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We study topological matter minimally coupled to gravity in 2+ 1 dimensions. We show that the
resulting system has a finite-dimensional physical phase space that can be exactly quantized. The
model exhibits the mixing of “gravity” and “matter” degrees of freedom, and the impossibility of

treating them independently.

I. INTRODUCTION

Faced with the difficulty of quantizing gravity in
(3+1)-dimensional spacetime, a number of physicists
have recently turned to 2+ 1 dimensions for hints.!~7 In
2+1 dimensions, local gravitational fields do not propa-
gate, and the physical phase space of ordinary general re-
lativity becomes finite dimensional. This does not make
the theory trivial—point particles still experience gravi-
tational scattering, and dynamical degrees of freedom ap-
pear when the spacetime topology is anything more com-
plicated than R®. But even then, quantum field theory is
reduced to quantum mechanics, and the problems associ-
ated with renormalization in 3+ 1 dimensions disappear.>

As Witten® has shown, (2+ 1)-dimensional gravity can
be exactly quantized. On a manifold with the topology
R X Z, where = is a compact genus-g surface, the gravita-
tional Hilbert space is the space of square-integrable
functions on the moduli space of 2. The Hamiltonian is
zero, and observables can be described explicitly in terms
of holonomies of the dreibein and the spin connection.
The resulting model has been used to explore several con-
ceptual issues of quantum gravity, including the role of
topology change,® the meaning of diffeomorphism-
invariant observables,’ and the nature of time in quantum
gravity.!®

An important step would be to couple this model to
matter, allowing the exploration of such issues as the
effect of quantum fluctuations of spacetime on ultraviolet
divergences. Unfortunately, when realistic matter is cou-
pled to (2+1)-dimensional gravity, many of the problems
of 3+1 dimensions reappear.!! The combined phase
space of matter and gravity is no longer finite dimension-
al, the space of exact solutions becomes much more com-
plex, and questions of nonrenormalizability again arise
(although it is possible that some models are renormaliz-
able in the 1/N expansion'?). Following the philosophy
that led us to look at (2-+1)-dimensional gravity in the
first place, we might therefore begin by examining gravity
coupled to models of matter with finitely many degrees of
freedom — “topological matter.”

A first step in this direction was taken by Gegenberg,
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Kunstatter, and Leivo,!? who looked at one simple form
of topological matter nonminimally coupled to gravity.
The goal of this paper is to describe another such system,
in which the coupling of matter and gravity is more con-
ventional.

II. ACTION, SYMMETRIES,
AND FIELD EQUATIONS

In this section we outline the classical theory obtained
by coupling a topological field theory of the sort con-
sidered by Horowitz and Srednicki'*!® to Einstein gravi-
ty in 2+1 dimensions. We shall first display the sym-
metries of the classical action functional. Assuming that
the spacetime topology is RX X, with £ a compact two-
dimensional space, we shall then summarize the canoni-
cal formulation, showing in particular that the con-
straints generate the symmetry algebra I(ISO(2,1)) and
that the Hamiltonian vanishes on the constraint surface.
Finally, we shall demonstrate that the diffeomorphism
group is generated on shell by a particular I(ISO(2,1))
transformation.

We take as our action functional'®

S= [d* e""[LE, R! (A)+B, D,Ci], (1

where RL,,( A) is the curvature two-form corresponding
to an SO(2,1) connection A fu, and the “matter” fields Biu
and C, are SO(2,1)-valued one-forms. The first term in
(1) is the standard Einstein gravitational action in first-
order form;>7 in particular, E;, is an SO(2,1)-valued one-
form that, if nonsingular, can be interpreted as the
dreibein of the spacetime metric. In the absence of
matter, the connection A L is compatible on shell with E ;t
and so can be identified with the ordinary Lorentzian
spin connection. As we shall see, this is no longer the
case when the matter fields B L and CL are nontrivial.
The covariant derivative D, in the second term of (1) is
with respect to the connection 4 ,. On shell, the latter is
flat, and this term is precisely the action for a topological
field theory of the type considered in Refs. 14 and 15.
Our action therefore represents topological matter
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minimally coupled to gravity.

The equations of motion are obtained by varying the
four fields 4), E|, BL, and CL independently, and, in
differential form notation, are

Ri=dA'+1e*4;\ 4, =0, (2a)
DE'+1e*B; A C, =0, (2b)
DC'=0, (2¢)
DB'=0. (2d)

Here D denotes the exterior covariant derivative on
spacetime,

DB:=dB'+ e’ 4;\B, , 3)

where d is the ordinary exterior derivative on spacetime.
Caretted d’s and D’s will appear later, where they will
denote exterior derivatives on two-dimensional space.

We see from (2b) that 4’ and E' are not in general
compatible. By (2c) and (2d), on the other hand, 4’ is
compatible with both B’ and C’, and it is tempting to
reinterpret one of these fields as the spacetime dreibein.
This was the interpretation given by Horowitz!* in a
(3+1)-dimensional analogue of the model (1). However,
as we shall show below, it is the spatial projection of E’,
not B’ or C’, that is canonically conjugate to the spatial
projection of A4, and so this interpretation is not possible
in the quantum theory.

We remark here that this model is an example of a
“teleparallel theory,”'"!8 as is the (3-+1)-dimensional
version discussed by Horowitz.!*

The action (1) is invariant under the following
(infinitesimal) gauge transformation, with 12 gauge pa-
rameters p’, A, &, and 7%

SBi= _Dpi_%eijkBj,rk , (4a)
8C'=—DA—1Le*C;7, , (4b)
SE'=—D&'— 1™ E;m + B\ +Cipy) e)
SAi=—Dr . (4d)

We now assume that spacetime is topologically RXZ=
with an induced 2+1 splitting of the fields given by
e?1B=¢4B=the Levi-Civita density on =. The (2+1)-
dimensional form of the action functional is

S=[dt [d?x(EPA+B AC +EF'+ 4,6

+B;oJ +CioK") (5)
where quantities with tildes are the result of multiplica-
tion by €42, We have omitted possible surface terms that
can arise if = is not compact. The O-components of the
fields are Lagrange multipliers enforcing the constraints

Fi=x(dA'+1e* 4N 4) , (6a)
G':=x(DE'+ 1B, NC,) , (6b)
Ji=%(DC), (6¢)

Ki=x(DB" , (6d)

where * is the spatial Hodge dual,
*(F 4pdx A Ndx®)=€4®F ,p, and caretted quantities are
projections onto 3, e.g., 4'=Ajdx® The momenta
canonically conjugate to the O-components of the fields
are all constrained to be zero; the remaining momenta are

ﬁ’l,? = 6{4. =E,~B , (7a)
dAj
Ph— oL 52, (7b)
aCL
The Hamiltonian
H=— fd2x(E,.0F"+ A;oG'+B;oJ '+ CK") (8)

is weakly zero, as expected in a generally covariant
theory.

The nontrivial fundamental Poisson brackets can be
read off from the action (5). They are

{A};(y),Ef(x)}=8§8§8(y,x) , (9a)
{Ci(»),B §(x)}=8%8:8(y,x) . (9b)
From this, it follows that the constraint algebra is

(Fi(y),Fi(x)} ={J'(y),J(x)}

={Ki(y),K’x)}=0, (10a)
{Fi(y),Jix)}={Fiy),Kix)}=0, (10b)
{Fi(y),G(x)} = L€/ F(x)8(y,x) , (10c)
{G(»),GI(x)} =Le" G, (x)8(p,x) , (10d)
{Gi(y),Ji(x)} =Le T, (x)8(p,x) , (10e)
(G(y),KI(x)} =L1e* K (x)8(y,x) , (10)
{(Jiy),KI(x)} = L7 F, (x)8(p,x) (10g)

Of course, all of the constraints are preserved in time.
It may also be checked that with these Poisson brackets,
the constraints generate the spatial projections of the
gauge transformations (4a)—(4d).

The constraint algebra (10) may be recognized as the
Lie algebra of the inhomogeneized Poincaré group
I(ISO(2,1)), that is, the semidirect product of the Poin-
caré group ISO(2,1) with its Lie algebra RS. I(ISO(2,1))
can be viewed as the cotangent bundle of ISO(2,1), just as
ISO(2,1) is itself the cotangent bundle of the Lorentz
group SO(2,1). According to Eq. (10g), the generators J*
and K'—the constraints associated with the matter fields
B; and C;—do not commute under the Poisson bracket
algebra. Hence the “translation” subgroup R® is not gen-
erated by these constraints, but rather by J’ and F’. We
see that gravitational and matter fields are mixed in a
manner reminiscent of supergravity. We shall have more
to say about this below when the quantum theory is dis-
cussed.

We also note that, just as in the vacuum case,’ the ac-
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tion of the difffomorphism group on the configuration
space variables is generated by a linear combination of
the constraints F,G',J,K' with equal coefficients.
Indeed, if we set p'=A'=&=7" in (4a)-(4d), it is easily
checked that the resulting transformation is precisely the
diffeomorphism generated by the vector field p'E},, up to
terms proportional to the equations of motion.

III. QUANTIZATION

Let us now canonically quantize the system (5) on a
spacetime with the topology RX X, where = is a genus-g
surface. As in any constrained system, we have two op-
tions: We may first quantize and then impose the con-
straints as operator conditions on the states, or we may
solve the constraints and quantize the physical phase
space.!” Following Witten,” we adopt the latter pro-
cedure. Our first task is therefore to study the space of
solutions of the constraints (6a)—(6d).

The phase space of pure (2+1)-dimensional gravity
has the structure of a cotangent bundle. Let us tem-
porarily set the matter fields B and C'’ to zero and recall
the derivation of this structure. We first note that the
constraint (6a) implies that A’ lies in the space A of flat
SO(2,1) connections on 2. Now let us consider a co-
tangent vector (84) at A" If (A +84) is to lie in A,
(6a) implies that

d(84)+1e* 4, N(84),=0. 1y
This is precisely Eq. (6b)£orEi when B'=C'=0. We can
thus identify E' with (84 ), and we see that a solution
(A" E") of the constraints is a point in the cotangent bun-
dle T*A.

To obtain the physical phase space, we must still factor
out the gauge group. The group of ISO(2,1) gauge trans-
formations is itself a cotangent bundle, whose base space
is the space § of SO(2,1) gauge transformations generated
by the constraint G'. It is evident from (4d) that only this
SO(2,1) subgroup acts nontrivially on A . If we vary (4d),
however, we find that a cotangent vector transforms as

8(8A4)'=—d(87)—Le™* 4,(67), —Le™M8A);7, . (12)

This is Prepisely the ISO(2,1) gauge transformation (4c),
with (84 )'=E" and (87)'=¢. Hence, when we identify
SO(2,1)-equivalent flat connections A4, we automatically
also identify ISO(2,1)-equivalent cotangent vectors. The
physical phase space for pure gravity is thus the co-
tangent bundle T*(A /8). ' _
We can now allow B and C' to differ from zero. E

will no longer satisfy (11), of course, but ok will, and so a
pair (A4,C") will represent a point in T*A. If
((84)%,(8C)) is a cotangent vector at (4%, C’), the con-
straints (6a) and (6¢) then imply that

d(84)+ 14, \N(54),=0,

N . RN N ~ (13)

d(8C)+1e(84); ANC, + 1€ 4, N(8C), =0 .

Comparing (6b) and (6d), we see that (874 )' and (§C)’ can
be identified with B’ and E’, and so fields satisfying the
constraints represent points in the cotangent bundle
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T*(T*A).

We now observe that only the ISO(2,1) gauge transfor-
mations generated by G’ and K’ act nontrivially on points
(4°,C") in the base space of this bundle. As in pure grav-
ity, factoring out this group gives us T*(A /9); but this
phase space for pure gravity is now the configuration
space of our gravity-matter system. The full gauge group
(4) is again a cotangent bundle, now with base space of
ISO(2,1) transformations, and it is not hard to show that
the physical phase space for our matter-gravity system is
the cotangent bundle T*(T*(A /9)).

Now recall®® that the space A /§ of flat SO(2,1) con-
nections on a surface 2 is isomorphic to the Teichmiiller
space T(Z).?! As noted above, the diffeomorphisms that
can be deformed to the identity are equivalent to gauge
transformations and have already been divided out. But
the true invariance group for quantum gravity presum-
ably also includes the diffefomorphisms not isotopic to the
identity, and we should still factor out this group. For
the topologies we are considering, this means identifying
configurations that differ by elements of the mapping
class group of 2. The effect is to reduce Teichmiiller
space to the moduli space MM(Z). Our physical phase
space is thus T*(T*M(X)).

With such a cotangent bundle as a phase space, quanti-
zation is straightforward. The Hilbert space is the space
of square-integrable functions of the base space,

FH=LAT*M(Z)), (14)

and we have seen that the Hamiltonian (8) is weakly zero.
The fundamental observables are functions on the
configuration space T*/M and cotangent vectors to this
configuration space. Equivalently, in analogy to pure
gravity, we can construct observables from Wilson loops,
path-ordered integrals of the fields. Indeed, if T is a
curve in RX = and {F,G’,J/,K'} are generators of a rep-
resentation of the group (10), it is not hard to check that

W =Tr exp (15)

fF<E"F,. + A4'G,+BJ,+CK,)

is a gauge-invariant operator, and that W depends only
on the homotopy class of T.

It is also of interest to consider the path-integral quant-
ization of the system (1). If M is a closed three-manifold,
the partition function

Zy = [[dA][dB)[dC][dE]e’ (16)

can be evaluated explicitly. To see this, we first note that
the E integral imposes a & functional 8[R '] inside the
path integral, ensuring that only flat SO(2,1) connections
contribute. For simplicity, let us assume that only a finite
number of such flat connections 4, occur (modulo
gauge transformations). We can now separate out the B
and C integrations,

Zy= [[dA][dE]exp

i eARUCA) ]z‘m[A] .
Z9[ 4]= [[dB][dClexp

ifMB,./\Dc"] ,

and evaluate Z'® for each 4 =4 (a)- This is precisely the
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path integral studied by Schwarz,?> who shows that it

gives a topological invariant, the Ray-Singer analytic tor-
sion T(A,) of the flat bundle over M with connection
A (o2 But Witten® has shown that the remaining 4 and
E integration gives another copy of T( 4 ,,), and it is not
hard to check that the B and C integrations do not affect
this conclusion.

The partition function is therefore the topological
quantity

Zy=3[T(A)]. (18)

This result may be checked by considering the supersym-
metric system discussed by Witten in Ref. 8. Witten’s ac-
tion is essentially the same as ours, but with anticommut-
ing fields B and C. Consequently, Z‘? is replaced by its
inverse and has the effect of cancelling the determinants
arising from the 4 and E integrations. Witten is there-
fore left with a sum over flat connections of +1, a quanti-
ty closely related to the Casson invariant of M.

IV. PHYSICAL INTERPRETATION

In most physical theories we think of gravity as provid-
ing an arena in which matter interacts. Our model
demonstrates, however, that it is not so easy to separate
“gravity” from “matter.”

To see this, consider the simplest topology ==S2
Note first that if /=0 in (4), the action (1) is invariant, up
to a total divergence, under gauge transformations with
finite values of the remaining gauge parameters. We
now take the trivial configuration 4'=E'=Bi=C'=0
and act on it by the composition of the two (finite) gauge
transformations

8,(B',C',E"):=(—Dp',0,—DE") ,

8,(B,CLE"):=(0,—DA',— 1e"*8,B;A, ) , 1
to obtain

E'=—dg+1edpr,; ,

B'=—dp', (20)

It is easily checked that this configuration satisfies the
field equations (2). But although it appears to have a
nontrivial metric and nontrivial matter fields, by con-
struction it is gauge equivalent to the configuration in
which all fields vanish. In particular, let us choose
£1=0, py=0, and p ,=x 4. The spacetime metric con-
structed from E'is then given by the line element

ds?= —[(3,£%)dx°— Rodx '+ 1% dx?]?

1
2

2
A
+ [—29 [(dx")2+(dx?)?], 1)
where we have defined
XI::7\4+282§0 ) (22a)

Ay:=A,—23,&°, (22b)

Ar=A2—X2—-22. (22¢)

This line element can be rewritten in Arnowitt-Deser-
Misner (ADM) form:
ds*=—N2dx°)?
+h 45(dx A+ N4dx°)(dx B+ NBdx®) , (23)
with

A A A
N1=7280§°, N2=“—21’8050, N=—X96<,§°, (24)

and
2

h ypdx 4dx B= [i [(dx1)*+(dx?)?]

2

+1(Xydx '+ X,dx 2)?

=eX|dz+udz|?, (25)
where z =x'+ix? and
e?=1(A+X), (26a)
A+ik, |2
u= |- (26b)
gt X

Now any metric on a two-surface can be expressed in
the “Beltrami parametrization” (25), where ¢ determines
the conformal factor and the Beltrami differential u fixes
a point in Teichmiiller space up to diffeomorphisms.?*
For the case we are considering, p is not arbitrary, of
course, but is determined by ¢ and by the lapse and shift
functions N and N, of Eq. (24). But when space has the
topology of a two-sphere, all Beltrami differentials are
equivalent up to spatial diffeomorphisms.?® Since it is
evident from (24) that the lapse and shift functions may
be chosen arbitrarily, we have shown that any metric on
R X S? is diffeomorphic to a metric of the form (21).

In other words, given any metric on RX.S?, there ex-
ists some matter configuration (20) such that the com-
bined system is gauge equivalent to flat empty spacetime.
This provides a stark illustration of the fact that the
metric cannot be treated separately from matter. Gauge
transformations mix geometry and matter; it is only the
combination that has physical significance. This is espe-
cially clear in the quantum theory, where states and
operators depend only on gauge-invariant quantities.
Indeed, for the spatial topology S?, the moduli space 1
consists of a single point, and the Hilbert space (14) con-
tains only one state. Although we can produce any
metric by a gauge transformation, the quantum physics
remains trivial.

It seems likely that the same conclusion will hold for
open spacetimes R XR2. To show this conclusively, how-
ever, it is necessary to treat boundary terms in the action
(5) more carefully and to define appropriate asymptotic
conditions for the gauge transformations (4a)—(4d). Such
a treatment has interesting consequences in the case of
pure gravity,* and it would be worthwhile to examine the
corresponding problem with matter present.
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We have now succeeded in constructing a model for
gravity interacting with topological matter in three
spacetime dimensions which is solvable classically and
quantum mechanically. Unlike previous models,'"!* our
gravitational and matter fields interact nontrivially. Our
system illustrates an important principle—the impossi-
bility of uniquely separating matter from gravity —which
is likely to carry over to more realistic theories.

Some remaining issues include constructing the algebra
of observables (in the manner of Refs. 5 and 6 for pure
gravity) and better understanding the role of asymptotic
conditions in an open universe. Ultimately, we hope this

model will help us to better understand the coupling of
nontopological matter to gravity.
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