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Helicity mave functions
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Starting from general properties of a spin-2 field, we construct helicity wave functions in the
framework of the Weyl —van der Waerden spinor formalism. We discuss here the cases of massless

and massive spin-2 particles.

A very eKcient technique for evaluating multiparticle
amplitudes is achieved by means of the helicity method.
It turns out to be much more simple to calculate helicity
matrix elements rather than evaluating the unpolarized
amplitudes by summing the squared invariant amplitude
over all possible spin states [1].

This method was improved [2, 3] with the use of the
Weyl —van der Waerden SL(2,C) spinors conjointly with
the spinor calculus [4]. This way of dealing with he-

licity amplitudes is capable of eliminating the lengthy

p —matrices algebra by unifying the descriptions of Dirac
spinors and Minkowski four-vectors. With this treatment
it was feasible to obtain exact expressions for amplitudes
containing a large number of external legs [5].

In the present work, we apply the Weyl —van der Waer-
den spinor method to spin-2 bosons. Making use of gen-
eral properties of spin-2 helicity states, we construct he-

licity wave functions in spinorial form for massless and
massive particles. Our results have a smooth interface
to the method of Weyl —van der Waerden spinors applied
for spin- —' and spin-1 particles [3] and also for spin--

2 2
fermions 6].

A spin-2 field is described by a symmetric tensor 4""
which satisfies the Klein-Gordon equation. The tensor
C'"" is traceless (4"„=0) and has null four-divergence
(B&4""= 0). The solution of the Klein-Gordon equation
for the spin-2 field of momentum p, in the absence of a
source, is given by the plane-wave expansion

The following normalization condition for the tensor E"
can be adopted:

(p9) —= e p&rIa = p Va (pV) = e pj, iI =p ilo'

where c is the metric spinor

Any four-vector p" = (p, p') can be expressed as

+ltt ~ +Pab~ .
ba

where P
b

—— o." p&. Therefore, the Lorentz invariant

p~p~ can be written as

p"p„= ~Pi„P= 2(P, P). . (6)

[8"'(k, A)]
t F„„(k,A') = 6), g

In order to apply the Weyl —van der Waerden method
to spin-2 particles, we briefly summarize some results on
spinor formalism. We use the conventions of Wess and
Bagger [7], with diag(g„„) = (1,—1, —1, —1), vector in-
dices are denoted by Greek letters (p, v, . . . = 0, 1, 2, 3)
and spinor ones are denoted by Latin letters (a, li, . . . =
1, 2). We define the inner product between two spinors
as

4&""(z) = d p) [F"'(p, A) exp(+ip„z") + H.c.], We start by analyzing massless spin-2 particles. In this
case, we require the invariance under the gauge transfor-
mation

where 6"'(p, A) is the polarization tensor corresponding
to states of definite helicities (A) which should satisfy

8""(p, A) = 8'"(p, A),

P„E""(p,A) = P„Z""(p,A) = 0,

(1a)

(1b)

where A" are four arbitrary functions. This gauge trans-
formation is able to decouple the vector and scalar parts
of the tensor field [8]. We end up with only two physical
helicity states, i.e. , A = +2, which satisfy

Z"„(p, A) = 0 . (1c) [&"'(p, +2)]l = 8""(p,~2) .
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Using Eq. (5) for each vectorial index of E"", we can
write the helicity tensor as

~""(»,+2) = (2~"'Eb')( ,'~"-"Fd ), and the helicity tensor can be written as

F""(p —2) = (-'o." G )( 'o"-"Hd, ),
(9)

g pe (p +2)
— &gab vcd—g

(1oa)

where E, I", G, and H are arbitrary spinors to be de-
termined. Equat, ions (la) —(lc), (2), and (8) impose some
constraints on these spinors, For instance, the conditions
(la)—(lc) require

Eab lcd @cdgab

epe2 —ege1 —Re2e1
e 1e2 el e1 ~el e1

—ie1e2 ie]e1 —e1e1
e2e2 —e2e1 —ie2e1

ere2
—e1e2
—'Ee]e 2

Using the gauge freedom Eq. (7) in the momentum
space, i.e. , 6 "~ ~ 8"" —i(p"A~ + p"A") we can choose
A" such thatP' E,bI",d ——P G -II,„=0,

(lob)
, e1e2 g e1e2

Z

2
'

2

with this choice we have

E. r" = G. H" = O, (loc)

whereas the normalization and Hermiticity conditions de-
ITlan d

(lod)

(Eab)$(Fcd)f GbaHdc ( loe)

P
b =u'Sb

We search for an explicit form of E, I", C~, and H writing

E,b
= e,e', F,b

= f, f',

Gb ——g g'-, Hb —h h',

where g, g', . . . , h, h' are arbitrary spinors. The relation
(loe) constraints e = g', g = e', f = h', and h = f'
The relation (lob), t, aking into account Eq. (11), yields
four possibilities: e = p and f = p; e' = p and f' = p;
e = p and f' = p; or e' = p and f = p. Nevertheless,
Eq. (10a) makes only the first, two possibilities acceptable
with the additional constraint: e' = f' in the former case
and e = f in the later one. In order to guarantee that
F"'(p, +2) corresponds to a positive-helicity state, the
only possible choice is e' = f' =. p and e = f, i.e. ,

8""(p,+2) = 2o" 'o"'"p, ebp, e.d,

8""(p,—2) = 2cr"'a"'"e,pbe, pd .

We can verify that 8"'(p, +2) corresponds indeed to a
massless spin-2 particle with positive helicity [9]. In order
to do this, let us assume that the particle is traveling in
the z direction, i.e. , p" = (E, 0, 0, E), where E is its
energy. In this case the momentum spinor is

We make use of the fact that, for a massless particle,
the spinor P b associated with the particle momentum ac-
quires a simple form. Since p =

z (P, P) = 0, P b should
be written as the product of two momentum spinors: i.e.,

(0 0 0 0~
O~ io8"'(p, +2) = —eie,

&0 o o 0)
We can see that if we perform a rotation about the z
direction, i.e. ,

8' "" = R" (0, 0)R"&(0,0)$ P we obtain '

f' "' = exp(+2ig)fi'" which shows that F""(p,+2) is a
helicity +2 wave function.

From Eq. (10d) we obtain the normalization condition
~(pe)~ = 4, and consequently (pe) = ~2exp(iu), where
u is an arbitrary phase. If we define the spinor r by

e = exp(iu)~2
(pp)

'

we can write the final result for the helicity states of a
massless spin-2 particle as

E""(p,+2) = -oi""cr"'d exp(2i~).
(p~) (p~)

'

(15)

F""(p,—2) = —ai'"o '"exp( —2iu)
(p&)t 4»')'

We see that r is a gauge spinor. For instance, if we
make two different choices of t, he spinor r (r and r') we
obtain

~bade(~ ) —~bade(P) —2 (Pdc Aha + Pba Adc)

with

2i(t'i. )

(p '}'(p )'
x ((p~') rbp- + ,' (&'&)pbbs ')—

If we take into account the results of Ref, [3] for
helicity of a massless spin-I particle [s"(+1)] in spinorial
forni, we notice that the helicity states Eq. (15) can be
written as 6""(p,+2) = z"(p, +I)z"(p, +I). Equation
(15), with w = 0, agrees with Ref. [10] where the graviton
helicity states are considered.

We can write the sum over the helicities as
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4 .Pb .Pg .PI gPb+ (P ),
pp

which is equivalent to the vectorial form

)
%=+2

& (~~a p~P + ~1 P ~~a p~~ paP) (16)

where

p +p= —g +
p 0 p

We can see that the sum over the polarizations depends
on the gauge spinor r and that only the physical states
[11]contribute to Eq. (16).

Let us now treat the case of a massive spin-2 particle.
As in the massless case, we give a spinorial description of
the polarization vectors, by writing the following decom-
positions for all the physical helicity states:

Notice that the pairs of spinors (A, B) (I, J) play sim-
ilar roles. Therefore, in what follows, we will concentrate
just on the first pair.

We can take advantage of the simple form of a lightlike
vector in spinorial notation, Eq. (11),by writing the spin-
2 massive boson momentum k as a sum of two momenta

p and q, with p = q = 0, i.e. ,

PP —pP + qP (18)

with

2(I' I') = l(pq)l' =m'

and therefore,

(pq) = p q = m exp(iu) .

We can expand the pair (A, B) in terms of the momen-
tum spinors p and q:

with kl"k„= m2 = 2P4q„. In spinorial form, Eq. (18)
becomes

I&
b

—P
b + Q b: PaPb + qaqb

8""(k +2) = — "A ""B—-1- 1-
) —

2
bi

2
di)

8""(k,+1) = o""Cb, —o"'"Dg, ,
—.1- 1-

8""(k,0) = cr~abEb —o"4Fg;—,
1- 1--

(17)

(nip +ao2qa)(ospb + o4q, )

B
b

—
(by pa + b2qa)(bspb + bqqb) .

(2o)

1 . 1F"'(k —1) = —o."' Gb cr"~Hg—
2 2

F""(k +2) = oPabI —o.v—cd J1- 1-
6Q

2
dc

If we substitute this expansion in Eqs. (la)—(lc) we ob-
tain the following constraints: a3 —— a2, aq —— —a~,
b3 —b2, bq ———bq, and aq 62 ——a2bq . Therefore, A b

and B,&
become

2 2

A, b
——ma, l cb(k, 0—) + c,b(k, +I) ——

q
E b(k, —I) I

=
p B

b ) (21)

where e (k, A) are the helicity spinors of a massive spin-1 particle of momentum k [6], i.e. ,

s b(k, +1) = q, p, , b-„(k, 0) = —(p, p, —q, q, ), s b(k, —1) = p~qgm
(22)

We obtain similar results for the remaining pairs of spinors of Eq. (17). If we take into account the normalization

condition Eq. (2), we obtain the normalized helicity wave function for a massive spin-2 particle in the Weyl —van der

Waerden notation, up to a phase factor

t"'(k, +2) = -o""o-"'" p, qbp, qg, . .
m

~" (k, +1) = -~""~-" [(O'Pb —q-qb)P'qd+ P'qb(p'P~ —q'q~)],
4 m1'g'd28"'(k, 0) = —o"' o"'" [(p pb —q, qb)(p;pa —. q&qz.) —p q q Pa —qapbP qz]

m~ 6
18""(k,—1) = —-o" rr ', [(popb —qoqb)q'p~+ qo Pb(p'p~ —q'q~)l.

8""(k,—2) = -o""o '"
2qapbqcp~

4 rn2

(23)



BRIEF REPORTS

where

(24)

k k
)C" = —g"

m2

We can verify that the sum over the polarization states,
in vectorial form, is given by

Our results, Eqs. (15) and (23), can be very useful in
the evaluation of invariant amplitudes involving massless
and massive spin-2 particles. In the first case, we can
take advantage of the freedom in the choice of the gauge
spinor r to eliminate some Feynman diagrams contribut-
ing to a given process. In the massive case, we can make
convenient choices of the momenta p and q, defined in
Eq. (18), to reduce the number of contributions.
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