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It is by now well known that the standard local (i.e., pointwise) energy conditions always can be violat-
ed in quantum field theory in curved (and Bat) spacetime, even when these energy conditions hold for the
corresponding classical field. Nevertheless, some global constraints on the stress-energy tensor may ex-
ist. Indeed recent work has shown that the averaged null energy condition (ANEC), which requires the
positivity of energy suitably averaged along null geodesics, holds for a wide class of states of a minimally
coupled scalar field on Minkowski spacetime, and also (in the massless case) on a wide class of states in
curved two-dimensional spacetimes satisfying certain asymptotic regularity properties. In this paper, we
strengthen these results by proving that, for the massless scalar field in an arbitrary globally hyperbolic
two-dimensional spacetime, the ANEC holds for all Hadamard states along any complete, achronal null
geodesic. In our analysis, the general, algebraic notion of "state" is used, so, in particular, it is not even
assumed that our state belongs to any Fock representation. Our proof shows that the ANEC is a direct
consequence of the general positivity condition which must hold for the two-point function of any state.
Our results also can be extended (with a restriction on states) to the massive scalar field in two-
dimensional Minkowski spacetime and (with an additional restriction on states) to the (massless or mas-
sive) minimally coupled scalar field on four-dimensional Minkowski spacetime. In the case of a (curved)
four-dimensional spacetime with a bifurcate Killing horizon, our proof also extends to establish the
ANEC for the null geodesic generators of the horizon (provided that there exists a stationary Hadamard
state of the field). This latter result implies that the ANEC must hold for the massive Klein-Gordon
field in de Sitter spacetime.

I. INTRODUCTION

A variety of "energy conditions, " i.e., assumptions
concerning the positivity of the locally measured energy
density, play a key role in the proofs of many global re-
sults in general relativity, particularly in the singularity
theorems. The weakest of the local energy conditions
normally considered requires that the stress-energy ten-
sor T,b satisfy T,bk'k ~0 for all null vectors k' at all
points in spacetime. We will refer to this condition as the
null energy condition. This condition is sufficient to en-
sure the convergence of null geodesics, a key property for
proving certain global results, such as the original Pen-
rose singularity theorem (see Refs. [1,2] for details).
However, it has been noted by some authors [3—5] that
for a number of applications the null energy condition
could be replaced by a still weaker assumption, the auer-

aged null energy condition (ANEC), which requires only
that the integral

f T bk'kbdu (1)
r

be non-negative, where y is a complete null geodesic, u is
an afBne parameter, and k' is the tangent vector along y.
[The precise formulation of the ANEC used in this paper,
which is applicable even when the integral (1) does not
converge, will be given in Sec. II below. ] Note that the
integral (1) can also be interpreted as being the total (lo-
cally measured) energy fiux through y; so when the
ANEC is satisfied, the total energy Aux through any null

surface (whose generators are complete) must be non-
negative.

The main motivation for considering weakened ver-
sions (such as the ANEC) of the null energy condition is
that, although most of the classical matter fields usually
considered obey the null energy condition, all of the cor-
responding quantum matter fields violate it (as well as the
weak, strong, and dominant energy conditions, all of
which imply the null energy condition). Consider, for ex-
ample, a minimally coupled (real) Klein-Gordon field P
with the stress-energy tensor

T,b
=V, PV b t5 ,' ( V'PV, (t—+—m P )g,b . (2)

For any classical configuration p, T,b satisfies the null en-

ergy condition on all spacetimes. This is not true, howev-
er, for the expectation values of the (regularized) quan-
turn operator T,b. Even on Minkowski spacetime, it is
easy to construct quantum states

~ f ) in the standard
Fock space for which ( g ~:T,b. ~ ttt) violates the null ener-

gy condition at any desired point (see, e.g., Refs. [6,7]).
On the other hand, whether the expected stress-energy
tensor of the quantum field similarly violates the ANEC
remains an open question at present, and it is this ques-
tion that will be addressed by the present work.

Previous research [6,7] has shown that, for a minimally
coupled scalar field on Minkowski spacetime, and also for
a massless, conformally coupled field on curved two-
dimensional spacetimes with certain asymptotic regulari-
ty properties, the ANEC is satisfied in all quantum states
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that belong to a large subset of the standard Fock space.
In the present paper, we will improve these results
significantly by giving an alternative analysis based on the
algebraic approach to quantum field theory in curved
spacetime. (The elementary aspects of the algebraic ap-
proach that will be needed in our analysis are reviewed in
Sec. III below. ) Our main tool is the general positivity
condition on the two-point function, valid for any quan-
tum state. Our main result is the following: For an arbi-
trary globally-hyperbolic two-dimensional spacetime with
a massless Klein-Gordon scalar quantum field (which is
conformally invariant in two dimensions), given an arbi-
trary Hadamard state of the field, and given a complete
null geodesic y which is achronal, we prove that ANEC
holds along y for the expected stress-energy in this state.
This generalizes the results of [7] in that no topological
or asymptotic conditions on the spacetime are imposed,
and no restriction apart from the Hadamard condition
(which is needed to define the regularized stress tensor) is
placed upon the state; e.g. , it is not required that the state
belong to a Fock representation. Our methods also en-
able us to prove that the ANEC holds for the massless or
massive) Klein-Gordon scalar field in four-dimensional
Minkowski spacetime, provided that we impose addition-
al restrictions on the states. (These restrictions appear to
be considerably weaker than those imposed in Refs.
[6,7].) By the same methods (and with the same addition-
al restrictions on states), it also follows that for a
minimally coupled massive scalar field on de Sitter space-
time, ANEC must hold, and more generally, for a mas-
sive or massless Klein-Gordon field on a stationary, glo-
bally hyperbolic spacetirne with a Killing horizon %, the
ANEC must hold along the null generators of &, provid-
ed that there exists a stationary Hadamard state of the
field on that spacetime.

It should be noted that ANEC alone does not sufBce to
replace the energy condition hypotheses of any of the
standard singularity theorems. (The theorems of Ref. [4]
require a version of ANEC to hold along all half-infinite
null geodesics. ) Furthermore, our main results apply only
to two-dimensional spacetimes (where Einstein s equation
is trivial and, in any case, null convergence cannot occur)
and to Oat spacetimes. Nevertheless, our results do show
that nontrivial global restrictions on the quantum stress-
energy tensor, of the general type needed for the singular-
ity theorems, hold at least in the cases amenable to our
analysis. Thus our results can be interpreted as lending
support to the view that the conclusions of the singularity
and other global theorems of classical general relativity
may continue to hold in quantum theory despite the fact
that violations of the standard local energy conditions
can occur. In addition, as noted above, our results estab-
lish (in the cases described above) the non-negativity of
the total energy fIux through a null surface. Finally, our
results show two new relationships which may be of some
interest in their own right. (1) There is a direct relation-
ship between averaged energy conditions and the positivi-
ty condition on states (in the algebraic sense) of the quan-
tum field. (2) There is a close connection between the va-
lidity of the AN EC along a null geodesic and the
achronality of that geodesic.

In Sec. II we give the precise formulation of the ANEC
that will be used in this paper. In Sec. III we briefly re-
view the elements of the algebraic approach to quantum
field theory in curved spacetime which will be needed in
our analysis. Our main results are presented in Secs. IV
and V where the ANEC is proved to hold for the mass-
less Klein-Gordon field in two-dimensional Oat and
curved spacetimes. The extension of these results to the
massive field and to four-dimensional flat spacetime is
given in Sec. VI.

Our notation and conventions follow [2].

liminff T,bk'k [c(vli)] dv +0 .
g —+ oo oo

(3)

For each fixed A, )0, the integrand in Eq. (3) is a con-
tinuous function of compact support. Hence the integral
always exists, and liminf& of the integral is always
well defined (but is possibly equal to +~). It is not
difficult to show that if the integral (1) exists, then our
formulation of the ANEC is equivalent to the non-
negativity of (1). Thus our formulation generalizes the
usual definition without being restricted to the conver-
gence of (1).

Note that our definition of the ANEC does not require
that

liminf I T,&k'k "du ~0,

since that would correspond to the choice of c(x ) being a
step function, which is not continuous and thus does not
satisfy our condition on its Fourier transform. Neverthe-
less, our formulation of the ANEC is of a sufficient

II. PRECISE FORMULATION OF THE ANEC
AND ITS SIGNIFICANCE

As already discussed in Sec. I, the basic idea of the
ANEC is simply that the integral (1) be non-negative.
However, we do not wish to restrict consideration of the
validity of the ANEC to spacetimes and states which
satisfy sufficiently stringent asymptotic conditions to en-
sure convergence of the integral (1). Thus we seek a for-
mulation of the ANEC which does not require conver-
gence of this integral.

There are many possible generalizations of the ANEC
to the case where (1) does not converge. The choice we
shall make corresponds precisely to the condition that
emerges in our general proof given later in this paper.
We now state our formulation of the ANEC.

Let T,b be any smooth stress-energy tensor on space-
time and y be a complete null geodesic, with affine pa-
rameter v and corresponding tangent vector k'. Let c(x )
be a bounded real-valued function of compact support on
R whose Fourier transform c(k ) is such that, for some
5&0,

(1+k )'+ c(k)

is bounded [i.e., ~c(k)~ decays at least as fast as ~k~

as ~k~ —+ so]. [This implies that c(x) is C'.] Then we say
that T,b satisfies the ANEC along y if and only if, for all
such c(x ) (and all choices of origin of affine parameter u),
we have
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strength to enable the proof of null convergence in ap-
propriate circumstances. To illustrate this point, we
prove the following result.

Proposition. Let p be a point on a complete null geo-
desic y(v ) satisfying the property that, for all c(x ) in our
formulation of the ANEC,

liminff R,bk'k [c(v/k)] dv ~0,
g —woo 0

where R,b denotes the Ricci tensor (and where v =0 at p).
(If the ANEC together with Einstein's equation holds,
then this condition must hold for at least one direction
along y from p. ) Consider a null geodesic congruence
containing y whose expansion 0(v ) along y is nonpositive
at p. Then either 0 vanishes identically along y or there
exists a finite vo )0 at which lim, „0(v ) = —~.

To prove this, we absorb the shear term —2o. into the
source term —R,bk'k in the Raychaudhuri equation [1]

dO 1= ——0 —2a. —R k'k
dU 2 ab

and put u —=U/2. The proposition is then an immediate
consequence of the following lemma.

Lemma. For all u ~0, let 0(u) satisfy the ordinary
differential equation

du
0—f—(u ), (4)

Multiplying both sides of Eq. (4) by bi (u )
—=b(u/A, ) and

integrating by parts, we find

fbidu = —a —f 0 bidu+ f 0bidu . (7)
0 0 0

After substituting Eq. (6) in the last term of Eq. (7), we
arrive at the identity

with initial value 0(u =0)= —a, a ~0, where f (u ) is
continuous on [0, oo ) and has the property

hminf u c~ u du 0, (5)
gazoo 0

for every function c(x ) in the class defined above Eq. (3).
[Here ci(u) is shorthand notation for the function
ci(u )

—=c(u /A, )]. Then either 0(u ) vanishes identically
on [0, ~ ) [in which case a and f (u ) must also be identi-
cally zero], or there exists a finite uo )0 at which
lim „„0(u ) = —~ .

0

Proof. It is sufficient to prove that if 0(u ) exists as a
C' function Vu H [0, ~ ), then 0(u )

—=0. Let

b(x ) =(1—x')', lx I
(1,

b(x)=0, lxl ~1 .

f fbi du = —a — f 0 bi du+ —f 0(u )(u /A)[1 (u /k)2]'d—u
0 0 A, 0

The second term inside the large parentheses in Eq. (8) can be bounded by

—f (0)u( /uA, )[l—(u/A, ) ]'du —f l0(u)l[1 —(u/A, ) ] du — f 0'bqdu
0 0

1/2
(9)

where we used lu/A, l

~ 1 and
l

1 —(u /A, ) l

~ 1 in the first
line and the Schwarz inequality in the second. Equation
(9) shows that as A,~ oo the positive-definite first term in
the large parentheses on the right side of Eq. (8) always
dominates the indefinite second term. Therefore, unless
0(u ) is identically zero, the right-hand side of Eq. (8) has
to be negative and bounded away from zero for all
suKciently large A, . But this is impossible since the func-
tion c (x ) = i/b (x ) satisfies the conditions formulated
above Eq. (3); so Eq. (5) implies that the liminf of the
left-hand side of Eq. (8) as A, ~ oo is always non-negative.
Hence 0(u ) must vanish identically if it exists globally
over the entire interval [0, ~ ).

To illustrate an application of the above result, we
point out that in the presence of the ANEC, there cannot
exist a nonsingular, static, spherically symmetric space-
time (with static Killing field timelike everywhere) con-
sisting of two asymptotically Bat regions joined by a
"wormhole" [8]. Namely, if such a spacetime existed, the
null geodesic congruences emanating from the minimal

area surface of the wormhole will have a vanishing initial
convergence in both directions, but could not have an
identically vanishing convergence. Consequently, at least
one of these congruences will satisfy the hypotheses of
the above lemma, and the type of argument used in the
Penrose singularity theorem (see, e.g. , Refs. [1,2]) could
then be employed to obtain a contradiction. [The as-
sumption of spherical symmetry is used in this argument
mainly to assure that all the geodesics in one of the
congruences satisfy the hypotheses of the lemma; thus
this assumption (as well as the static assumption) could
be replaced by much weaker assumptions. ]

By means of similar arguments, it appears likely that
one could prove that if our formulation of the ANEC
holds and the null generic condition is satisfied, then
every complete null geodesic contains a pair of conjugate
points. (See [1] for the standard proof when the null en-
ergy condition holds pointwise and [5] for a proof using
an averaged energy condition different from our formula-
tion of the ANEC. )
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III. OVERVIEW OF THE ALGEBRAIC
APPROACH TO QUANTUM FIELD THEORY

IN CURVED SPACETIME

In this section we briefly review the elements of the
algebraic approach to linear quantum field theory in
curved spacetime which will be needed for our analysis
given in the following sections. We refer the reader to
Ref. [9] for a more extensive discussion of these basic
ideas.

The main idea of the algebraic approach is to view
quantum states as objects which act upon the (smeared)
quantum field operators in a manner which corresponds
in the usual Hilbert-space approach, to the operation of
taking expectation values. The approach is implemented
by defining an abstract e-algebra A with identity I (cor-
responding to the operator algebra that would be generat-
ed by the smeared quantum field operators on a Hilbert
space), and then defining a state co to be a linear map into
complex numbers co: A~c, satisfying the positivity
condition co( A 'A ) ~ 0 for all A EA, as well as the nor-
malization condition co(I)=1. The GNS construction
then shows that every state defined in this manner actual-
ly can be realized as a state in the ordinary sense, i.e., as a
vector in some Hilbert space &, which carries a represen-
tation p of the algebra A.

The main advantage of the algebraic approach is that
one does not need to specify a particular choice of & and
representation p in order to define the theory; i.e., one
can simultaneously consider all of the states which arise
in all possible (unitarily inequivalent) Hilbert-space con-
structions of the quantum field theory. In Minkowski
spacetime this advantage is not of critical significance
and for most purposes, since one has available the cri-
terion of Poincare invariance to define a preferred vacu-
um state and, thereby, a preferred Fock Hilbert space
and preferred representation of the field algebra. Usual-
ly, only the states in this Pock space are considered to be
physically relevant. However, in curved spacetime it
does not appear that there is available any such natural
prescription for choosing a preferred Hilbert-space repre-
sentation. The algebraic approach allows one to formu-
late quantum field theory in curved spacetime without re-
quiring one to introduce such a choice.

For definiteness, we now focus attention on the case of
a real Klein-Gordon scalar field P satisfying

( —m )/=0, (10)

although an exactly similar discussion (with appropriate
changes of commutators to anticommutators for fermion
fields) would hold for all other linear fields. Let (M, g ) be
a globally hyperbolic spacetime, so that the initial value
formulation for Eq. (10) on any smooth, spacelike Cauchy
surface C is well posed. In the usual Hilbert-space for-
mulation, the field is described as an operator-valued dis-
tribution on spacetime; i.e., for each (Co ) test function f
on spacetime, we specify an operator P(f ) on some Hil-
bert space &. The satisfaction of the wave equation by P
is expressed by the condition that P(f)=0 for any f of
the form f= ( —m )g, where g is a test function. The
canonical commutation relations imposed upon P take
the form

[0[F]4[G]l=io [F G]I (13)

As already indicated above, in the algebraic approach
one defines a e-algebra corresponding to the algebra of
field operators in the Hilbert-space approach. There are
a number of ways in which this can be done. For our
purposes (since we will be interested only in the two-point
function), the most convenient choice of algebra A is the
one denoted A' in Sec. 3.2 of Ref. [9]. It is constructed
by starting with the free algebra over C generated by the
formal objects p[F] (for all FES ) together with the iden-
tity element I; i.e., one takes all formal finite sums (with
complex coefficients) of finite products of these objects.
One then imposes the commutation relations Eq. (13) as
well as the linearity of P as a distribution on S by equat-
ing any two such expressions if they can formally be re-
duced to each other using Eq. (13) and the linearity of P.
A +-operation is then determined on the resulting alge-
bra A by setting P[F]*=P[F]for all FHS and by ex-
tending it antilinearly to all of M with the rule
( AB)*=B*A,for all A, BRA.

Thus, by definition of the algebra A, a state co acts on
any finite linear combination (with complex coefficients)
of finite products P[Fi] . P[F„]. We define the two-
point distribution A. by

k[F, G ]=co(P[F ]P[G ] ) . (14)

Since for any A HA we have co(A*)=[co(A )] [as fol-
lows from the positivity of co on the elements
(A+I)*(A+I) and (A+iI) (A+iI)], Eq. (14) implies
that

[4(f ), 4(g )]=i~(f,g )I,
where b, (f,g ):o—[Ef,Eg ], where E denotes the ad-
vanced minus the retarded Green's function, and for any
two solutions F and 6 with initial data of compact sup-
port on C, we have

cr [F,G )
—=J (FV'G —G V'F ) d X, . (12)

C

(It is easily verified that cr[F, G) is independent of the
choice of C.)

It is useful to note two properties of the map f~Ef
taking the space T of Co" functions on spacetime to the
space S of smooth solutions of Eq. (10) with initial data of
compact support on any Cauchy surface C: (i) Every
smooth solution with initial data of compact support on
C can be obtained in this manner, i.e., the range of this
map is all of S. (See, e.g., Appendix 8 of Ref. [9] for a
proof of this result. ) (ii) The kernel of this map consists
precisely of the test functions f of the form
f=(U —m )g, where g is a test function. These proper
ties allow one to view the field operator P as a distribu-
tion defined on S rather than a distribution defined on T,
which vanishes on elements of T of the form ( —m )g.
We shall adopt this viewpoint here. In order to distin-
guish notationally between the action of P on T and its
corresponding action on S, we will use parentheses [e.g. ,
P(f )] when denoting the action of P on T and square
brackets (e.g., P[F]) to denote its action on S. The
canonical commutation relations for P viewed as a distri-
bution on S are simply
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Iml, [F,G ]= ,' a—[F,G ] .

We define

(15)

p[F, G]—=Rei, [F,G] . (16)

Using the correspondence described above, we may view
A, and p either as bidistributions on S or as bidistributions
on T which satisfy the wave equation (10) in each vari-
able.

When the positivity condition co( A ' A ) ~ 0 for an arbi-
trary state co is imposed for algebra elements A of the
form

p, [F,F]p[G, G] —,
' lo.[F,G]l (17)

must hold for all F in S. This is the fundamental inequal-
ity used in this paper. The positivity restrictions we shall
obtain on the stress energy tensor will be derived directly
from this inequality. Note that the positivity condition
also implies p (F,F ] & 0 for all FWO in S.

We close this section with a comment about a special
feature of the two-dimensional case. It is well known
that for the massless Klein-Gordon field in two-
dimensional Minkowski spacetime, infrared divergences
prevent one from defining the smeared field operator in
the standard Fock representation for all test functions.
Rather, the smeared field operator is defined only for the
subspace T' of test functions fwhich satisfy ff=0. Un-
der the map f~Ef, the subspace T' corresponds pre-
cisely to the subspace S' of solutions in S which can be
expressed in the form h (u )+k( v ), where u and u are the
standard Minkowski null coordinates and h:IR~IR and
k:IR—+IR are arbitrary Co" functions. Thus, in two di-
mensions, the usual requirement that states be defined on
the algebra generated in the manner described above by
the objects P[F] for all F in S must be weakened to re-
quire that it be defined only on the subalgebra generated
by P[F] for F in S'. Similar remarks apply for curved
two-dimensional spacetimes. Thus, for the massless field
in two dimensions treated in the next section, we shall re-
quire that the two-point function Eq. (14) be well defined
only in the case where F and (G are in S'.

IV. PROOF OF ANEC IN MINKOWSKI SPACETIME:
TWO-DIMENSIONAL CASE

In this section, we shall prove that the ANEC holds for
the massless scalar field in two-dimensional Minkowski
spacetime. The generalization of the result to two-
dimensional curved spacetime will be given in the next
section, and the generalization to the four-dimensional
Minkowski case for both massless and massive fields will
be given in Sec. VI.

Without any loss of generality, we focus attention to a
null geodesic of the form y—:[u =0] in two-diinensional
Minkowski spacetime (IR, ri), where g= —du du. We
consider an arbitrary state of the field (in the algebraic

A =ag[F]+i13$[G],
where a,P are arbitrary real numbers, it follows that the
inequality

where po is the symmetrized two-point function of the
Minkowski vacuum, given explicitly by

po(x, x') = — lnll I

= lnl(u —u')(u —v')
I

(19)1 1

4m 4m

(here I denotes squared geodesic distance between x and
x'), and where w(x, x') is a smooth bisolution. The ex-
pected stress-energy tensor (T,b) is obtained by sub-

tracting from p the "Minkowski contribution" po, then
performing appropriate differentiations, and finally tak-
ing the coincidence limit x' —+x. Thus, the components
of ( T,b ) are all given by simple formulas involving coin-
cidence limits of partial derivatives of w(x, x'). In partic-
ular, along the geodesic y, we have

( T,b ( u ) ) k 'k "=( T„(u ) ) =
V =V =V

(20)

We shall now show that the positivity condition (17) on
states implies the version of the ANEC formulated at the
beginning of Sec. II. For this purpose, it is usefu1 to view

p as a bilinear map on solutions in S' rather than as a bi-
linear map on test functions in T'. Clearly, for any
FES' we have

p[F,F]=po[F,F]+w[F,F) . (21)

The relevant solutions for our purpose are the ones of the
form F=F( v ).

The "Minkowski vacuum contribution" po[F,F] for a
solution in S' of the form F=F(v ), can be evaluated us-

ing the methods of Appendix B of Ref. [9] (with y play-
ing the role of a component of a Killing horizon). We ob-
tain

po[F,F]=——I f lnlu —v'l F(v)—oo —oo ()U

X,F(u') du du' .
BU

To put this in a more useful form, we write

lnlv —v'l =
—,'ln[(v —u') ]

(22)

=
—,
' [ln(u —u' —i e)+ln(u —u'+i e)],

where e is a positive real number which we will let vanish
at the end of the calculation. We decompose F into its
positive- and negative-frequency parts:

sense described in the previous section), restricted only by
the requirement that the two-point distribution k(f,g ) be
of the Hadamard form, so that the expected stress-energy
tensor be well defined and smooth everywhere in space-
time. Although the definition of the "Hadamard form"
for a distribution in a general curved spacetime is rather
intricate (see Sect. 3.3 of Ref. [9] for a precise, general
definition in four dimensions), for a massless scalar field
in two-dimensional Minkowski spacetime, the Hadamard
condition requires simply that for any test functions f, g
in T' (see the end of the previous section) the sym-
metrized two-point distribution p be of the form

p(f, g)= I [po(x,x')+w(x, x')]f(x)g(x)dx dx', (18)
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F(u ) =F+(u )+F (u ),
where

F+(v ) = f P(k )e'"'dk,
V2m o

F (v )—: f F(k )e'"'dk,
277

and P(k ) is the Fourier transform

(23)

(24)

P(k ) =— f ™
e '"'F( v )du

2'lr
(25)

which decays (as
~
k

~
~ ceo ) faster than any inverse power

of ~k~ since F(u) is Cv . By analytically continuing Eqs.
(24), in u, it is clear that F+(v ) is the boundary value of a
function holomorphic in the upper half U plane, and
F (u) is the boundary value of a function holomorphic
in the lower half v plane. By applying a partial integra-
tion, we can now write Eq. (22) in the form

1 ~ f ~ F (u)+F (v) + F (v)+F+(v)
ltlu F,F =—

—co —co V
—

V lE'V V +le , F (u')+, F (u') dv du' .
8 +, 8

BV BU

The v integral can be evaluated by closing the contour in the upper half plane for F+(u ), and in the lower half plane for
F (u ). The result is, after letting e~O,

po[F,F)=i f F+(v'), F (u') F(v')—, F+(u') du'=2f k~F(k) dk, (26)

which is the usual formula for the Klein-Gordon norm.
On the other hand, the contribution to p[F,F] from w(x, x') is given by the "double symplectic smearing" off with

m along y:

w[F F]=— F(u) w((), u, O, u') F(v') du du'=4f f Y(u, u')F(u)F(v')du du',
BU —oo Qo

(27)

where

0
Y(v, u')=, w(O, u, O, u') .

BUBU

Note that by Eq. (20), the coincidence limit of Y yields the component of ( T,l, ) of interest:

(T,b(u))k'k = Y(u, v) .

(28)

(29)

Thus, the positivity condition (17) on states yields the following condition on Y: For all functions F„F2C Co (R), we
have

2lLlo[F„F, ]+8f f Y(u, v')F, (u)F&(u') du du'

X 2po[F2, F2 ]+8f f Y( , u)uF~(v )F2(u') dv du' ~ ~o [F„F2]~ (30)

where po is given by Eq. (26), and

cr[F„F2]=f F, (u) Fz(u) —F2(u) F, (u) du
Qo () ()

1 g 2 2 g 1

= —4Im f kP, (k)Pz(k)dk .

We shall show shortly that the inequality (30) implies
the ANEC, without any assumptions on w (and hence on
Y) apart from smoothness. In particular, no restrictions
on the asymptotic behavior of w(x, x') for large x and x'
shall be imposed. However, before giving this general
proof, we will illustrate the main idea behind it by first
considering the case where Y(u, u') is in Schwartz space;
i.e., I is C and it and all its derivatives decay at infinity
faster than any inverse polynomial. In that case, the

Fourier transform Y(k, k') of Y [Eq. (34)] also is in
Schwartz space, and the interchanges of orders of in-
tegration in the calculation below are easily justified.
(Note that the Schwartz space restriction is much
stronger than needed for the purposes of this simplified
argument; it would suffice to require that the function
Y(u, u') and its appropriate restrictions on subsets of R
belong to suitable I. ' and I. spaces. Note also that simi-
lar restrictions on the quantum state (in addition to the
restriction that the state belongs to the standard Fock
space and contains finitely many particles, which we are
not imposing here) are implicitly assumed in the argu-
ments used in Refs. [6] and [7] in order to justify inter-
changes of integration similar to those used below. ) Us-
ing the Plancherel theorem to convert the integrals over v

and u' appearing in Eq. (30) to corresponding integrals
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involving the Fourier-transformed quantities, we obtain,
after some algebra, the inequality

f k IP (k ) I'dk+ g(P, P ) —n(P» )

X k 2 k dk+ q~Fq
—g

deduce from Eq. (38) that

Y(~, —~))0 |t~E[0,oo) .

But a simple calculation shows that

f Y(v, u)du =2f Y(k, —k)dk;
QO 0

(39)

(40)

where

Im f kPi(k )F2(k )dk
0

2

(32)

g(P, P)=4f"f "$'(k, —k )P(k)P(k ) dk dk,
(33)

g(P, P)=4Re f f $'(k, k )P(k)P(k )dk dk
0 0

and $ (k, k') = P(k', k ) denotes the Fourier transforin

$ (k, k') = f f Y'(U, U')e '~""+""~dU dU'
2 7T OO OO

and thus the quantity g(F, F) is real. ] The inequality (32)
must hold for all F;(k) (i =1,2) that are Fourier trans-
forms of Co functions F;(U ), but by continuity (since Y is
in Schwartz space and, in particular, in L ) it extends to
all complex-valued functions F, (k) on [0, ~. ) that have a
finite Klein-Gordon norm [Eq. (26)] and are in L [0, ~ ).
Given any such function F(k ), we put P, (k ) =F(k ), and
Pz(k ) =iF(k ), k H [0, ~ ). Denoting

n= f "kIP(k)l dk, (=PF,F), —
0

(35)

(34)

[Note that the reality and symmetry property of Y(p, U')

imply that

F, (v ) =Fi, (U ) =c(U IA ) cos(~U ),
Fi(v ) =Gi, (u) =c(v/A ) sin(~U ) .

(42)

Let us first compute the Klein-Gordon norm
po[F& „,Fi ] appearing in the fundamental inequality

(17). A straightforward calculation gives

therefore, Eq. (39) proves the ANEC statement

f Y(v, v)dU )0 [see Eq. (29)], which is equivalent to the
generalized ANEC (3) in this case since the ANEC in-
tegral (1) properly exists when Y is in Schwartz space.

We now dispense with any assumptions about Y(u, u')
apart from smoothness, and prove that the ANEC as for-
mulated in Eq. (3) holds along the null geodesic y for an
arbitrary Hadamard state. Let c(x ) be any function
satisfying the conditions appearing in our definition of
the ANEC; i.e., c(x) is any compact-supported (C')
real-valued function whose Fourier transform c ( k ) is
such that for some 5) 0 the function (1+k )'+ Ic(k )I is
bounded. For convenience, we normalize c(x ) so that

f c (x)dx =1 .

The previous argument [see Eqs. (38} and (39)] suggests
that the most e%cient use of the fundamental inequality
(30) will arise by choosing Fi and F2 so that their Fourier
transforms are sharply peaked around k =K. We set, for
all A, )0 and K +0,

the inequality (32) then takes the form

( n +g q)( n +g+—il ) ) n (36)

Pi (k ) = —,'A[c [(k —~)A, ]+c[(k+~)k]], (43)

and, thus, changing the variable of integration to t =k A, ,
we obtain

In addition, each of the factors on the left side of Eq. (36)
must be non-negative individually [see the comment
below Eq. (17)]. We view Eq. (36) as a quadratic inequali-
ty on g. Satisfaction of such an equality requires that ei-
ther g r, or g r2, where r, rz are the two roots of the
quadratic equation which in this case takes the explicit
form

po[Fi „,Fq ]=2f kIFi, (k)I dk

= —,
' f tIc(t —vk)I dt

+Ref t c(t ~A)c(t+~A—.)dt,
0

+ ,' f tIc—(t+IrA.)I2dt . (44)

g ) ri = n+ +n +v() 0—. (37)

Thus, recalling the definition (33), we obtain the inequali-

ty

f"f™$'(k,—k')P(k}P(k'}dkdk')0
0 0

(38)

for all F(k) of finite Klein-Gordon norm and in L2.
Given any ~H [0, ~ ), we choose an P(k ) supported in a
sufficiently small neighborhood of a H [0, ~ ), and (since Y
is in Schwartz space, hence in particular continuous)

g +2gn —v/=0 .

However, if g~ ri, then the individual factors on the left
side of Eq. (36}would be negative. Hence we obtain

To evaluate the first term on the right side of Eq. (44), we
change the integration variable to s = t —~A, and write

f t c(t —vA)I dt

= f (s+~A, )Ic(s)I ds
KA,

= f sIc(s)I'ds —f sIc(s)I'ds

+ok f Ic(s)I ds ~Af—Ic(s, )I ds . (45)

The first term vanishes since c(s)=c(—s) because c(x )

is real. In the third term, we have f "„Ic(s)Ids= 1

on account of our normalization condition (41). The
remaining terms are small for large ~A. since
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~c(s)~=O(~s~ ) as ~s~~~. Thus, the first term on
the right-hand side of Eq. (44) takes the form

—,
' f t~c(t KA—, )~ dt= —,'KA, +ep(KX) . (46)

Here and throughout the remainder of this section, any
quantity ei(y ) (/=0, 1,2, 3, . . . ) will always denote a con-
tinuous function on [0, ~ ) which for some 6 )0 decays at
least as fast asy ' asy —+ ~ [i.e., ~e&(y) ~y'+ is bound-
ed]. Thus, in particular, the integral f p"e&(y)dy exists
and is finite. No further details about any e&(y) will be
used in our arguments below.

Now, by a similar calculation, the remaining two in-
tegrals in Eq. (44) can be seen to make only a contribu-

I

Yi(v, v'):—Y(u, v')c(u /A, )c(u'/A, ), (48)

which is a compact-supported smooth function. We have

tion of the form e, (KA, ), and by exactly the same reason-
ing as above, the remaining quantities pp[Gi „G& ] and
cr [F&,G&, ] can be calculated; the final result is

pp[Fi „Fi,]= , XK—+e, ( A K),

pp[Gi, Gi, ]= ~AK+e2(XK),

o[Fi„,.Gz, ] =AK+e3(AK) .

We now compute the Y(v, u') contribution to the in-
equality (30). We introduce

f" f" Y(v, u')Fg (u)Fg„(v')dvdu'= f" f" Y„(U,U )cos(KU)cos(KU )dUdU'

=—' f f Y&(v, u')(e' '+e ' ")(e' ' +e ' '
) du du'

=
—,
' (a+P), (49)

where

a(A, , K) =4ir[ Y&( K, K)+ Y&—(K, — )K]=8 iYr&(K, K),

/3(A, , K) =—4m [ Yi (
—K, —K)+ Yi(K, K)],

and

(50)

Thus, when kK is large enough to ensure that Eq. (54) has
real roots, we obtain the inequality

a) —,
'

[
—(2XK+e&)+ [(2AK+e6) +4(p+e9)

4E7AK'4&, s ]

Yz(k, k')= f f Yz(u, u')e ' "e ' " dv du' .
OO OO

)
—,
' [(2kK+ e6) + [(2AK+ e6) 4e7A K—4es ]'— (55)

Note that, as in Eq. (40), we have

f a dK=4mfY&(. v, u ) du
0 OO

=4m f ( „T„)[c( uX/)] du . (51)
a(A, , K) )e,p(A, K) . (56)

It may be verified that the right-hand side of inequality
(55) vanishes as A,K~ ~ faster than ~kK~

' for some
6&0. Combining this with the lower bound on u for A,~,
we obtain

(AK+e4+a+p)(AK+e~+a —/3) ) (AK+e3) (53)

Again, each factor appearing on the left-hand side of Eq.
(53) must be non-negative. The non-negativity of the sum
of these factors yields

It is easy to verify by a similar calculation that

f f Y(v, u')Gi, (u)Gi, (u') dv dv'= —,'(a —P) . (52)

We now combine Eqs. (42), (47), (49), and (52) with the
inequality (30); the result is the inequality

f adK) f "e,p(AK)dK= f Ei(py)dy .
0 0 0

(57)

Since jp e,p(y)dy is finite, the inequality (57) implies [cf.
Eq. (51)]

oo

lim inf 0. dK4~x o

Integrating both sides of Eq. (56) with respect to K, we
find

a ) KA, ,' (e4+ e, ),— ——
=lim inf j™

( T„)[c(u /j) ]2du )0,
g —+ OO OO

(58)

a + (2AK+ e6)a+ e7AK+ es (P+ e9) =0 . —(54)

which shows that o. is bounded from below for small A,~.
On the other hand, expression (53), viewed as a quadratic
inequality on a, is of the same basic nature as Eq. (36).
By the same type of argument used to obtain Eq. (37), a
must be greater than the larger root of the quadratic
equation obtained by using the equality sign in the in-
equality Eq. (53), which takes the f'orm

which is the statement of the ANEC [Eq. (3)] that we set
out to prove. Indeed, we obtain the stronger result that
there exists a constant C &0 such that, for all A, &0,

f (T„)[c(u/A. )] dv) ——. (59)

Equation (59) is very similar in form and content to a re-
cent result of Ford [10].
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V. PROOF OF ANEC IN TWO-DIMENSIONAL CURVED
SPACETIME

Let (M, g ) be an arbitrary globally hyperbolic (curved)
two-dimensional spacetime, P a massless Klein-Gordon
field on M, and y CM any achronal, complete null geo-
desic. In this section, we will prove that the ANEC [as
formulated in Eq. (3)] is satisfied along y in any Ha-
damard state of the quantum field P, by carrying the
analysis to a point at which the general proof given in
Sec. IV for fiat spacetime applies word for word to (M, g )

and the null geodesic y.
Any two-dimensional spacetime is locally conformally

fiat: If we let u and u denote any (locally defined) null
coordinates, then the metric (locally) takes the form

g= —C(u, u)du du . (60)

Furthermore, the massless scalar field [Eq. (10) with
m =0] is conformally invariant in two dimensions, with
conformal weight zero. Thus, any solution of the mass-
less scalar wave equation in the flat spacetime
q= —du du defines a solution (at least locally) in the
spacetime of Eq. (60). Consequently, the Hadamard con-
dition on a state can be formulated exactly as in flat
spacetime: Locally, in any null coordinate system, the
symmetrized two-point distribution is required to be of
the form p =@,+w, [see Eq. (18)],where

p, (x,x') = — ln
~
(u —u ')(U —U') ~,

1
(61)

and w, (x,x') is a smooth bisolution. Note that the split-
ting, Eq. (61), of p into the pieces p, and w, depends
upon the choice of null coordinates (u, u), but the re-
quirement that p can be expressed in this form is in-
dependent of the choice of coordinates. However, in the
point-splitting prescription for computing the renormal-
ized (T,b) in the curved spacetime (60), one does not
simply subtract p, from p as in Aat spacetime. Indeed, as
already mentioned, in the curved spacetime (60), p, [Eq.
(61)] depends upon the choice of the coordinates u and v

and has no local geometrical significance [in contrast
with the Bat case where locally Cartesian coordinates are
used and uo= —(1/4m. )in~I ~, where I (x,x') is the
squared geodesic distance between x and x']. In order
that the point-splitting procedure produce a renormal-
ized (T,b ) with proper causal behavior, it is necessary
that one subtract from p a Hadamard distribution which
is constructed entirely from the local spacetime geometry
[11]. [Note that, although the quantity —(1/4m )in~I

~
is

constructed from the local spacetime geometry, it fails to
be a bisolution in curved spacetime, and thus it also can-
not be used for the point-splitting prescription. ]

In order to obtain the desired locally constructed Ha-
damard distribution, one may proceed as follows. Given
p HM, let g and y denote, respectively, the unique "left-"
and "right-" moving null geodesics through p. [Global
hyperbolicity of (M, g) implies that the distinction be-
tween "left-" and "right-" moving null geodesics is glo-
bally well defined. ] Let U and V denote affine parameters
along g and y respectively, with U= V=O at p and with

pa= — ln~( U —U')( V —V') ~,
1

(62)

where ( U, V) are the null coordinates locally constructed
according to the prescription of the preceding paragraph
applied at p. In particular, the component ( T,b )k'k at

p is again given by

where

8 w(0, V, O, V')
b p gyp' V= V'=0

(63)

w(x, x') —=p(x, x') —po(x, x') . (64)

This prescription for (T,b) satisfies all the axioms of
[11],which uniquely determine ( T,b ) up to the addition
of conserved local curvature terms. It is not difficult to
verify that this prescription is in fact equivalent to the
usual point-splitting procedure as described, e.g. , in
Chapter 6 of Ref. [12]. In particular, for a spacetime
(R,g ) with metric (60) globally conformal to Minkowski
spacetime, this prescription for computing ( T,b ) for the
conformal vacuum state [with two-point function given
by the right-hand side of Eq. (61)] agrees with the stan-
dard expressions given in Eqs. (6.136) and (6.137) of Ref.
[12].

We proceed now to the proof of the ANEC. Let y be a
complete, achronal, null geodesic, which, for definiteness,
we assume is "right" moving. Choose an affine parame-
trization of y and let k' denote its tangent. Let p Py.
Since y is achronal, the open neighborhood 8 of p for
which the above construction of the null coordinates
( U, V) holds can be chosen to include all of y. (Indeed,
even if y were not achronal, we still could construct in a
similar manner null coordinates covering an open neigh-
borhood of y. ) Then, by the above discussion, Eq. (63)
holds at p. On the other hand, at another point p H y, Eq.
(63) will hold with w replaced by w =p —po, where Po is
given by Eq. (62) with the null coordinates (U, V) con-
structed at p replaced by the corresponding null coordi-
nates (U, V) for p. However, it is clear from the con-
struction of these null coordinates that throughout
8 Cl 6 we have U= U( U) (i.e., U is a function of Uonly),
and V= V—c, where c = V(p ) is a constant. Further-
more, we have U = U =0 on y. Thus, for all
(x,x ') E (6 fl 6)X (690) we have

U scaled so that the tangents I' and k' to g and y satisfy
k'1'= —

—,
' at p. Choose achronal segments of both g and

y which contain p. (Such achronal segments must exist
since global hyperbolicity implies that strong causality
holds at p. ) In a sufficiently small neighborhood 6 of p
each q &6 will be connected to this segment of g by a
unique "right-" moving null geodesic and be connected to
this segment of y by a unique "left-" moving null geo-
desic. We label q by the affine parameter values U and V
of these intersection points on g and y, respectively,
thereby defining a null coordinate system in 6.

The expected stress-energy tensor ( T,b ) at p is now
defined by the same prescription as in Aat spacetime,
where we subtract from p the Hadamard distribution
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1 U —U'
w(x, x') =w(x, x')+ ln

4~
(65)

and, hence, in particular,

N C) M

V= V'=0, U= U'=O V= V'=c, U= U'=0

(66)

Consequently, if we choose a fixed p H y to define po and
w in a neighborhood of y by Eqs. (62) and (64), then
everywhere along y we have

(T(v))kkbBw(0 V 0 V)
ab aviv' V'= V

(67)

FIG. 1. In a two-dimensional globally hyperbolic spacetime,
any null geodesic y can be deformed outside a finite segment to
produce a Cauchy surface C which is spacelike apart from the
null segment of y that it contains.

which expresses this component of ( T,b) along y in
terms of w by exactly the same formula as in Hat space-
time [see Eq. (20)].

We consider, now, the positivity condition (17) on our
quantum state. Any smooth function F of compact sup-
port on y locally gives rise to a smooth solution F( V) in
the neighborhood 8 on which our null coordinates
( U, V) are defined. However, since (M, g ) is globally hy-
perbolic and y is achronal, each F actually gives rise glo-
bally to a solution in S. To prove this, we note that by
the same argument as given in Ref. [9] (cf. the discussion
near Fig. 4 of that reference), we can deform y outside of
the support of F to obtain a Cauchy surface C, which is
spacelike apart from the finite segment of y included in it
(see Fig. 1). Then, given any q&M, the unique "left"
moving null geodesic through q must intersect C at one
and only one point. We define F(q)=0 if this intersec-
tion occurs off of y, and F(q)=F( V) if this intersection
occurs on y at the point labeled by the aKne parameter
V. This construction globally defines the desired solu-
tion in S. Note that the assumption that y is achronal is
crucially used here; if this property fails, then only a re-
stricted class of functions F on y would give rise to global
solutions in S. Indeed, if y fails to be achronal, the
AN EC need not hold: a simple counterexample to
ANEC in that case is the fiat cylindrical (S' X R) space-

time, with the field in the static vacuum state, where the
negative Casimir energy and pressure imply a violation of
the ANEC on all null geodesics.

The explicit form of the positivity condition (17), with
solutions F„Fz, of the type discussed in the previous
paragraph, for a state with two-point function p given by
Eq. (64), now becomes identical to Eq. (30) in the case of
Minkowski spacetime with the variables U, u replaced by
V, V'. (Furthermore, all integrals over the affine parame-
ter V of y continue to range from —~ to ~ since y is
complete). Thus, all equations and arguments in Sec. IV,
from Eq. (26) onwards up to Eq. (59), apply without
modification. This establishes the validity of the ANEC
for two-dimensional (globally hyperbolic) curved space-
times as stated in the beginning of this section.

VI. A PROOF OF ANEC FOR MASSLESS
AND MASSIVE FIELDS IN FOUR-DIMENSIONAL

MINKOWSKI SPACKTIME

In this section, we shall extend the results of Sec. IV to
the massive Klein-Gordon field in two-dimensional Min-
kowski spacetime, and to the massless and massive
Klein-Gordon field in four-dimensional Minkowski
spacetime. To do so, however, we will need to impose
some conditions on the quantum state which restrict the
asymptotic behavior of the regularized two-point func-
tion w(x, x') at large x and x'.

We treat, first, the case of a massive Klein-Gordon
field in two-dimensional Minkowski spacetime. The
Hadamard condition on the state of the field takes the
form

p (x,x') =po (x,x')+w(x, x'), (68)

BF = —m F,
Bll BU

(69)

with data on C specified as follows: we choose F=F0 on

where po is the symmetrized two-point function of the
Minkowski vacuum state for a Klein-Gordon field of
mass m, and w is a smooth bi-solution of the massive
Klein-Gordon equation; the explicit form of po will not
be needed in the following discussion. Again, the
relevant component ( T,b ) k'k along y is given in terms
of w by Eq. (20). In the massless case, we obtained a con-
dition on m which led directly to the ANEC by applying
the general positivity condition (17) to a particular class
of solutions. The following fact played a crucial role in
this argument: Given a null geodesic y and given a Co
function Fo on y, then there exists a solution F in S
which induces this "data" Fo on y. [This fact followed
trivially from the fact that the function F(u, u)—=Fo(U)
on two-dimensional Minkowski spacetime satisfies the
massless Klein-Gordon equation. ] In order to extend our
results to the massive case, a similar property is needed.

To analyze this issue, given a Co function Eo on y let
C' be a Cauchy surface obtained by deforming y outside
the support of Fo to a spacelike surface, as illustrated in
Fig. 1 above. Consider the initial-value problem for a
solution of the massive Klein-Gordon equation
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the portion of C coinciding with y, and set F=F=O on
the spacelike portion of C. Then the standard theorems
of the spacelike initial-value formalism imply that F must
vanish in the domain of dependence of the spacelike por-
tion of C', and, in particular, on their null boundaries.
The standard theorems of the null initial-value formalism
then yield the following results: There exists a unique
smooth solution F+ on J (y) and a unique smooth solu-
tion F on J (y) each of which induces the desired ini-
tial data on C. Hence, by "merging" these solutions, we
obtain a continuous solution (in the distributional sense)
whose data on C (and hence on all Cauchy surfaces) is of
compact support, and whose restriction to y is Fp. How-
ever, as pointed out in the "note in proof" of Ref. [9], in
general, F will be merely continuous across y and thus
will not define a solution in S. Indeed, integrating Eq.
(69) along y, and using the fact that dF+ /Bu =0 in the
domain of dependence of the spacelike section of C, we
find that along the portion of y lying in I+(C ) we have

BF+
(v)= —f m Fodv= —m f Fodv, (70)

BQ QO OO

whereas BF /Bu =0 on that portion of y. Thus, if
m&0, in order for F to define a C' solution, we must
have f" Fodv =0, which is equivalent to the condition

that on y we have Fo=dGo/dv, where GoECo" (R).
More generally, the necessary and sufhcient condition
that the Cp initial data Fp on y yields a C" solution F to
Eq. (69) with data of compact support on Cauchy sur-
faces is that Fp be of the form

d"Gp
Fp=

dU
(71)

with GoCCo" (R). It is not difficult to show that no
Fp&Cp can yield a C solution in S. This contrasts
sharply with the massless case, where every Fo& Co (R)
gives rise to a C solution FES.

The fact that the solutions F obtained by the above
procedure fail to be in S means that the field algebra A.
does not contain representatives P[F] of these solutions
F, and, hence a priori the positivity condition (17) need
not apply to such F. Nevertheless, by the argument
sketeched in the note in proof to [9], in two dimensions
any Hadamard state on A can be extended, by continui-
ty, to a Hadamard state acting on an enlarged field alge-
bra A containing representatives of all solutions whose
data on a spacelike Cauchy surface is merely C and of
compact support. Hence, the positivity condition analo-
gous to Eq. (30),

2Po~ [Fol Fol ]+Sf f Y(v v )Foi(v )Foi(v ) dv dv

X 2po [Fo2,Fo2]+8f f Y(v, v')Fo2(v )Fo2(v') dv dv' icr[Fo„Fo2]i (72)

holds for all Fo„Fo2 of the form (71) with n =4. Here Y
is again defined by Eq. (28) and cr [Foi,Fo2] is again given
by Eq. (31). Furthermore, po [Fo,Fo ] is again given by
precisely the same formula, Eq. (26), as held in the mass-
less case; indeed, the methods of Appendix B of [9] estab-
lish that the two-point function of any stationary Ha-
damard state of the massive or massless scalar field takes
the universal form (26) (in two dimensions) on solutions
of the type we are considering on any component of a bi-
furcate Killing horizon.

Thus, in the massive case, the inequality (72) is identi-
cal in form to the inequality (30) of the massless case, ex-
cept that now Fo, and Foz are restricted by Eq. (71) with
n =4. Unfortunately, this restriction on Fp, and Fp2
prevents one from paralleling the proof given in Sec. IV
for the massless case. Nevertheless, if w(x, x') is suitably
restricted, then Eq. (72) will automatically hold by con-
tinuity for all Fpi FppE:Cp . In particular, suppose m is
such that for all Fp] Fp2 H Cp we have

f f Y'(v, v')Fo, (v)Foz(v') dv dv'

~Ceo [Foi Foi]eo [Foe Fo2]

where C )0 is a constant. Then Eq. (72) will hold for all

Fo„Foz H Co". Namely, it is not difficult to show (see the
note in proof of [9]) that any Fo E Co can be approximat-
ed in the norm pp by a sequence of Cp functions satis-
fying Eq. (71) (this is true for any fixed n). When Eq. (73)
holds, the vacuum norm pp bounds the full norm p, so
convergence in the norm pp implies convergence in the
norm p . Note that a sufficient (but not necessary) con-
dition for Eq. (73) to hold is that both w(O, v, O, v') and
Y(v, v') be square integrable on y X y.

It is not difficult to show that Eq. (73) holds for all Ha-
damard states in the standard Minkowski Fock space for
which the expected number of particles is finite. Thus,
Eq. (73) holds for a wide class of physically relevant
states. Nevertheless, Eq. (73) represents a nontrivial re-
striction on the quantum state, and indeed, there exist
H adam ard states in the standard Pock space which
violate it.

Given a Hadamard state of the massive Klein-Gordon
field which satisfies Eq. (73) along y, then all the in-
gredients used in our proof of ANEC for the massless
case hold. Namely, Eq. (72) holds for all Fo„Fo2&Co,
po [Fo,Fo] is given by Eq. (26), and ( T,b )k'k is given
by Eq. (20). Thus, if a Hadamard state of the massive
Klein-Gordon field in two-dimensional Minkowski space-
time satisfies Eq. (73) on a null geodesic y, then the
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ANEC as formulated in Eq. (3) holds for y.
Note that Eq. (73) is not necessary to ensure that Eq.

(72) holds for all Fo„FozECo", i.e., other (inequivalent)
conditions would suffice. For example, if Y(v, v') [but
not necessarily w(x, x')] is square integrable on yXy,
then an argument similar to that given above establishes
Eq. (72) for all Fo„Fo2 which are in L and have finite
Klein-Gordon norm T. hus Eq. (73) could be replaced by
the condition that YEL (y Xy).

%'e turn, now, to the case of a massive or massless
Klein-Gordon field in four-dimensional Minkowski
spacetime. Once again, in both the massless and massive
cases the Hadamard condition is expressed by the analog
of Eq. (68):

iM(x, x ') =po(x, x ')+ w (x,x '), (74)

where p0 denotes the two-point function of the Min-
kowski vacuum state, and m is a smooth bisolution. The
relevant component of the stress-energy tensor is again
given in terms of w by Eq. (20).

In the four-dimensional case, the analog of the class of
solutions needed for our positivity argument may be
defined as follows. Given a complete null geodesic y,

there exists a unique null plane X containing y. Let U

denote a null coordinate on X coinciding with an affine
parameter along each generator, and let s denote the
remaining pair of spacelike coordinates on X, with s =s0
along y. We seek solutions F, which have data of com-
pact support on Cauchy surfaces and whose restriction to
X yields a function Fo H Co (X). As in the two-
dimensional massive case, such solutions always exist,
but, in general will only be C; integral constraints (for
both the massive and massless case) on Fo along each
generator of X must be satisfied in order to obtain a C"
solution. Once again, however, if F0 is of the form

a"6,
BU

(75)

where GoECo (X), then the solution F will be in C".
Again, by the argument sketched in the note in proof to
[9], any Hadamard state on A can be extended by con-
tinuity to a Hadamard state acting on an enlarged field
algebra A. containing representatives of all solutions
whose data on a spacelike Cauchy surface is C and of
compact support. Thus, we obtain the analog of Eq. (72),
namely,

2po[Foi, Fo, ]+8f Y(v, s, v', s')Foi(v, s )Fiii(v', s') dv d2s dv'd s'
XXX

2po[Fo2, Fo2]+8f Y(v, s, v', s')Fo2(v, s)Fo2(v', s') dv d s dv'd s' ~ ~cr[Foi, Fo2]~ (76)
XXX

for all Foi, Fo2 of the form (75) with n=5. Here d s
denotes the volume element on the spacelike surface
[ v =const], cr is given by the analog of Eq. (31),

o [Fo„Fo2]= 4Im f—f kPoi(k, s)Po2(k, s) dk d s,
0

then, by continuity, Eq. (76) will hold for all
Foi, Foz E Co" (X). [As in the two-dimensional case, oth-
er (inequivalent) restrictions on w would suffice to ensure
this. ] We now choose Fo, and Fo2 to be analogs of Eq
(42):

Y is defined by the analog of Eq. (28),

(77) Fo, (v, s ) = c(v /A, ) cos(av )f(s ),
Foq(v, s ) =c(v /k) sin(av )f(s ),

(81)

Y(v, s, v', s')=, w(v, s, v', s'),
BUBU

(78) where f(s ) denotes an arbitrary smooth function of com-
pact support normalized by

and again by the results of Appendix B of [9] (which hold
for both the massive and massless cases), the analog of
Eq. (26) holds:

po[Fo, Fo]=2f f k~Po(k, s)~'dk d's . (79)
0

Here Fo(k, s) denotes the Fourier transform of Fo(v, s)
with respect to the variable U only.

As in the massive case in two dimensions, Eq. (76) with
Fo restricted by Eq. (75) with n =5 does not suffice to en-
able us to prove ANEC. However, if m is restricted by
the analog of Eq. (73), namely

2
Y(v, s, v', s')Fo, (v, s)Fo2(v', s') dv d s dv'd s'

XXX

~CVo[Foi Foi]eo[Fo2 Fo2]

f if(s)i d s=l .

Carrying through the steps of Sec. IV which led to Eq.
(58), we now obtain

lim inf f f Y(v, s, v, s')[c(v/k)]

Xf(s)f(s')dv d sd s'~0 . (82)

However, Eq. (82), by itself, does not imply the desired
result

liminf f Y(v, so, v, so)[c(v/k)] dv

=liminff (T &
)k'k [c(v/A)] dv ~0 .g~ Qo
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y:%EX'M~L'(E) is continuous .

[Note that this condition implies that the ANEC integral
(1) exists. ] In that case, for the support of f chosen
within the neighborhood VE, the inequality (82) takes the
form

f d s d's'f(s) f(s') f Y(u, s, u, s') du &0 (84)

[where the v integral converges and depends continuously
on s, s' by virtue of assumption (83)]. However, since
f(s) is arbitrary, Eq. (84) immediately implies that

f Y(u, so, u, su) du = f ( T,b )k'k du ~0 . (85)
00 y

Thus, we have proved that the ANEC holds along y pro-
vided that Y satisfie both conditions (80) and (83).

Note that conditions (80) and (83) (or some weakened
versions of them) are needed for our proof. However, our
proof makes use of the general positivity condition (17)
only on a restricted class of solutions. It is possible that
the satisfaction of the positivity condition on all solutions
could imply the ANEC without the need to impose any
additional restrictions on the state other than the Ha-
damard condition.

The above argument can be extended directly to prove
the ANEC for a null geodesic generator y of a bifurcate
Killing horizon in a stationary, globally hyperbolic
curved spacetime (possessing a Cauchy surface which
contains the bifurcation surface), provided that an
isometry-invariant Hadamard state of the field exists on
that spacetime (see Ref. [9]). Namely, in such a space-
time, given an arbitrary compact subset K of a com-
ponent of the horizon, we can find a Cauchy surface
which contains IC [9]. If a (necessarily unique [9])station-
ary Hadamard state coo exists, we can write the two-point
function of an arbitrary Hadamard state as

p go+ w (86)

where now po denotes the two-point function of coo. The
expected stress-energy tensor can be written as
( T,b )o+ ( T,b ), where ( T,& )o is the expected stress-
energy tensor in the state coo, and ( T,I, ) is given by the
curved-spacetime analog of the coincidence limit formula
of flat spacetime so that ( T,b ) k'k" is again given by
Eq. (20}. However, along y, the component ( T,b )o k'k
of the stress tensor in the state coo vanishes. (Proof: Let

P denote the Killing field which generates the Killing
horizon. Then we have ( T,b )0 Pg"=e ~"'( T,b )o k 'k b,

where t denotes the Killing parameter and ~ is the surface

In order to obtain this result, we need to impose further
restrictions on Y (and hence on tu) which, in effect, permit
us to interchange the limit in A, with the integration over
s and s' in a neighborhood of s =s'=so. A sufficient con-
dition to ensure this is that, for any fixed s, s in an open
neighborhood Vl of so, the function y, , (v) = Y(u, s, v, s')
is in L '(E) and, as a vector in L '(E), varies continuously
with s and s':

V(s, s')EQXS', y, , CL'(IIl),

gravity of the horizon. We also have ( T,b ) o Pg =0 at
the intersection of y with the bifurcation surface, since
P =0 there. However, ( T,b )0 Pg is constant along y by
virtue of the isometry invariance of coo. Thus,
( T,b )0 k'k =0 along y.} Therefore, with Y defined as in
Eq (78), the relevant component (T,b)k'k~ of the ex-
pected stress tensor along the generator y is again given
by the coincidence limit Y(v, so, u, so). Furthermore, as
shown in [9] the symmetrized two-point function po of coo

satisfies Eq. (79) along each component X of the bifurcate
Killing horizon. In addition, it is shown in the "note in
proof" of Ref. [9] that if Fo satisfies a strengthened ver-
sion of Eq. (75), then it gives rise to a C solution.
Hence, for Fo, and Fo2 of this form, Y again satisfies the
fundamental inequality (76). It then follows that if
iu(x, x') of the Hadamard state (86) obeys the restrictions
(80) and (83), then the ANEC holds along the generator

Remarkably, the result of the above paragraph can be
applied to establish the ANEC for a massive minimally
coupled scalar field in de Sitter spacetime. Namely, since
de Sitter spacetime admits a maximum number of Killing
fields, any complete null geodesic y is contained as a gen-
erator in some bifurcate Killing horizon. Moreover, the
de Sitter vacuum [13] for the massive Klein-Gordon field
is a Hadamard state coo, which is isometry invariant with
respect to all Killing fields. Therefore, for a massive sca-
lar field, the ANEC holds along every complete null geo-
desic y in de Sitter space-time in any Hadamard state
which obeys the conditions (80) and (83) with respect to
the decomposition (86).

Note added. The following argument establishes that
for a massless field the ANEC cannot hold in a general
curved four-dimensional spacetime. Namely, if ANEC is
to hold generally on all curved four-dimensional space-
times, then for a metric of the form q, b +y,b, the contri-
bution to the ANEC integral which is linear in y, b must
vanish (since otherwise by taking y, b small and reversing
its sign if necessary, we would obtain a counterexample
to the ANEC). This linear order contribution to ( T,b )
for massless fields in the "in" vacuum state has been cal-
culated by Horowitz [14]. A scaling argument (similar to
the argument leading to Eq. (18) of Ref. [14]) shows that
if the ANEC integral vanishes for all y,b, then the contri-
bution arising from the linearized local curvature term
a A,b+bB,b (in the notation of Ref. [14]) also must van-
ish for all y,b. However, it is easily verified that (for
a %0) this is not the case in general for null geodesics that
intersect the support of y,b. Nevertheless, it remains
possible that the ANEC holds in all four-dimensional
curved spacetimes along (achronal) null geodesics for
which the contribution to the ANEC from the corre-
sponding exact local curvature term vanishes. (Note that
this is the case for the four-dimensional examples dis-
cussed in Sec. VI above. )
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