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Anyon model on a cylinder
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The anyon model of superconductivity is investigated on a cylinder. The nonintegrable phase of the
Wilson-line integral plays an essential role to maintain the translation invariance of the system. The
response functions are evaluated in a closed form for both neutral and charged anyon gases.

I. INTRODUCTION

Recently much attention has been given to an anyon
model [1,2], or more specifically, a nonrelativistic elec-
tron system with Chem-Simons interactions, which may
describe newly discovered high T, -superconductors [3-
27]. Its ground state has completely filled Landau levels
with respect to the Chem-Simons magnetic field. The
basic physics involves the quantum Hall effect [28] and de
Haas —van Alphen effect [29]. It has been shown that the
model exhibits a (partial) Meissner effect, and therefore a
superconductivity at both zero [3—7] and finite tempera-
ture [14,16].

It is well known that in the presence of a uniform mag-
netic field two translation operators do not commute with
each other [30]. Also, if the system is defined on a multi-

ply connected manifold such as a torus, two unitary
operators which generate large gauge transformations
along two distinct noncontractible loops do not commute
with each other [31]. Here two kinds of invariances are
at issue, one under spatial translations and the other un-
der large gauge transformations.

These are intertwined with each other. In this paper
we analyze the anyon model on a cylinder (S' X R '). It
will be shown that both the translation and gauge invari-
ance of the ground state can be maintained only if the
nonintegrable phase of the Wilson-line integral along S'
is properly taken into account [32].

After establishing the ground-state wave function, we
develop a perturbation theory in the presence of small
gauge field fluctuations to determine the response func-
tions for neutral and charged anyon gases. As an appli-
cation, the Meissner effect is examined in detail as the cir-
cumference of the cylinder varies.

II. MODEL

The Lagrangian density of the model [3,4,6] is

1 e vp
2FF" e —t'a 8—a +en A

4 Pv 2 A, v P e 0

a (x, +L ) =a„(x)+—BP (x),1

e
(2-2)

we assume in this paper that PEM(x)=Pcs(x)=0, i.e.,
that all fields are single valued.

Under gauge transformations

A' =A +—8 A(x),1
P P e P

1a' =a +—8 co(x),p p )M
(2.3)

—i(co+A)y

Within the boundary condition (2.2) the most general co

and 0 are

27TPl i X (
co(x) = I. +co(x),

27Ttll 2X 1
A(x) =

I. +Q(x),
(2.4)

where m, and m2 are integers, and to(x) and A(x) are ar-
bitrary periodic functions.

The (t, x)-independent parts of a, and A, are physical
degrees of freedom on the cylinder, and play an impor-
tant role. We define

gauge fields, respectively. g is a two-component nonrela-
tivistic electron (hole) field. We have excluded magnetic-
moment interactions. v0 is an integer parameter. In the
following discussions we take e, v0 & 0 for definiteness. If
P(x) is a spinless fermion, then the model reduces to the
holon model [33].

Coordinates of a cylinder S'XR' are (x„x2):
x& &[0 L] and x2E( —~ + ~ ). x& and x&+L are
identified. Although the fields on the cylinder need to be
single valued only up to gauge transformations

A„(x, +L ) = A„(x)+—BPEM(x),
1

+iq'D, @ ~D, q~',

DQ =&0+ie( Ao+ao), Dk =&k ie( A "+a—") .
(2.1)

Here A„and a„are electromagnetic and Chem-Simons

1a'(x)= Pcs+(x-dependent terms),
eL

1A'{x)=—/EM+(x-dependent terms) .
(2.5)
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Then gauge-invariant Wilson line integrals along a non-
contractible loop (x2 =const) on the cylinder become

Wcs[a 1t x2)=exp ie dx, a 1

0

'&cs=e csWCS[f„'t X2]
L

II EM[&1,'t, x2]=exp te dx, 2 '
0

~EM' ~EMIF„.'t x2] .

(2.6)

4cs~Ncs 2~m 1

PEM
—2~m 2

(2.7)

Pcs and /EM are nonintegrable phases of the Wilson-line
integrals, which are undetermined by the fields strengthsf, and F„,. As is shown below, the wave function of
the system has nontrivial dependence on Pcs+/EM,
without which the translation invariance cannot be rnain-
tained.

Note that, under a gauge transformation (2.4), Ho(P)g„(x;P) =e„tt/„(x;(t ),
2

Ho(P)=— 1

207
+a2

Here lP & is an eigenstate of the Wilson-line phase
(Pcs+/EM) lP & =Pl/ &, and l%', (P) & is a state in the elec-
tron sector with given f„,F„,and Pcs+/EM=P. The
value of Pcs —

/EM is arbitrary, since electrons see only
the sum p. l+(f, F) & is invariant under large gauge
transformations.

In this section we determine the wave function of the
ground state in which there is neither macroscopic
current nor any electromagnetic fields: (j &

=en„
(j&=0, and F„=O. In the following sections we shall
look at states with (j&NO and 8%0. Equation (2.11) im-
plies that ef,2=—urn, /vo=l, fo1, =0. We choose the
Landau gauge e(a '+ 2 ') =(p/L) —(x2/l ), which
satisfies the periodic boundary condition in the x

&
direc-

tion. The corresponding one-particle Schrodinger equa-
tion is

that is, physics must be periodic in Pcs and /EM. Trans-
formations with m, or m2&0 are called large gauge
transform ations.

The Euler equations for the gauge fields are given by

e„=(n + —,
'

)
1

ml

p„p (x;p)= e ' u„[g(x2,p, p)]U
IL

(3.2)

e vo
2

s2.VPf
2~

gg v2, + gko ~ 2.
(2.8)

2
Px2P 4)=

&

(2qrp+P)l
L

where n =0, 1,2, . . . ,p EZ, and

Here

i'=eA,
[0 &k0 (Dkf) Pl .—

(2.9)

The electron field obeys

1
taoit = — D,'+e(ao+ao) 1t

2m
(2.10)

Qg vk+ en $2.0 ( J'2 (2. 1 1)

We solve these equations in the self-consistent field ap-
proximation in which the currents in Eq. (2.8) are re-
placed by the expectation value

e vo
2

&2.vpf (2~

( —1)",2 d"
u„(z)= e' /

2n/2( 1)1/2 1/4 d n

f dz u„(z)u (z) =5„

Z
2

e

(3.3)

f(P) =const= 1

&2qr

We expand the electron field operator 1J'r as

(3.4)

U is a spin-wave function (v U =5 ).
It is important to recognize that the structure of the

Landau levels [34] does not depend on the value of P,
which implies that all P's are equally likely. This is very
special to the particular Chem-Simons model (2.1). In
general gauge theory models the effective potential has
nontrivial dependence on nonintegrable phases of
Wilson-line integrals [35—40]. Since the energy spectrum
does not depend on P, the one-loop effective potential for
P is completely fiat. Hence we choose, in (3.1),

Here
l
q/( f,F) & is the wave function in the electron (g),

Pcs, and /EM sectors with given f and F
1t/(t, x)= ga„'p' (P)P„(x;P)e

npo

(o) (o)f
[ anpa r amqp ] ~nm ~pq~ap

(3.5)

III. GROUND STATE

We shall seek the wave function
l
4(f,F) & with given

fp and F„ in the form

lq(f, F) &= f deaf(y)ly&lq, (y) &,

f(P+2qr)= f(P), lq', (/+2~) &
= l1I', (P) & .

We define l%", '(P) & as a state with the lowest vo Landau
levels completely filled:

vo
—1

Iq'"'(p) &
= Q Qa""(p) lO& (3.6)

n=0 p, a

Then the ground state is
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, f dylan&l~', "(y)&. (3.7)

&~, lj'(x)l~, &=, f dy&~' (y) j'(x)l~' (y) &

o-

f dggu„[g(x2, p, g)]
o mlL o

p

vo
—1

f dz u„(z)
oel

(3.9)

evo
=en, .

~l

It is easy to understand why the nonintegrable phase of
the Wilson-line integral in the x, direction, P, is impor-
tant to maintain the translation invariance in the x2
direction. In the ground state e(a'+ 3 ') =(P/L )—(xz/l ) so that a translation T2(d;x2~x2 —d) trans-
forms P into ()I)+ (Ld /I ). In particular,

We now demonstrate that the state l)II', '(P)) itself is
not translation invariant, but the ground state l)II&) is.
Indeed,

&+',"(y)lj'( )l+',"(p))
vo

—1

=e g gf„(x;()I))i'„(x;(I))
n =Op, o.

v —1

2=e g gu„[g(x2,p, g)], (3.8)
n=0 p

which has nontrivial x2 dependence, but

With (3.9) and (3.11) inserted, Eq. (2.11) is consistently
solved by the configuration ef—,2

=I,fOk =F„,=0.
In this section we have shown that the state (3.7) gives

a translation-invariant, self-consistent ground state. The
Wilson-line phase ()I) in the x, direction is essential to
maintain the translation invariance in the x2 direction.

IV. HALL CURRENTS IN A NEUTRAL ANYON GAS

evo
'

The corresponding one-particle Schrodinger equation is

1

2m

X2
8 —i~+i

L
+a', —eA'x, q„„.(x;y, g)

—(Zvrp+P)le =e —eDnp n L

=e„ it „(x;P,6'),
(4.2)

——me@'l2 2 4

2

g„~ (x;P, 6' ) =P„„(x„x2 me @1;P )—,

Next we consider static states in which there is non-
vanishing current & j )%0. At this stage one has to distin-
guish two theories without and with electromagnetic
fields, namely, theories of neutral and charged anyon
gases. If electromagnetic fields are absent, one can have a
uniform constant current &j'). To see this, consider a
Chem-Simons field configuration

1
ao = —Ax2, a ' = P bx2, —a =0,

e
(4.1)

T~(d)ld) = d+, )

T,(d))l+l"(d))= ')I'0' ()+, )
.

(3.10)
where P„(x;P) is defined in (3.2). The expansion of
g(t, x) in terms of [g„(x;P,6)] defines annihilation
operators a„~ (P;6'), from which we define an electron
state

The latter relation may be explicitly checked from the
definition (3.6). Clearly l%g ) is invariant under T2(d).

Similarly,

vo
—1

) = y f dying(x2, p, y)„—O 7Tml L

Xu„[g(x,p, g)] I+ (@)&= f dglg& I+,(P;@)& . (4.3)

vo
—1

l+, (y; @)&
= / /at, .(y; @)l0& .

n=0 p, a

Since the system is translation invariant in the x2 direc-
tion, we expect that all values of P are equally likely.
Hence we are led to considering a state

vo
—1

, f dz zu„(z)'=0,
„=o vrml

& e, I
j'(x)

I +, ) =0 .
(3.1 1)

Evaluation of currents proceeds similarly as in (3.9)
and (3.11), resulting in &j (x)) =en, and & j (x)) =0.
However, for & j'(x) ),

vo
—1

&@i(Ã)lj (x)l% i(g)) = g f dpggu„(g —me@I )

onml L

v —1 2e vo
dz(z+me( l')u„(z) =

o aml 7T

(4.4)
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where g=g(x2, p, g). It can be seen that (4.1) and (4.4)
solve the Chem-Simons equation (2.11). Equation (4.4)
represents integer quantum Hall effect with respect to the
Chem-Simons magnetic field b =~n, /evo.

In the presence of electromagnetic fields a simple
configuration with constant current and electric field does
not solve the Maxwell equation. A constant current
configuration j'(x)=c implies 8 =cx2+B0 so that the
Landau-level picture itself breaks down.

V. INDUCED CURRENTS

In Fourier series representation,

f(x, )= g f(q)e

f(q)= —f dx, f(x, )e

Relation (5.3) becomes

J('„d(q)= —K",(q)[a'" (q)+ A (q)],
K"(x „y, ) =g K"(q)e

q

(5 4)

J",„(x ) = ( 4
I

J"( x ) I

(Ir &
—( e I

J"( x ) I
4

= ( 4
I

J"( x ) I
4 & en, 5—" (5.2)

being a function of a„"'(x,)+A (x, ), is given to the
leading order by [6,16]

J('„d(x, )= ——f dy, K"(x„y,)[a'" (y, )+2 (y, )] .
1

(5.3)

As shown in Sec. III, F„=f0k =0 but b = —f,2

=~n, /evo in the ground state. When a small external
field is applied, a self-consistent gauge field configuration
becomes a„=a„' '+a„"' and A„WO. We would like to
find out how the system responds to an external field.

Since the electron field equation (2.10) depends on the
gauge fields only in the combination a„+2„, the elec-
tron wave function Iq), (p) & is a function of a„"'+A„.
Furthermore, if an external field is x2 independent so that
the system is translation invariant in the x2 direction, the
wave function (3.4) of the Wilson-line phase P remains in-
tact. Hence, for a„'"(x,)+ A„(x, ),

I+(a+3)&= f dPIP&g Ie, (4)&
277 0

= e, &+I+("(a")+~)&+. . (5.1)

Therefore the induced current

To find K",(q), we notice that for a sufficiently small
fluctuation a"' + A', the corresponding electron state
still has the structure of completely filled Landau levels,
though wave function of each electron suffers a perturba-
tion. In the radiation gauge diva =div A =0,
a""(x,)+ 3 '(x, ) =0. The one-particle Schrodinger
equation becomes

Hitch(x)

=eg(x),
H=HO+ Vi+ V2,

V, = (a +A )Bz+e(a +3 ),
(5.5)

eV= (a+A )
2m

oo

q(0) (x.y)
— y eipeq ( y).2', (5.6)

Matrix elements of the perturbation Vi, though not diag-
onal in p, are diagonal in 0:

H0 is given by (3.2).
We shall determine eigenstates g(x) in perturbation

theory. We recognize that the appropriate zeroth-order
basis is not [itj„z (x;P)] in (3.2), but the corresponding 8
basis

(n e'a'I v, I
nea & =&... ge "'+"

p~p

X f dx, f" dxze
' ' ' u„(g') '

(a + A )(x, )d2+e(a + A )(x, ) u„(g),
O —oo m

where g'=g'(x2, p, g) and g'=g(xz, p', P). Introducing q =p —p' and converting the x2 integral to the integral over
z=g'(x~, —,'(p+p'), P), one finds

(n'6)'cr'I V) InOcr &=5 5(6)—8')(n'I v) In &e,

(n'I V, In &e= g e'q (a + 2 )(q)C„",„'(a )+e(a +2 )(q)C„'.„'(a )

q = —oo

~lq ( )
dpaq=, C(~„'(a)= dz u„(z+a) u„(z —a) .

oo dz

(5.7)
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Note that the matrix elements are independent of P in the 0 basis, and ( n'~ V& ~n ) @
= ( n

~ V& ~

n') &. The integration in
C„'8„'(a) can be performed in a closed form making use of recursion formulas for u„(z)'s and [41]

1/2
oo m-dz u (z+a)u„(z —a)=2' "' '

a "e ' L„"(2a ),
oo m!

(5.8)
= 1 --+. d"L„"(x)= x +"e" (x e ") for m ~n .n!

In the 0 basis the Schrodinger equation reads

Hg„e (x)=e„eP„e (x), e„e=e„+e'„'e'+
I V

(x)=t/'„' (x)+1/J'„" (x)+, ~/J'„" (x)= y i/l'„' (x) .
n'Wn ~n ~n'

With these eigenstates the electron wave function is given by

(5.9)

g(t, x)=pa„(P)P„(x;P)e '"', l'P, (y))= & Q~„',.(&)I0) .
n =00, cr

The computation of the induced current J,„d, (5.2), is straightforward. J;„d is

vp 1

J;„d(x)= f dP f dH g g (g'„z*g'„'9 +c.c. )
77 0 0 =+1

vp
—1

If dP d8+ g g (n' V ~n ) gg '~ '"P"'"P"' +c c2' 0

(5.10)

Insertion of (5.7) leads to

vp
—1

J,„(x)= g g, g e ' C„'.„'(a ) (a +A )(q)C„"„'(a )+e(a +A )(q)C„'„'(a )
n =0 n'~n q=- ml

For Jj„d we have

(5.11)

J „d(x, )= — (/AD, Q) +c.c.
2m

vp
—1

f dP f dg g g [[g'„tI*(i&,+ea" ')g'„'g' +c.c. ]+[/'„'e*(iB,+ea" ')g'„e' +c.c. ]]
2m 0 a=+1n =0

vp
—1

e ' [A (q)+a (q)]C„,„(aq)+e[A (q)+a (q)]C~.„(a )
2ml „0„,&„n —n' ml

X d +(xq Qn. +Q!q Qn 0!q

+( —1)"+"f dg(g —a )u„(g' —a )u„(g'+a ) +(n~n') =0
(5.12)

and

J;„d(x, ) = — (g"D~g) +c.c.
2m

2 2
vp

—1

(f"g)(a + A ) — f "dy f de y y [q'„tI*(ia, )q'„",.+y'„'tI.*(ia,)y'„",.+c.c. ]nOcr 2 nOa n8~ 2 n9o.

e n,
(a +A )(x, )

vp
—1

+ g g, g e ' C„",„'(a ) (a + A )(q)C„''„'(a~)+e(a + A )(q)C„' „'(a~)
7Th 0 t~ n n ml

(5.13)
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For the rest of this work we restrict ourselves to the semion (half-fermion) case (vo= 1), where the sum over n' can
also be performed and will be written in terms of a function S(x) which is closely related to the exponential integral.
We define [41]

S(x)=e g — =e I dy —(e~—1)
1x" ~ 1

&n nt 0

x ——x + x + . . forx«1,32113
4 36

1 1 (n —I )!+ + ~ ~ ~ + '+ - for x)&1.
x n

(5.14)

The expression for x )) 1 is an asymptotic expansion. Making use of (5.8) and (5.14), one can show
QO

Iy —C„",'( )'=S(2 '),
n=i"

g —C' '(a)C"'(a) = [2a S(2a )
—1+e '

]
1 1 2

n=1

g —C'"(a) =a S(2a )
—

—,'+e1 2

) n

Applying these formulas to (5.11) and (5.13), we find

JI'„d(q) = K"(q)[a—"' (q)+ 2 (q)]

with

(5.15)

Ko(q) = S(2a ),
~ 2 —2 2

K2(q)=KO(q)= [2a~S(2a )
—1+e '],

7T
q

2 2 —2a2
K2(q) = —

z [a~S(2rzq ) —1+e '], all others=O .

(5.16)

Chem-Simons fields a can be eliminated making use of
the field equations (2.8). The resulting equations relate
currents to EM fields, replacing the London equations in
the BCS theory. We shall find below that this form of the
equations, (5.16), is more convenient and suggestive.

VI. RESPONSE FUNCTION

Response function on a plane has been previously eval-
uated in the random-phase approximation (RPA) [3,4,8]
at T=O and in the self-consistent field method [16] at
both T=0 and TWO. Both methods yield the same re-
sult at small momentum for a neutral anyon gas. It has
also been noticed that there is an important difFerence be-
tween neutral and charged anyon gases [6,16].

In this paper we are examining the system on a
cylinder, placing particular attention to topology and
finite size of the cylinder. We have already shown that
the Wilson-line phase associated with nontrivial topology
of the manifold is crucial for the translation invariance of
the system. In this section we examine the finite-size
efFect on response function.

In the I.—+ oo limit the K"(xi,yi )'s, and therefore the
response function, must reduce to those previously ob-

k= 2~q 2' q

L I
(6.1)

K"(k)'s on a plane is given by (5.16) and (6.1).
In particular, for small momentum k one finds [recal-

ling I =(~n, ) ']
2

@0= ',0 7

3 k4+ 11 k6+
144~ n

X=r= — k — k+0 2 ie 3 3 11
2 0 + ~ ~ ~

7T 47Tn 4g~ n

2e k2 1 k4 13
mm 2mne 9677 n

(6.2)

Converting these expressions to the coordinate space by

1 8k~-
l Bxi

one finds

tained on a plane [6]. It is easy to check this. It is con-
venient to introduce a momentum variable k by
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yg g 3J,„d(x, )= + + [a (x, )+A (x, )]
n n, coax& 8mn, Qx4j 144&2n2 c)x,

L

e' 0 3+ + + [a (x, )+A (xi)],
Bx& 4~n, gx, 48m n, Bx

&

(6.3)

2 8 3 a3 11 8
Bx

&
4m.n gx 48~ n Bx

2 g2 1 g4 13
~m ~x 2 2~n ~x 4

This agrees with and generalizes the result of Ref. [6].
We note that (6.3) is valid even for a finite but large L

(L ))l) so long as gauge configurations are smooth so
that a'" (q) and A (q) are negligiblly small for large ~q~.

In the opposite case L &&I, the asymptotic expansion
(5.14) of S(x) may be employed:

4 2

(2aq ) (2a ) (2a )

K2(q) =Ko(q) =
3

1+ 3
+4ie 1 4

l (2aq ) (2aq )
(6.4)

e ne 2 8Kz(q)= 1— + ~ ~ ~

(2a ) (2aq)

In the limit L/l —+0, all components except for Kz van-
ish. [Qne can assume that a ' ' (q) + A (q) vanishes for
q =0.] K z(q) approaches e n, /m, the value representing
the diamagnetism of an electron gas [42]. Hence we ex-
pect that the superconductivity disappears in this limit at
least for x2 independent configurations. The formula
(6.4) with 2a =kl is valid on a plane (L ~~ ) for kl ))l.

In the linear response theory we examine a response of
the system to external currents of the 5 function form
[43]. Equations to be solved are

a relation between J",„d and (a",„„A,"„,), which defines the
response function. For a charged anyon gas we define

Q,"„for x2-independent gauge field configurations, by

Jt'„d(q)= —k Q," (q)[a,'„„(q)+A;„,(q)] . (6.7)

neutral: L„"a'" =k a",„, ,

charged: L," (a'""+A )=k (a~„,+ A",„,) .
(6.9)

For gauge field configurations under consideration the
equations reduce to a 2X2 matrix involving the indices

p =0 and 2. L„and L, are related by

L, =L„+K, (6.10)

It is checked that only the sum of a „,and A,„t appears
in the relation to J~d. For a neutral anyon gas, EM fields

are absent and the coupling constant e is redundant.
Analogous definition is

—Jt'„d(q)= — Q„" (q)ea, „,(q) .1 k

e

Q„and Q, are related to current-current correlation
functions in neutral and charged anyon gases, respective-
ly, so that they are symmetric in their indices. Q„was
first evaluated on a plane in Refs. [3], [4], and [g].

To determine Q„and Q„we first write (6.5) in the ra-
diation gauge in the form

dX "=J".d+ JRM...i
2

P ~f =en, 5" +JI'„„+Jcs,„, .
(6.5) and given in the (p, =0,2) subspace by

External fields are defined by

1 0
L„(q)=k

Ko Ki 1

k 0 o (6.1 1)

~PRE =JKM ..i Q„and Q, are given by
(6.6)

2
+pvp pext Jp

~ vp Cs, ext Q„=KL„',
Q, =KL, ' =Q„(1+Q„)

More explicitly

Notice that JgM, „, and Jcs,„,may be different from one
another.

Solving Eqs. (5.16), (6.5), and (6.6) altogether, one finds

(6.12)
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1
Q =d.tL„

0 1
k %+i k

1 0 detE
e2

2

d«L =k~ —
& k3(~2+K02)+ k2detK,

e
(6.13)

Q, = 'k IC+ i k
1 O

+
O 1

detIC',
detL, 1 0'

det L, =detL„+detK +k(KO+Kz) .

Approximate formulas for Q„and Q, for small and large a~ ~
can be easily found from (6.2) and (6.4). To this end we

notice that

4 —2 2

detK= (1—e &)2= '
2j2 2

Aq

1
for small

~
k ~,

2/Tn

e'n,
for large ~ a, ~.

7TCXq

(6.14)

For small momentum k,

detL„= k +O(k ), detL, =1

~n,
k (I+A, k )+O(k )

(6.15)
m

0
ne

m
Lem en,

In the last expression we have retained only the numerically dominant term. A, z is the London penetration depth. (See
Ref. [16] for numerical values of parameters m, e, and n, relevant to anyon superconductivity. ) The response func-
tions are given by

m 1 / 1

4~ k
2

n (6.16)

k1—
em 1+A, k

i k
4e n 1+X0k

i k

4e n 1+A k

m k
e n 1+A, k

i k
4e2n 1+g2k2

i k

4e 2n 1+A2k 2

1

1+k k

(6.17)

For a neutral anyon gas the response function is defined
by (k /e )Q„ in the literature, and the above result
agrees with that of Refs. [4] and [8] obtained on a plane
using RPA. [In the holon model (k /e )Q„o becomes
m/27r Other components remain . the same as in (6.16).]
Q„and Q, at finite temperature (TWO) on a plane have
been evaluated in Ref. [16]. Higher-order corrections to

Q„have been evaluated in Refs. [8] and [27].
There is a significant difference between neutral and

charged anyon gases as demonstrated by Q„and Q, . In
particular the pole at k =0 in Q„2 is shifted to
k = —

A,o in Q, 2, indicating a Meissner effect. We shall
elaborate on this phenomenon in the next section. It is
worth mentioning that the situation at TWO is more in-



ANYON MODEL ON A CYLINDER

volved. It has been shown, for instance, that Q, 2 at
TAO develops two poles, one associated with the T=O
pole and the other at k =0 (Refs. [14] and a [16]). These
facts suggest an important difference between excitation
spectra in neutral and charged anyon gases. A more
rigorous examination requires inclusion of time (or fre-
quency) dependence in gauge field configurations.

We stress that the difference between Q„and Q, is not
just in the location of a pole. The structure of the 00 and
02 elements of Q„and Q, is quite different. Q„and Q,
are related by the simple formula (6.12) due to the fact
that both Chem-Simons and EM fields have the same
gauge interaction to the electron field.

For a very thin cylinder (L /l ((1),

(2a~ )
detL„= ].+ + ~ ~ ~

I (2a )

(2a )
detL, = 1+

arm (2a )2

2 24e ml

+ 0 ~ 0

For Q„and Q„

2e 1

m'm (2a )~

(6.18)

4em 2

m n, (2a ) (2aq )

Sie l 2

~(2a~ ) (2a~ )

Sie ~l

~(2a ) (2a~ )

21—
~m (2a ) (2a )

(6.19)

and

24e m

m n, (2a )

2

(2a )

Sie l

m(2a )

e 1

m.m (2a )2

Sie l 1+ 2
vr(2a )

e 1

em (2a )2

2 2

1 2+
~m(2a ) rrm (2a )

Q„and Q, agree with each other to the leading order. A
difference shows up to the next to the leading order,
which is numerically negligible (e /arm —10 ).

(7.2), it is helpful to recall the mechanism of the Meissner
effect in the BCS theory [43]. With a Cooper-pair con-
densate on a plane,

VII. MEISSNER EFFECT BCS: J;"„d(k)= —K(k) A "(k) . (7.3)

The Meissner effect is the expulsion of external mag-
netic fields, achieved in a system by annuling the applied
magnetic field by currents generated in response. In this
paper we are limiting ourselves to x 2-independent
configurations. We introduce an external current which
generates a constant external magnetic field:

JEM, t(X1 ) 2BO[6(x 1 ) 5(x 1
L )]

BCS.

Jk„d(k)= —
2 2 JEkM...t(k),

1

1+~',k'

JEM, tot(k) 2 2 EM, ext(1+~,'k' (7 4)

In the London limit K= I/A, l. Substitution of (7.3) into
the Maxwell equations yields

2Bo
JEM,

JEM, t(xi ) JEM, t(xi ) JCM, t(xi )

(7.1)
ikI k

B(k)=
2 2 JEM,„,(k).

1+k k

This generates, through (6.6), an external field

+Bp for 0&x) & —,'L,
~ext —B for —,'L &x &L,p 2 1

~ext gext
ok & pv

(7.2)

In the radiation gauge only 2 „,is nonvanishing.
Before examining a response of the system to (7.1) or

Hence, so long as A, L ( T) is finite, J,"„(k=0)=0.
That is, the external current is completely shielded (in
the bulk) by the induced current. In particular, for B,„,
=B0e(x, ) and JEM,„,= —2B05(x, ), one finds B(x, )—I, I &~=B0e(x, )e ', implying a complete Meissner eff'ect.

In our case only JEM,„, is nonvanishing in (7.1) so that
Eq. (6.7) can be written as
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J",.d(q) = —Q.'2(q)JEM, - (q) .

In particular,

EM, tot(q) [ Qc 2(q) )JEM, ext(q)

Q 2(q)]JEM, t(q)
27Tq

(7.5)

(7.6)

A relevant quantity for a Meissner effect is 1 —Q, 2(q).
It is easy to see that in the L~~ limit a charged

anyon gas responds to an external magnetic field just as a
BCS superconductor does. Indeed, in this limit Q, 2 of
(6.17) has exactly the same form as in BCS. However, as
mentioned in the previous section, an important depar-
ture from BCS appears at finite temperature.

An analytic expression of B (x, ) for a finite L is avail-
able in two cases L ))l and L « l with an external field
(7.1) (Ref. [41]). For a fat cylinder (L ))l ),

8&o~o 1 27Tqx i

2
cos

L &x i o 1+(2~qk&/L ) L
Qdd

&o
X '

cosh(L /4A, D)

+cosh[( ,'L ——x,)/ko] for 0&x, &+ ,'L, —

co—sh[( ,'L+—x,)/Ao] for —,'L (x, &—0. (7.7)

The magnetic field is exponentially damped from +Bo to zero near x, =0 or +—,'L. A complete Meissner effect operates
so 1ong as L ))A,o.

For a thin cylinder (L ((l ),

B;„d(x, ) =8(x, )
—B,„t(x, )

=—8ao e2n,

L I o 2&q
Qdd

3
2mqx

&

sin
L

x, ( ,' L —x, ) /A. ~ fo—r 0 & x, & ,' L, —
= —&o'

x, ( —,'L+x, )/A, l for ,'L &x, &0. ——2 (7.8)

In view of L &&l «A.I in the anyon model of supercon-
ductivity, the induced magnetic field 8;„d is negligible. In
other words, since the magnetic length l is much larger
than the circumference of the cylinder L, each electron
mostly sees only the total external current fOdx, J,„,
which vanishes.

VIII. DISCUSSIONS

On a cylinder the nonintegrable phase P of the
Wilson-line integral is a physical quantity. We have
shown that it plays a crucial role to maintain the transla-
tion invariance of the ground state in the orthogonal
direction.

The wave function of the system with given field
strengths f„, and F is given by Eq. (3.1), ~q'(f, F))
= f dP f(P)~t)It)g ~tIt, (P)). For states translationally
invariant in the x2 direction, all values of p are equally
probable so that f(P)=const. Based upon this observa-
tion we have determined the response functions for static,
x2 independent but otherwise arbitrary gauge field
configurations.

We have confirmed the significant difference between
neutral and charged anyon gases, and have observed a re-

lationship between them. In the L ~ ~ limit all quanti-
ties reduce to those on a plane. For a finite L there arises
a departure. In particular, at least for x2-independent
configurations the induced current J;„d becomes vanish-
ingly small for a very thin cylinder (L «1).

However, this does not necessarily mean that the su-
perconductivity in the x2 direction disappears as L gets
smaller. One of the most intriguing questions is whether
or not a Josephson effect exists when a barrier is inserted
in the middle of the cylinder, and how it depends on the
length of the circumference of the cylinder. Here the sys-
tem is not translation invariant in the x2 direction so that
nontrivial dependence of the wave function on the nonin-
tegrable phases of Wilson-line integrals on both side is ex-
pected. We hope to come back to this problem in the
near future.
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