponding
excitation becomes gapless at g = —g, and the system is unstable for g ( —g, . We then
analyze vortex solitons which are anyons. Nontopological (topological) vortices are relevant in
the symmetry-preserving (-breaking) phase. The charge, spin, and mass of these vortices are
calculated. These vortices can be analyzed analytically at the critical points g = +g . The static
energy of self-dual topological vortices is obtained explicitly, and is expressed as a spin-magnetic
interaction. We also present analytic time-dependent solutions of nontopological vortices, which
describe vortex solitons moving along the cyclotron orbit in the external magnetic field.

I. INTRODUCTION

In two-dimensional space the homotopy of paths is
nontrivial; i.e., all the paths are classified in terms of
the homotopy class by using a braid group. Correspond-
ingly, there can be exotic statistics which are difI'erent
from either bosonic or fermionic. The particle obeying
such exotic statistics is called an anyon.

For instance, the matter fields are anyons in (2+1)-
dimensional Abelian gauge field theories with a Chern-
Simons (CS) term. The effect of the CS term is to attach
a flux on the matter field. In general, objects carrying
both the charge Q and the fiux C behave as anyons. This
is because, when interchanging the positions of two such
objects, the phase factor e' with

is produced through the Aharonov-Bohm (AB) effect.
Then, the object is bosonic when n = 2xn and fermionic
when n = x(2n + 1), n being an integer, while we get
anyonic statistics for other values of n. In these theories
there are vortex solitons which are also anyons. Their
non-Abelian generalizations have also been considered.

These anyonic objects have recently attracted much
interest. In particular, the significance of anyonic vor-
tices has been recognized in its application to the frac-
tional quantum Hall effect (FQHE). See aL~o Ref. 8. The
FQHE occurs in certain materials placed in a uniform ex-
ternal magnetic field. Therefore, the analysis of anyonic

vortices in the magnetic field, which is yet to be explored,
is important not only theoretically but also phenomeno-
logically. In this paper, we reveal some new features spe-
cific to CS vortices in the external magnetic field.

This paper is organized as follows.
In Sec. II we define our model. It is the (2+1)-

dimensional nonrelativistic CS gauge theory with self-
interaction of the matter field, where a uniform external
magnetic field is applied.

In Sec. III we first analyze the problem of the existence
of the uniform background solution breaking the gauge
symmetry, since vortex solitons appear on such a back-
ground. In this analysis we find the following unexpected
property of the system. Whatever choice of the matter-
field potential we make, there are no uniform background
solutions breaking the symmetry if the external magnetic
field does not exist. On the other hand, there is such a so-
lution in the presence of the magnetic field even if no po-
tential exists. It is not the matter potential but the exter-
nal magnetic field that induces the symmetry breakdown.
In this way, the external magnetic field plays a crucial
role for the symmetry breakdown. We then give the uni-
form background solutions of the system explicitly (both
symmetry-preserving and -breaking ones), and quantize
small fIuctuations around them. We get the following re-
sults in the model with the self-interaction g~g~ . The
system has three phases with the critical coupling con-
stants being +g, (g, & 0). When g & g„ the ground state
is the symmetry-preserving phase where anyons (the mat-
ter quantums) are in the cyclotron motion repelling each
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other. VVhen g, ) g & —g„ it is the symmetry-breaking
phase where the anyons are interpreted to be condensed.
Furthermore, when g ) 0, the dispersion relation has
the absolute minimum at zero momentum with a gap.
When g & 0, this spectrum changes and there appears a
new minimum at a nonzero momentum. This excitation
may be identified with the magnetoroton. The magne-
toroton becomes gapless at the critical coupling constant
g = —g„and the whole system is unstable for g & —g, .

In Sec. IV we analyze topological and nontopological
vortices. Et is shown that their charge, spin, and mass
are determined only by the asymptotic behavior at in-
finity. In particular, these quantities are quantized for
the topological vortex. VVe also point out that the spin-
statistics relation holds for the topological vortex but not
for the nontopological vortex. We then give a result of
our numerical calculations for these vortex solutions. It
is interesting to see some types of critical behavior of the
solution at g = +g, ; when g & g, the tail of the solu-
tion damps exponentially; when g, ) g & —g, it damps
exponentially but with an undulation; when —g, ~ g it
damps only in powers.

In Sec. V, generalizing the arguments given in Ref. 4,
we discuss topological and nontopological self-dual vor-
tices. These self-dual vortices may appear at the critical
coupling constants g = +g, . For the topological vortex.
we calculate the static energy analytically, and interpret
it as an interaction between the spin of the vortex and
the external magnetic field.

In Sec. VI, we present analyt, ic time-dependent solu-
tions of nontopological vortices. The first set are breather
solutions with the center of mass at rest. The second set
are breather solutions with the center of mass making a
cyclotron motion. Both of these solutions are obtained
from the Jackiw-Pi self-dual solutions by making certain
transformations.

v =
2

(I@l' —~)'. (2 3)

Recall that such a potential has been postulated in the
Landau-Ginzburg theory of the FQHE. 9 In nonrelativis-
tic theory, the term linear in I@I2 may be removed by the
transformation g ~ exp( —igv/)g. When the external
magnetic field is switched oA', and when we choose v = 0
in (2.3),

(2.4)

the system is manifestly invariant under the SO(2, 1)
transformation. We will come back to this point later.

There are two types of gauge symmetries in the system.
The first one is the electromagnetic gauge symmetry

0 ~ qe', eA„~ eA„—8„f . (2 5)

The other is the statistical gauge symmetry

0 ~ 0e', ap ~ ap + Dpf. (2.6)

The existence of topological or nontopological vortices
are closely related with the breakdown of these symme-
tries.

The Hamiltonian density of this system is given by

ID, yl'+ v(141'). (2 7)

Its Euler equations are

(2.8)

to have a definite idea, it is convenient to choose the
potential

II. ANYON SYSTEM

1 i
20,' 270

a~o = &~i [OtDik —(Di@)'0] (2.9)

pvAE' apO~ag, (2.1)

with iD& —iB& —eA&+a&', the Latin indices run over 1,2
and the Greek indices over 0,1,2. Here, A& is the external
magnetic potential such that

B t B
Ao ——0, Ay ———spaz = —r Bg8,

2 2
(2 2)

with 0 being the azimuthal angle. The form of the poten-
tial V is arbitrary in most parts of this paper. However,

We consider a (2+1)-dimensional nonrelativistic CS
gauge theory with uniform external magnetic field B.
The system is composed of the CS gauge field a& and
the bosonic complex matter field g coupled with it. We
assume there is a self-interaction of @ through the poten-
tial V(lgl ). The Lagrangian density is given by

1
& = 0'&Do@ —

2
ID~@I' —V(l@l')

~Do@ = —
2

&a@ + V'(IOI')@,
1

(2.10)

where a» —O„a —O„a& and V'(z) = B, (Vz).

Equation (2.8) is a basic equation of the system and
corresponds to the Gauss law in the Maxwell theory.
However, its charge density is equal not to the divergence
of the "electric" field but to the "magnetic" field. This is
a typical nature of the CS gauge field theory. By virtue
of this, the "magnetic" Aux is automatically attached to
the matter field @. This leads to anyonic character of the
matter field. The current density is also equal not to the
derivative of the field strength as in the Maxwell theory
but to the "electric" field strength as in Eq. (2.9). Equa-
tion (2.10) is the Schrodinger equation with a nonlinear
interaction.

We first notice that a& can be solved in terms of g.
Fixing the gauge by the condition that P& i Dial ——0,
we get from (2.8) that
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lz - yl'

By substituting this into (2.9), ao is also solved:

Hence, we get the relation between the spin (S) and the
statistics (n) of the @ quantum:

(2.21)

&kl
27rrn

(2.12)

Thus, all a& are dependent variables of g, and not dy-
namical.

Though a& is not dynamical, they play a crucial role. It
is well known that they give g quantum exotic statistics
through the AB efI'ect. For a single particle, the relation

This relation is well known for the cases of bosons and
fermions. It implies that in the anyonic case the spin
can take an arbitrary value. Thus, one may say that the
anyon interpolates not only the statistics but also the
spin between bosons and fermions.

In this way @ behaves as an anyon through the AB
efI'ect. There are other anyonic objects in this model.
These anyons are the CS vortices, which we analyze later.

d zlvPI = 1 (2.13)

holds by definition. This means that @ quantum has
unit statistical charge. Moreover, the g quantum has
the statistical flux such that

d'za, 2
—2n d'z I@I' = 2n. (2.14)

Therefore, through the AB eA'ect, the phase e' is pro-
duced when the positions of two @ quanturns interchange.
The quantum is a boson for n = 2mn, or a fermion for
n = x(2n+ 1). For other values of n, the quantum has
exotic statistics and becomes an anyon. This heuristic
argument is supplemented by a path-integral formulation
with a linking number. o

We can derive the spin-statistics relation of the tP quan-
tum. The total angular momentum J in this model is
defined by

III. GROUND-STATE SOLUTIONS
AND MAGNETOROTONS

Before analyzing CS vortices we need to find the
ground state of the Hamiltonian and its property. Hence,
we seek the static and spatially uniform classical solution
of the Euler equations (2.8), (2.9), and (2.10). It is a re-
markable property of the nonrelativistic CS gauge theory
(2.1) that the symmetry-breaking solution exists only if
the external magnetic field is present. This might be
rather mysterious since it is our common knowledge that
the gauge symmetry could be spontaneously broken by
making a judicious choice of the potential.

Let us assume that there is no external magnetic field
and that there is a static uniform solution such that @ =
g = const. Then, from (2.8), we obtain

a; = —ns, , I@I'z'.

with

J = d zg~~zq P~ )
2 (2 15) Substituting these into (2.9), we get

CI
(z + y ) + const. (3.2)

1'P = —I:@'(& — ~)@ —(»+2 2i
(2.16) Then, substituting this into (2.10), we find

(2.17)
and

d z z (pter yg @ty.). .1 2

2i U (2.18)

d z z;az I@l (2.19)

Using (2.11), we find

„, l@(z)l'l@(y)l'

d2 d2„ lz —yl'+ lzl' —lyl'
2ir

I
z —yl2

x l@(z)I'l@(y) I'

( d'~IN(*)I') (2.20)

It is decomposed into the orbital part L and the spin part
S. In our gauge condition for the external magnetic field,
i.e. , (2.2), they are explicitly given by

0,' I&l'(z'+y') = I"(I&i') + const

Because this equality must hold at arbitrary points z and
y, we get

@=0, ao ——const, ay —0.

(3 4)

Consequently, only the symmetry-preserving background
solution is obtained in the absence of the external mag-
netic field B. (This conclusion is achieved even if we
start with a slightly general assumption that I/I = const. )
Note that this is not the case in relativistic CS gauge the-
ory, where the cooperation of the particle and antiparticle
degrees of freedom makes the symmetry-breaking solu-
tion possible even without the external magnetic field.

When there is the external magnetic field, it is easy to
obtain the uniform background solutions explicitly. First,
a symmetry-preserving solution always exists:
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a = V'(~) ap ——eAy, (3.6)

If and only if neB ) 0, a symmetry-breaking solution is
also possible:

with

2lnl
gc = (3.13)

(3.7)

All the uniform background solutions are generated from
these solutions by the gauge transformation (2.6). In

(3.6), the nonzero value of @ is determined by B. Thus,
these solutions are generated not by the potential but by
the external magnetic field, as we have mentioned.

Our immediate question is what the ground state of
this system is. Let us evaluate the energies of these uni-
form solutions. To simplify discussions, we choose the
potential (2.3). Substituting them irito the Hamiltonian
density (2.7) we get

& = ~i+ b@. (3.14)

We substitute it into the Hamiltonian density, and take
the quadratic terms in bg and bgt. In so doing, we
eliminate the gauge potentials by the constraint equa-
tion (2.8), or

We conclude that the symmetry-preserving solution (3.5)
is relevant for g & g„while the syrrilnetry-breaking one
(3.6) for g, & g, with g, being a critical coupling con-
stant.

We next analyze the excitation modes when the
symiIietry-breaking solution is chosen as the ground
state. We consider small Auctuations around the clas-
sical solution, i.e. ,

f,y
——V(0) = —v

for the symmetry-preserving one, and

V(p) = —(p —v)

(3.8)

(3 9) We set

d2„(~ —g)~ (~t~ )(*-g)'

(3.15)

for the symmetry-breaking one.
In the case of relativistic Geld theory, they are the en-

ergies of the possible vacuums, and the solution having
the smallest energy describes the true classical vacuum.
However, this is not the case in the nonrelativistic theory
because the number of particles is conserved. Hence, we

have to find the lowest-energy state (ground state) in a
sector with the particle number fixed. Hereafter we re-
strict ourselves to a sector with the average density of
the particle number p, which is assumed to be equal to
eB/2n This assu. mption is satisfied in the phenomeno-
logically interesting case such as the FQHE. Then, the
background configuration (3.6) is understood to describe
a condensed state of anyons with a constant number den-

sity p.
To evaluate the energy of the system with anyon den-

sity p in the unbroken phase (3.5), it is necessary to quan-
tize small fluctuations around the classical solution, i.e. ,

g = 6@ Substitutin. g it into the Hamiltonian density,
and taking the quadratic terms in bg and bgt, we get

b@ = ) ape'~ ",
V

(3.16)

Ia~, at] = b, (3.17)

with

~ = ) —'; ( i+4v, g., —i).~0
'

+ ) /s~ + 4s~U~btbp,
~+0

(3.18)

and

lb~ btl = be~

p 2

2m '

(3.19)

(3.20)

and V being the volume of the system. Then, the Hamil-
tonian density is diagonalized as

l(~i; + ie&~)b@l'+ V'(0)lb@I' + V(o)

(3.10)

Here, operators b„and bt are related to a~ and at by a
Bogolubov transformation:

eB~.y (S') = ( ~
—gV P+ V

g

2
(3.11)

Therefore, the excitations are in the cyclotron motion.

By accommodating all excitations in the lowest Landau
level, the energy density of the system is

a~ = g 6 —6 bt

with h2 = g2 —1 and

1 s„~ 2U~2 P P

(/s2 + 4spU~

(3.21)

(3.22)

We may rewrite this as

~..-(~) —~-- = &(g. —g)~' (3.12)

The ground state l0) is defined by b~l0) = 0, and bt is
the creation operator of the excitations with momentum

p. The energy density of the ground state diverges, as is
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usual in quantum field theory, and is to be renormalized
appropriately.

From (3.18) and (3.20), the dispersion relation reads

approximately written as

2

(3.27)

(3.23)

p'
E(p) =E + (3.24)

with E„and M„being the gap energy and the mass of
the excitation:

eB ~

M
rn

(3.25)

In the second case (g ( 0), it has two stationary points
at p = 0 (a local maximum) and p = p„(the absolute
minimum) with

p„= +2m~g~p. (3.26)

Now, it is possible to make a wave packet at p = p„
and regard it as a local excitation because its group
velocity dE/dp is zero. Such an excitation is called a
magne/oro/on. Near p = p„ the dispersion relation is

where p = ~p~. First, we note that E(p) ~ ea jr' as

p —+ 0. Thus, there is an energy gap at p = 0. This en-
ergy gap is generated by the Anderson-Higgs mechanism.
%hen the gauge symmetry is spontaneously broken, the
gapless mode appears by the Goldstone mechanism; how-
ever, it is absorbed by the gauge field a&. As a result the
excitation acquires an energy gap.

The form of the dispersion relation is diferent typically
whether g ) 0 or g ( 0; see Fig. 1. In the first case

(g ) 0), the function E(p) has only one stationary point
at p = 0, which is the absolute minimum. Near p = 0,
the dispersion relation reads

with E„and M„being the gap energy and the mass of
the roton:

' eB

(3.28)

M„=
g

where g, is given by (3.13). It should be noticed that
when g = —g, the roton becomes gapless at nonzero mo-
mentum and causes an irregularity in the system. Futher-
more, the system is unstable for g ~ —g, because the
rotons are produced unlimitedly.

It is well known that the system is unstable for g ( 0
in ordinary relativistic gauge theory since the potential
is unbounded from below. However, this is not the case
for nonrelativistic Chem-Simons gauge theory, because
the system does not contain antiparticles and conserves
the particle number. Moreover, the kinetic energy is not
independent from the potential energy due to the con-
straint condition (2.8). Indeed, we have shown that the
system is stable at least perturbatively even for attractive
potential, i.e., 0 ) g ) —g, .

IV. TOPOLOGICAL AND NONTOPOLOGICAL
VORTICES

A. Boundary conditions

The topological vortex is stable for its conservation of
the winding number. It is characterized by the asymp-
totic behavior of the matter field at infinity such that

r & a
I I I I I I I I I

(

I I I I I I I I I

I

I I IE (p )— I I I I I
(4.1)

eB
rn

g )0 where g is a real constant and 0 is the azimuthal an-
gle. This vortex is built upon the uniform background
solution g = g. When g g 0, it is impossible to de-
form the vortex configuration continuously to the uni-
form background configuration (3.6) while keeping the
vortex energy finite. Thus, for the existence of topologi-
cal vortex we need a uniform nonzero background which
breaks the gauge symmetry (2.6). This is not the case
for the nontopological vortex. In general, we expect to
have nontopological vortices if the uniform background
solution is vanishing, i.e. , given by (3.5).

To obtain vortex solutions, topological or nontopologi-
cal, we make the following Ansatz on the field variables:

FIG. 1. Dispersion relation E(p) for the excitations
around the symmetry-breaking background. When g & 0
there is the minimum at p = 0. VVhen 0 ) g ) —g there
appears the new minimum at p = p„. The magnetoroton
becomes gapless at g = —g .

@ = &(~) e*"',
Qo —oo r
at- = a(r)ot. o,

(4.2)

(4 3)
(4 4)

where (i, 0) is the polar coordinate. Here, the variables
in the Ansatz must satisfy several conditions as discussed
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below.
First of all, the field g should be a single-valued func-

tion of the coordinate. This forces the winding number n
to take an integer value. Furthermore, g(r) should van-

ish at the origin, g(0) = 0, because otherwise the field is
singular there. Also the field a„must be regular, from
which we get

lim = Q.
a(")

(4 5)

lim

lim

lim

&(&) = o

ao(r) = const,

a(r) = 0.

(4.6)

(4.7)

(4 8)

On the other hand, the boundary conditions for topolog-
ical vortex solutions read

lim g(r) = ~p,
lim ao —— V'(p),

(4 9)

(4.10)

Moreover, the vortex solution must approach to the back-
ground configuration at infinity. This condition can be
expressed separately for topological and nontopological
vortices.

The boundary conditions for nontopological vortex so-
lutions are

Here, we have subtracted the background contribution
1$1z, which is nonzero for the topological vortex, (3.6),
and is zero for the nontopological vortex, (3.5). The sta-
tistical charge is uniquely given by the statistical flux of
the vortex, since we have

d'~ (ai2 —ai~)2'
1 ~ 4

20!
dx (ai —ai)

2A
(4.15)

The surface integral is carried out at inAnity. Therefore,
the charge, mass, and spin of the CS vortex are character-
ized by the asymptotic behavior of the fields at inAnity.

The electric charge density is obtained by diR'erentiat-

ing the action with respect to A&, and is given by eQ g.
Now, the electric charge of the vortex is defined by sub-

tracting the background contribution, if it exists, and
hence is given by

QEM = &Q (4.16)

where Q is the statistical charge of the vortex.
On the other hand, the total angular momentum of

the system is obtained by transforming the action ro-

tationally. When there is a single vortex configuration,
we should identify the total angular momentum J as the
spin of the vortex S„.The S part of J is given by (2.20),
while the L part now reads

a(r) eB
lim

f'~OO P2
(4.11) (4.17)

up to gauge ambiguities. It is also important to check
the finiteness of vortex energy. The energy is represented
with this A neat@ as

However, a caution is needed for the topological vortex
since there is a nonzero background. The background
contribution is not g but rpe'"s with an infinitesimal hole

removed around the vortex center. Thus, defining S„=
J(vortex) —J(background), we obtain

S„= nQ — Q
27r

(4.18)

(4.12)

eB
lim a(r) = r + n.

T'~OO 2
(4»)

These equations are closely related to topological quan-
tization of the charge, spin, and mass of vortex solitons.

B. Charge, spin, aud mass

We discuss the charge, spin, and mass of CS vortices.
We show that all these quantities are determined solely
in terms of its statistical charge Q:

d'* (v'0 —14I') (4 ]4)

where VBG = V(0) or V(p), by subtracting the back-
ground energy. For the topological vortex, requiring that
the energy contribution from infinity does not diverge, we

get an asymptotic behavior such that

2

z = M~'"&+ p + o(p'). (4.1O)

However, in the nonrelativistic model we are using, the
dispersion relation needs not be (4.19) but rather is

p 2

2M ' (4.20)

where E~ is the static energy of the vortex. The energy
of a static vortex configuration is not the mass. To get
the mass M from the static vortex configuration, it is
necessary to perform a Galilean boost with speed v:

with (4.14).
What about the mass of the vortex 7 It is well known

that the mass of a vortex in a relativistic model is given

by substituting its static configuration into the Hamilto-
nian of the system and subtracting the vacuum energy.
This mass M&"'& so defined comes out in the relativistic
dispersion relation
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fAv
@ ~ @' = exp i—mvyzi, + t @(x+vt),

2
ao ~ ao = ao(x+ vt) + neap(x+ vt),
ag ~ a'„= ag(x+ vt),
Ap ~ Ao = vyAp(x+ vt),
Ag ~ A'„= Ag(x+ vt) .

(4.21)

When we substitute these into the Hamiltonian, we find

t + Vk ~~D~
2

(4.22)

The term linearly depending on vp vanishes for the spher-
ical symmetric vortex configuration. Hence,

mvE= Ep+
2

d z@tg,

in accordance with (4.20). This formula implies that the
soliton is made up of the g quanta, whose number is
J'd z gag. Hence, in the case of the topological vor-
tex which is constructed on the nonzero background, the
number J d~z gt@ contains also the g quanta condensed
in the background state. By the Galilean transforma-
tion all those condensed quanta acquire the momentum

p = mv. Therefore, the resulting energy is not the vor-
tex energy. What we need is the energy when the vortex
moves in the background g quanta which are at rest. In
order to get this energy we calculate the number of the cb

quanta contained in the vortex, which is given by (4.14).
Then, if Q ) 0, the vortex is composed of a positive
number of the @ quanta, but if Q ( 0, it is composed of
a negative number of them. Namely, when Q ) 0, the
vortex is formed on top of the background g quanta, and
the mass is given by M = mQ. On the other hand, when

Q ( 0, it is formed as a hole in the background g quanta.
Since the move of a hole is equivalent to the move of —Q
of the background quanta in the opposite direction, the
vortex mass is given by M = —mQ ) 0. In any case, we
obtain

QEM
x'M=m —n
Ct

7rS„= n
20.'

(4.26)

(4.27)

(4.28)

(4.29)

Consequently, from (4.28) and (4.29), the spin-statistics
relation holds in the topological vortex case:

S„ 2' (4.30)

Note that this relation is not valid in the nontopological
case. In this sense it would be di%cult to consider the
nontopological vortex as a particle.

C. Numerical solutions and undulations

In order to make the Euler equations dimensionless,
we rescale the variables as follows.

@ = v'lpl &(z) e*"' (4.31)

&(z) (4.32)

ay = eAy + nDyg + glapl 6y&
—R(z), ' (4.33)

The topological quantization prevents these quantities-
from depending on continuous parameter B or p.

In this way, the charge, spin, and mass of the topolog-
ical vortex are quantized. However, these are not true,
of course, for the nontopological vortex.

We comment on the statistics of the topological vortex.
The statistical charge of the topological vortex is given by
(4.25), while the statistical flux is 2+n. Hence, from (1.1),
we expect that the statistical parameter of the vortex

2
is o,, = —n2. Actually, this argument is too crude to
determine the overall sign. A detail analysis shows that

M = mlQI, (4'24) and

= 1
dz (ap —eAp) = —n.

20,'
(4.25)

The statistical charge of the topological vortex is quan-
tized by its winding number n. Consequently, the electric
charge (4.16), mass (4.24), and spin (4.18) are also quan-
tized:

with (4.14). This formula holds obviously also for the
nontopological vortex where g = 0. It is a remarkable
feature of the nonrelativistic CS gauge theory that the
mass of the vortex is determined rigorously without any
detailed calculations.

In the case of topological vortex, the charge, mass, and
spin are explicitly calculable from the boundary condition
(4.13). Substituting (3.6) and (4.13) into (4.15), we get

(4 34)

dR
dz

do
dz

d F
dz

R 2 eBn= ———2F +2
z IeBnI '

—2F R,
1dF —2QF+R F
Z dZ

+,~ &'(lpIF') F .

(4.35)

(4.36)

(4.37)

where p is defined by (3.7). The functions F, G, and R
are dimensionless.

Substituting these A ns gtze into the Euler equations,
we obtain
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At the vortex center the boundary conditions are finity is obtained as

lim F(z) = 0, N
lim R(z) = —,
a —+0 z '

lim F(z) = 1, lim R(z) = 0,

for the topological vortex and

with N = nn/~n~, while at infinity they are

(4.38)

(4.39)

e
z

8c 1AG= 2 e

4z 1
AR ~e

where c is an unknown constant and

(4.5o)

(4.51)

(4 52)

lim I" (z) = 0, R(z) eBn
lim

z ~eBn~
' (4.4o)

for the nontopological vortex.
In both the topological and nontopological vor tex

cases, the asymptotic solutions near the vortex core are
easily found: (4.53)

N eBn
R(z) = —+ z

z feBnf

G(z) b —a z

2
2i %[+1

[Nf+ 1
(4.41)

(4.42)
where g, is defined by (3.13). Hence, if g ) g, , Py is real
and the tail is monotonically and exponentially damping
to the background value.

However, if g, ) g ) —g„Py becomes complex:

E =1+ELF,
V'(p) + AG,

2m
eB

R= AR.

(4.44)

(4.45)

(4.46)

Substituting these into the Euler equations (4.35), (4.36),
(4.37), and linearizing the equations of motion, we get

—+ — LR = —4AI',1

dZ z
d—LG = —2AR,

dz

(4.47)

(4.48)

(4.49)

where g = V"(p). Then, the asymptotic solution at in-

where a and b are undetermined constants.
Our numerical analysis reads as follows. We integrate

the set of equations (4.35), (4.36), and (4.37) by as-
suming appropriate values for the initial data a and b

in the asymptotic solutions (4.41), (4.42), and (4.43) at
the vortex center, and examine whether or not an ob-
tained solution satisfies the boundary condition (4.39) or
(4.40) at infinity. We repeat this process by changing
the initial data. Here, for simplicity, we take the model
without the potential V, and give a numerical result for
topological vortices with n = 1 and n = —1. We find
that a 2.089 11, b 3.766 18 for n = 1, and that
a 0.87157, b 0.31130 for n = —1. See Fig. 2. It
is interesting to note that these numerical solutions have
asymptotic tails with undulation; See Fig. 2(d).

In order to investigate the undulation in the tail of
topological vortices, we solve the Euler equations to find
the asymptotic solution at infinity. Let us decompose the
variables into the background part and the fluctuations
around it:

Pp =~2~ 1+—+i 1 ——~.g

gc g, ) (4.54)

Therefore, its tail is exponentially damping to the back-
ground value but with undulation. This undulation,
found also in the numerical solution [Fig. 2(d)], is ob-
viously related to the dispersion relation (3.23) of the
excitations around the background solution (3.6).

Furthermore, if g ( —g„Py is pure imaginary and the
tail dumps only as ~. The energy of the vortex diverges

in this case. The power damping is attributed to the fact
that the magnetorotons become gapless at g = —g„and
the ground state (3.6) is unstable for g ( —g, .

D. Static energy

As we have mentioned, the energy of the static vor-

tex gives the gap energy E„and not the mass M of the
vortex. In general, it will be necessary to perform nu-

merical calculations to investigate this quantity. (As we

discuss in Sec. V, it is obtained analytically for the self-

dual topological vortex. ) Here, we discuss how the energy
E, depends on the external magnetic field B when the
potential (2.4) is assumed.

When the external magnetic field is switched oK, there
is an SO(2, 1) symmetry in this system. s The generators
are the Hamiltonian II, the dilation generator D, and
the special conformal generator K. When the external
magnetic field B is switched on, only the Hamiltonian
defines a good symmetry. The dependence of the static
energy on B is determined by examining how the dilation
symmetry is broken.

It is trivial to see that, when B = 0, the action 9 =
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J dsx 2 with the Lagrangian density (2.1) is invariant
under the dilation:

—2GF + R'F + F'.
dz~ z dz in'

(4.58)

z~Qz, t~Ot,
(4.55)

1 1 1
at. ~ —at. , ap ~ ao .

Q 0 Q~

The invariance is generalized to the case where B g 0 if
we also change the external field as

1
Ak ~ —AI, .0 (4.56)

This implies that S(B) = S(B/Qz), or

E„(B)=,E„(B'), (4.57)

after subtracting the background energy which also obeys
the same scaling law. Hence, the static energy E, de-
pends on B linearly.

The linear dependence can also be verified as follows.
When the potential is given by (2.4), the Euler equation
(4.37) is rewritten as

e Bur a**(gs' —,' ~'), (4.59)

for nontopological vortices, and by

(4.60)

for topological vortices after subtracting the background
energy (3.S). In the previous subsection we have per-
formed a numerical calculation for topological vortices
for the simplified model with g = O. Using the numerical
results we find that E„1.2(e Bm. /mn) for the vortex
with n = 1 and E„=0.25(eBx/mn) for the vortex with
n = —1.

Thus, all variables F, G, and R are independent of the
value of the external field B. The static energy is given
by
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FIG. 2. Numerical solutions for topological vortices with n = 1 (solid line) and with n = —1 (dashed line); (a) for function
F, (b) for G, (c) for R, and (d) for an enlarged portion of curve F where an undulation can be seen.
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V. SELF-DUAL VORTICES IN MAGNETIC
FIELD

l(D + D)@~'+2
4 (5.2)

Now, if g = ~2n/m, the coeKcient of i@i vanishes. Fur-
thermore, the term f d ziti is the number of particles
and is assumed to be a constant. Therefore, the variation
of the energy is reduced to

1
bE =

2m
d'zei(D, + iD, )@i'. (5.3)

In general, the static solutions are given by solving
bE = 0. Because of the positive semidefiniteness of the
integrand, self-dual vortices are obtained by solving the
self-dual equation

(Di + iD2)Q = 0. (5 4)

It is interesting that there are self-dual vortices when

g = +g, with g, being the critical coupling given by
(3.13).

The existence of self-dual vortex solutions can be seen
as follows. Instead of (4.31) we parametrize the matter
field as

u(r)+inc (5 5)

Substituting this Ansatz into the self-duality equation
(5.4), we find that

~a = &~ —e&i = nclag + ~k~@u(~), (5.6)

It is known that there are self-dual nontopological vor-
tices in the absence of the external magnetic field B. It
is straightforward to generalize the analysis so as to in-
clude the external magnetic field. We then find self-dual
topological and nontopological vortices. In this section,
for simplicity, we assume that the potential V is given by
(2.4), although the case of the potential (2.3) can also be
discussed easily.

We use the Bogomol'nyi decomposition:

IDiMI' = l(Di + i»)@l'+&vc1 (@'iD~@)+~»l@l'

(5 1)

where Dy = Oy —icui, ui2 ——Oicu2 —02~i, and ~i
ak —eAp. The energy reads

tion is the same one as that of the classical particle mov-

ing with a frictional force in the potential U, where z
and u play the role of the time and the particle position.
This analogy is very useful in establishing the existence
of vortex solutions.

The boundary condition at the vortex center reads

lim u(z) = —oo,z~o
gO! A

lim u (z) =-
z-o igni z ' (5.9)

both for the topological and nontopological vortex, while
at infinity it is

lim u(z) = 0,
Z~OO

(5.10)

for the topological vortex, and

lim u(z) = —oo,
Z~OO

(5.11)

for the nontopological vortex. Thus, the analog classical
particle motion is as follows: At an initial time (z = 0),
the particle is placed at the infinite remote position (u —+

—oo). At the final time (z ~ oo), the particle comes back
to the initial position (u ~ —oo) for the nontopological
vortex, or it approaches to a stationary point (u ~ 0) for
the topological vortex. This analogy implies the following
conclusions. See Fig. 3.

When g = g, and eeB ) 0, both topological and non-
topological self-dual vortices may exist. This is because
U has a maximum at u = 0. The possible solution, ap-
proaching to this maximum as z —+ oo, is topological.
On the other hand, the solutions, leaving away from the
maximum and coming back to —oo as z ~ oo because of
the energy lack, are nontopological.

When g = g, and neB & 0, U is a monotonically de-

creasing function of u; consequently, u diverges when z

goes to infinity. So, there are no self-dual vortices.
When g = —g, and o.eB ) 0, U has the minimum. So

the topological vortex may be considered, but its energy
diverges as we have mentioned before. Moreover, the
nontopological vortex is impossible.

When g = —g, and o,eB ( 0, U is a monotonically
increasing function of u. So, only nontopological vortices
are possible. These nontopological vortices are reduced
smoothly to the 3ackiw-Pi self-dual solutions.

We comment here that not all of vorticity n are realized
in t, he self-dual vortex. Near the vortex center z = 0, u

is approximately solved as follows:

We then substitute (5.5) and (5.6) into the constraint
equation (2.8):

gneB z~ go, z
n ln —.

lgneBi 2 igni zo
(5.12)

u 1 du

dz Z dZ

where

g C 2„neBU= ——le"— ~.),

(5.7)

(5 8)

and z is the rescaled radius defined by (4.34). This equa-

Because u = —oo at z = 0, it is necessary that o.gn & 0.
Therefore, if ng ) 0, only antivortices (n ( 0) are allowed
in the self-dual equation (5.4). On the other hand, if
ng ( 0, only vortices (n ) 0) are allowed.

Finally, we show that the static energy E~ of the self-
dual topological vortex may be calculated analytically.
The kinetic energy vanishes for self-dual vortices. Sub-



Z. F. EZAWA, M. HOTTA, AND A. IWAZAKI

eB
2m /n/

(5.13)

Then, using (4.26), (4.27), and (4.28), we may rewrite
this

(5.14)

where

tracting the ground-state energy (3.9) from (5.2) we find
that

Beld B. However, although we have shown their exis-
tence, no analytic solutions have been found. In this
section we present analytic solutions of time-dependent
vortices.

We start with the Jackiw-Pi analytic solutions of self-
dual nontopological vortices in the system without exter-
nal magnetic field B:

ii(r, 0) = exp(i (iti —1)9)

gn (5.15)
where

We may interpret QEM j2M as the vortex magneton and
g„as the vortex g factor. It is interesting that the g
factor is 2 for n = +1.

d z iv/ri (6.2)

VI. TIME-DEPENDENT ANALYTIC
SOLUTIONS

g =-gc

aeB &0
iv)

= gc

aeB &0

In the previous section we discussed static self-dual
vortex. solutions in the presence of the external magnetic

and N = 2, 3, . . .. Here, r0 is a free parameter. It is
remarkable that the static energy (5.2) of all solutions
described by (6.1) is vanishing. Thus, there is an infinite
degeneracy with respect to r0. This degeneracy is a result
of the symmetry breakdown of the dilation (4.56). The
vorticity of this solution is given by n = (rr/~n~)(N —1);
compare (6.1) with (5.5). When we switch on the ex-
ternal magnetic field B adiabatically, this solution is ex-
pected to become the static self-dual nontopological vor-
tex we analyzed; see case (iv) of Fig. 3. On the other
hand, if we switch on B suddenly, say at t = 0, the above
static solution will begin an oscillation. We now con-
struct exact solutions corresponding to such oscillating
vortices.

The easiest way to construct such a solution is to em-
ploy a method developed in Ref. 12, by way of which we
may relate the Schrodinger system with B to the same
system without B. Let us consider the following set of
transformations:

z'" = —tan((uz ),

g =-gc
aeB &0 q

—tan(~z ),0
tan(idz )

1

(6.3)

g= gc

aeB (0

Q'(z', x') = cos(~t) exp t' r tan(ut) g(z, x),
2 )

FIG. 3. Potential V. From this potential we can draw the
following conclusions for self-dual vortices. (i) When g = g,
and neB ) 0, both topological and nontopological vortices
exist (ii) When. g = g, and neB ( 0, neither topological nor
nontopological vortices exist. (iii) When g = —g and neB )
0& topological vortices exist (but with an infinite energy) but
nontopological vortices do not exist. (iv) When g = —g, and
neB & 0, topological vortices do not exist but nontopological
vortices exist, which is smoothly reduced to the jackiw-Pi
solution as B ~ 0.

where

Note that this is a unitary transformation since f d z ~g ~

is invariant. It is straightforward to show that the action
S = f dsz 8 with the Chem-Simons Lagrangian (2.1) is
transformed into the equivalent action S—:f dsz'8' but
with
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c' = q'(&l+ 'o)@' —, l(&l+")y'I'1

—&(I&'I')— 1
(6-5)

This is the CS system without B. Consequently, we are

able to create solutions of the CS system with B from
those without B by using the above transformation.

In particular, when the potential V is given by (2.4)
with the critical coupling constant g = —g„ there are
analytic solutions (6.1). From these self-dual solutions
we get

g(t, s, tt) = exp —i( s ten(cst) + (ttt —1)at) exp(i tpt —t)tt)
2

2 ttt

(
s )n (

ecoss( t))nts
—'

(6 6)

They are solutions of the CS system (2.1) with B Note. that they are reduced to the static solutions (6.1) at t = 0.
The energy is calculated as

eB m ~2~2~2p2
+

m n 4Inlm sin(x/N)
' (6 7)

The density I1bl oscillates in the radial direction with the frequency 2cu. It is interesting to notice that the degeneracy
with respect to the length scale re in the original self-dual solution (6.1) is removed when B is switched on. This is
due to an explicit breakdown of the dilation symmetry (4.55).

Since the vortex soliton carries an electric charge, it is expected to make a cyclotron motion. The corresponding
analytic solution is also obtainable from the self-dual solution (6.1) after making the Galilean boost (4.22):

ma 2m'
@(t,r, e) = exp —i r tan(~t) + (R —1)ut exp i . xR(t)—

2 sin(2~t)
ten(cst)l

(6.8)

with r(t) = Ix —R,(t)l, 0(x) = arctan '(z2/z'), and

sin(~t) cos(~t) —sin(~t)R. t v',
q sin(~t) cos(~t) ) (6.9)

where v is the velocity of the vortex and is a free pa-
rameter. A detailed analysis of time-dependent vortex
solitons in the external magnetic field will be published
elsewhere.
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