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Light-front limit in a rest frame
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Covariant perturbation theory is formulated using a new set of space-time coordinates. This
corresponds to a quantization on any Rat spacelike surface in Minkowski space. One limit of the
theory reproduces the usual instant (equal-time) dynamics, whereas a diferent limit gives light-front
dynamics. Neither the infinite-momentum frame nor infinite momenta are involved. In particular
a smooth parametric transformation from the instant to light-front picture is given for a system at
rest.

I. INTRODUCTION

Weinberg [1] considered the two-body scattering am-
plitude within the scalar Ps model in the lowest order
of old-fashioned perturbation theory [time-ordered per-
turbation theory (TOPT)]. He investigated a particular
limit P ~ oo of individual diagrams constructed ac-
cording to TQPT rules, and demonstrated that, in such
a limit, hereafter referred to as an "infinite-momentum
frame, " each diagram either approaches a finite value or
simply vanishes. Consequently, he formulated the rules
for calculating TOPT in the "infinite-momentum frame. "

Brodsky, Roskies, and Suaya [2] considered the infinite-
momentum limit for spin-2 theories and for the Ps ver-
tex as well. In particular they established a connection
between Feynman rules and TQPT rules in the infinite-
momentum frame, for the case of a triangle diagram de-
scribing a @ED vertex in the third order of perturba-
tion theory. They have shown that out of 6 TOPT di-
agrams corresponding to a simple Feynman vertex tri-
angle diagram, only 2 diagrams survive when the limit
P —+ oo is taken. They subsequently demonstrated that
upon choosing the momentum of the incoming photon
to be purely transverse one is able to reduce the Feyn-
man diagram to a single TOPT diagram in the infinite-
momentum frame.

Chang and Ma [3] studied the Feynman rules in terms
of the new variables ps + ps and po —ps in the ps model
and in quantum electrodynamics. In the P model they
recovered Weinberg's rules at infinite momentum upon
integrating covariant propagators over the po —p vari-
able. I ikewise I&ogut and Soper [4] introduced the light-
front variables x+ = ~(ct + z) and x = ~(ct —z).+2 Q2
They considered a Feynman diagram for a two-body ra-
diative process and integrated the propagators over z
In this way they established the rules for perturbative
calculations on the light front, which turned out to be
fully equivalent to the "infinite-momentum-frame" rules.
They also deduced what the field commutators should
be at equal z+ in order to get a consistent formalism.
Chang, Root, and Yan [5] subsequently employed the
Schwinger action principle to actually derive the com-

mutation rules postulated by Ekogut and Soper.
In this way the instant and light-front-quantization

methods have been demonstrated to be fully equivalent,
with the link between both formulations being provided
by the infinite-momentum frame. Therefore the limit
P ~ oo has been considered a necessary evil, although
in fact no invariant quantity is getting large, as pointed
out in Ref. [2]. Nevertheless a description in terms of
light-front variables has been frequently associated with
the infinite-momentum limit, thus obscuring an under-
lying physical picture and causing some confusion about
actual motion of objects involved.

It is the purpose of the present paper to demonstrate
that the transition from the equal-time perturbation
theory to the light-front perturbation theory could be
achived without any reference to the infinite-momentum-
frame limit whatsover. Not only all involved momenta
will remain finite, but the system under consideration
will be in fact at rest.

As the case in study I will consider the triangle diagram
for the P model. In Sec. II, I will construct a covari-
ant expression for the scattering amplitude. I will then
project this amplitude onto the light front and demon-
strate how such a projection results in 2 light-front dia-
grams. In Sec. III, I will alternatively project the covari-
ant amplitude onto the equal-time surface and demon-
strate how this projection results in 6 TOPT diagrams
discussed in Ref. [2]. Then in Sec. IV, I will introduce
a one-parameter family of coordinates and generalize the
projections described above. I will analyze a structure
of resulting diagrams and I will show how to transform
a TOPT picture into a light-front picture upon merely
changing a value of the parameter o, , but keeping the
system at rest.

II. COVARIANT AMPLITUDE AND
LIG HT-F RONT PROJECTION

Consider the contribution of the Feynman diagram of
Fig. 1 in the scalar P coupling to the bound-state current
of the scalar bound state of the mass M:

d~k . (2k" + q")
1 P

1

(k + ~)' —m' + ie k2 —m' + ie (P —k)' —m'+ se
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k = 2k k+ —(k~),

d k=dk dk+d kg

I integrate Eq. (1) over k by residues. The poles are
located at

P + q

FIG. 1. Feynman triangle diagram for a calculation of a
bound-state current.

Let us observe that analogous expression could be derived
for the electromagnetic current of the two-body bound
state in an exactly solvable model of a relativistic dy-
namics [6]. An observable, the elastic form factor of the
bound state then could be extracted:

J"(0) = (2P" + q") F(Q ),

where q" is the four-momentum transfer, Q = —
q )

0, P" and P" + q" are the initial and final momentum of
the bound state, respectively, and P2 = (P+ q)~ = M~.
I introduce now the light-front momenta

k+ = (ko+ ks),+ 1

k = (k —k),1

2

ki =(k, k ),

a»d I have

m + (kp+ qp) ie
2(k+ + q+) 2(k+ + q+) '

m~ + (kg)~ ie
2k+ 2k+ '

10
m~+ (Pg —kg)~ ie

2(P k ) '2(P k )

Each of the poles may be located either in the lower or
upper half of the complex k plane, depending on values
of k+, q+, and P+. To be more specific I observe that
P+ is always positive, P+ & M. Without any loss of
generality I will assume q+ & 0. Then the poles are lo-
cated as illustrated in Fig. 2. Configurations (i) and (iv)
give no contribution to the k integral, as I could always
close the contour from above for (i) and from below for
(iv), avoiding any pole. Thus only configurations (ii) and
(iii) contribute. I close the contour from below for con-
figuration (ii), picking the residue at k, and from above
for configuration (iii), picking the residue at k, . This
is how 2 light-front diagrams appear. Moreover, config-
uration (ii) never appears if q+ = 0. Equivalently, the
contribution from the pole at k vanishes for q+ —+ 0,
and only a single diagram remains. The result for the
p = +, z, y component of the current (1) reads

J"(0) = 2~i(I,; + I;;;)i',

where I,"; is the contribution from the configuration of
Fig. 2-(ii):

dk+ d'k
2kl" + q~

2k+ 2(k++ q+) 2(P+ —k+) t' ms+ (P~ —k~)s ms+ k2~1
( -+q-) —

I q-+, (p+ „+)' +

1

m + (Pg —kg)2 m2 y (kg + qg) l
2(P+ —k+) 2(k+ + q+) j

and I;,; is the contribution from the configuration of Fig.2-(iii):

IP
222

"—2k"
dk+ d kg

—2k
2k+ 2(q+ —k+) 2(P++ k+) m~+ (q~ —k~)s m2+ k~s l(P + ' ) — P +

2( + k+) + 2k+

1
m2 + (Pi + kg) 2 m + (qg —kg)

2(P+ + k+) 2(q+ —k+) )
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One easily recognizes expressions (12) and (13) as
the contributions from the light-front (or infinite-
momentum-frame) diagrams (a) and (b) of Fig. 3, re-
sI.ectively. I conclude this section noting that the alter-
nate choice of parametrization with q+ ( 0 yields a fully
equivalent result. Finally, assuming that the target is
initially at rest I have P = 0, P~ —0, and P = M,
and the variables P+, P in Eqs. (12) and (13) take the
value

three pairs of poles:

k, = —q + cu(k+ q) —ie,
I;,'= —q' —~(k+q)+ i.,

ks = ur(k) —ie,

k4 = —~(k) + ie,

ks =P +~(P —k) —k,
ks = P —cu(P —k) +i~,

(»)
(16)
(17)
(»)
(»)
(2o)

P+ = P = M/~2 (target rest frame).

III. EQUAL-TIME PROJECTION

(14) where cu(p) = (p + m ) I . The poles at kio, kso, kso are
always in the lower half plane, and the poles at k2, k4, k6
are always in the upper half plane. Integrating over k

by residues and closing the contour from above I have,
for the p = 1, 2, 3 component of the current,

Here I derive equivalent equal-time picture of the pro-
cess discussed above. Again, I consider Eq. (1) but now
integrate over the variable k . Each Feynman propagator
gives rise to 2 poles in the complex ko plane, so I have

I

J~(0) = 2~i (I, + I, + I,), (21)

where the integral I„ is given by the residue of the pole
at k„. In particular, for the pole at k6 I have

2k" + q"

(k —k ) (k —k ) (k —k ) (k —k ) (k —k )' (22)

and likewise for I& and I&. Using Eqs. (15)—(20) I obtain

1
Is" = — d k (2k" + q")

2~(P —k) [2w(k) + Ds] [2~(k+q) + D2] Ds D2
' (23)

x k ( —q ( 0

x
b

x

x
b

x

0&k &P P+ & k

x

x

x
b

x

k-
b

x
C

FIG. 2. Locations of the poles in the complex k plane.



P+q

P'+

(~)
FIG. 3. Iight-front diagrams equivalent to the Feynman triangle diagram of Fig. l.

where D2 and D3 are the TOPT energy denominators of two- and three-body propagators, respectively

D2 —
(q + Pe) —[cu(P —k) + ~(k+ q)], (24)

Ds = (q + P ) —
[q + ~(k) + ~(P —k)].

The structure of Eq. (23) is very similar to the corresponding TOPT diagram (f) of Fig. 4,

(25)

Is"' = — d I; (2k" y q")
1

2w(k+q) 2~(k) 2~(P —k) Dg Ds
(26)

The only difference is in propagators of two internal
lines with momenta k and k —q. These are the internal
lines in the triangle cut only once by the intermediate
states, indicated by the dotted lines in the Fig. 4, and
the propagator of such an internal line is shifted from
its TOPT value precisely by the value of rnultiparticle
intermediate propagator that cuts the line.

Likewise, the remaining two integrals I2 and I4 cor-
respond to the TOPT diagrams (b) and (d) of Fig. 4,
respectively. Again, the propagators of the internal lines
which are cut only once are shifted from the TOPT values
in the manner described above.

The fact that the 3 integrals I2, I4, and I6 have par-
tially distorted single-particle propagators is a welcome
one. After all, one expects that Eq. (21) corresponds to
all 6 proper TOPT diagrams of Fig. 4. Indeed, after
painful algebra (I did it running MACSYMA —the sym-
bolic manipulation package on Vax) one arrives at the
expected result:

6

J~(O) = 2~i ) Ig

IV. INTERPOLATING VARIABLES AND
PB.OJ ECTION

Let us consider the parametrization of the momenta

1k" = [I,
" sinh(o) + I; cosh(n)],

+cosh(2n)
(28)

where all six TOPT integrals have the proper structure,
as exemplified by Eq. (26), and correspond one by one to
all 6 diagrams (a)—(f) of Fig. 4.

I have thus demonstrated that the covariant expres-
sion Eq. (1) could be cast either into the light-front form,
Eq. (11),or into the traditional instant form, Eq. (27). In
the next section I will describe how to interpolate be-
tween these two extreme cases.
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1
kA [k cosh(n) —k sinh(n)].

+cosh(2n)
(29)

I change the variables in the Feynman propagators in

Eq. (1) and integrate over k". Using Eq. (30) I rewrite
the second denominator in Eq. (1) as

This is a slight modification of the space-time variables
recently suggested by Ahluwalia and Ernst [7] in their
study of Dirac equation. Thus defined momenta interpo-
late smoothly between instant and light-front variables:

k' —m'+ t. =
cosh(2(x)

if n~Q
k+ if o. ~ oo,

k'if c 0,
k if n ~ oc).~

Further I have

where the poles for k are located at

ks = —k" sinh(2n)

m'+ 4'—
+cosh(2a) ((k~) +

cosh 2o,

(kate~ (k&)
k = ' ' ' ' + 2k" k" tanh(2n) —k~

cosh(2n)
' (ku)~ —(ks)2 —k~~ if n ~ 0,

2k k+ —k~ if o. ~ oo

k4 = —k" sinh(2n)

—cosh(2n)
~

(k")
cosh(2n)

d k dk =dk dk

dko dk3 if o. ~ 0

dk dk+ if o, ~ oo.

The pole at k3 is always located in the lower half plane,
whereas the pole at k4 in the upper half plane. Evidently,
in the limit of n ~ 0 the poles k3, k4 coincide with the
poles k3, k4, respectively. In the limit of o, —+ oo I have

(o) (b)

l~l Pl

FIG. 4. Time-ordered diagrams equivalent to the Feynman diagram of Fig. 1, cf. Eq. (27). Diagram (f) represents the

TOPT contribution given by Eq. (26). The dotted lines indicate intermediate multiparticle propagators. Diagrams (a)—(f) may

be associated with contributions from poles at k& —k6, respectively, if single-particle lines are modified as discussed in text.
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lim k3" = g

2
,

m +k~ —i~

2!k~!

m + k~~ —ic!k"!exp(2o') + if k" ( 0 (runaway pole),
2!k&!

and likewise for the other pole

~2+/2 tE!k"!exp(2n) — if k" ) 0 (runaway pole),
2 /k&!

lim k4 ——g
2 + J 2

f kg P
2[k&!

Thus for any value of k" one pole in the pair migrates to + oo for n ~ oo. Likewise, the denominator of the first
Feynrnan propagator in Eq. (l) takes the form

(k+ q) —m2 y ie = (kA kA) (kA kA)
cosh(2ct)

and the poles for k~ are located at

k& &
——q" —(k" + q") sinh(2n) + cosh(2n) !

(k" + q") +r m +(kg+q~ —xE
!cosh(2n) )

Again, for o. ~ 0 the poles k»k2 coincide with the poles k»k&, respectively. In the limit of n ~ oo I have

(40)

lim k&
—

4

m~ + (k~ + qg)2 —ie
2]k& + q&!

m + k~+q~ —ie!k" + q"!exp(2n) —q" +
2!k& + q&!

if k" + q" ( 0 (runaway pole)

(4l)

and likewise for the other pole

—!k~ ~ q~! exp(2n) —q"—m + (kg + qg) —ie
2!k& + q&!

if k" + q" ) 0 (runaway pole),

m'+ (k& + q&)' —i~
if k~+ g~ ( Q.

2!k&+ q&!

Finally, the denominator of the third propagator takes the form

(42)

(k" —k,") (k" —k,'),
cosh(2n)

(43)

and the poles for k~ are located at

m ~ + (Pg —k~)s —i~I
ks s = P" + (P" —k") sinh(2n) + cosh(2o) (P" —k")

cosh(2n)
(44)

Again, for n ~ 0 the poles k5, k6 coincide with the poles k5, k6, respectively. In the limit of o. ~ oo I have

m2+ (Pg —kg)' —ie

2!P~ —k~!
lim k

A~ OO m + Pg —kg) —i~!P"—k"!exp(») + P" + if k" ( P" (runaway pole)
2!P& —k~!

and likewise for the other pole
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m~(P~ —k~)2 —ie
~P" —k"

~
exp(2n) +, P" — if k" ) P" (runaway pole),

2/P& —k&/

lim I;,"=&
m2 + (P~ —k~)2 —ie

In any case, the poles at k~&, 1-3, and k5~ are always located in the lower half plane, whereas the poles at k2, k&, and
&6~ are always in the upper half plane. I have therefore

I"(0) = 2vri [Res(k2) + Res(k4) + Res(ks)]" = —2+i [Res(k& ) + Res(ks) + Res(kz)]".

Integrating over k~ for n = 0 I recover the pole structure and the results of the TOPT described in Sec. III. One
could also perform the k integration for any finite value of o, . That would express the covariant amplitude in terms
of 6 diagrams corresponding to a "z~-ordered perturbation theory, " with vertices ordered according to values of the
space-time variable xp conjugated to the momentum space variable k, where

z cosh(n) + zssinh(n)
Sp

+cosh(2o.') (48)

I now turn to investigate the light-front limit of n ~ oo. For illustration consider the pole at ks. Using Eq. (34),
(39), and (43) I write the residue in the form

Res(ks) = cosh(2o, )
) (kA kA) (kA kA) (kA kA) (kA kA) (kA kA)

' (49)

x
2

x
4

k
6

k" ( —q" e k
2

x
4

x

—q" &k" &O

o

o

k e
5

k
1

k o

o

e k
2

e k
4

x
6

O(k" (P"
k

2

e

e k6

P" & k"

k
1

x
3

k e
5

x
1

k x

x
5

FIG. 5. Locations of the poles in the complex k" plane. Arrows indicate runaway poles.
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Out of 6 pole locations k; entering the denominator of
Eq. (49), 3 are always runaway locations. Which 3 are
runaway is determined by the values of k", q", and P".
Clearly, P" is always positive, and again I am free to
assume that q» 0. I have then 4 possible distributions
of runaway poles, depicted in Fig. 5. To account for that
I have to split the integration over k" in Eq. (49) into 4
parts:

(50)

with definite integrals corresponding to 4 arrangements
(i)—(iv) of Fig. 5, respectively.

Consider arrangement (iii). The pole at kz is then a
fixed pole and each of 3 runaway poles now located at
k2, k&~, ks~ enters the denominator of Eq. (49) only once,
each contributing the factor proportional to exp(2n), cf.
Eqs. (34), (39), and (43). These 3 exponential factors
cancel the cosh(2n)s term in numerator and I am left
with a finite contribution which we recognize as prod-
uct of 3 internal lines propagators in the light-front
limit. The remaining two terms in the denominator,
(kz —ki) (kz —kz) are finite and correspond to mul-
tiparticle propagator of an intermediate state. In this
way I arrive at the finite contribution given by Eq. (12)
of Sec. II, corresponding to the light-front diagram (a)
of Fig. 3.

On the other hand, for arrangement (iv) the pole at
k6 is a runaway pole itself, thus contributing the factor
exp(2n) to all 5 products in the denominator of Eq. (49).

The integrand vanishes as exp( —4n) and gives no contri-
bution in the limit of o. ~ oo.

I conclude that residues at runaway poles give no con-
tribution to the integral over I."

lim Res(k,".„„~)= 0. (51)

On the other hand, while calculating a residue at a
fixed pole, runaway terms nicely cooperate to yield single-
particle light-front propagators. It follows immediately
that configurations (i) and (iv) give no contribution to
Eq. (47). Closing the contour from above for Fig. 5-(iii)
I pick the pale at I:6 as discussed abave. For configuration
(ii) I close contour from below, pick the pole at k& and
arrive at, Eq. (13), which represents the second light-front
diagram (b) of Fig. 3.

V. CONCLUSION

Introducing a family of variables defined as linear com-
binations of components of four-momentum and charac-
terized by the parameter a, I considered a perturbation
theory for any value of the parameter a, corresponding
to a quantization on a Qat-spacelike surface in Minkowski
space. I demonstrated how instant dynamics and light-
front dynamics are recovered upon considering the lim-
its n ~ 0 and n —+ oo, respectively. An illustration
has been given for a system at rest, and neither infinite-
momentum frame nor infinite momenta were involved.
Thus the transition to the light-front description of rela-
tivistic dynamics could be thought of as merely smooth
change of coordinates.
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