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Transverse color field correlations in a quark-gluon plasma are studied in the Coulomb gauge using
real-time field theory at finite temperature. A consistent linear response analysis is used to determine the
space-time behavior of the correlations. The color correlation function shows a damped oscillatory be-
havior in space and time indicative of the collective behavior of the plasma. Dispersion relations for
transverse collective modes are obtained and compared with earlier results.

I. INTRODUCTION

The understanding of the collective behavior [1—3] of a
quark-gluon plasma (QGP) is crucial, a,s it very clearly
differentiates the color deconfined phase (QGP) from the
color confined phase of hadronic matter. The collective
features would, very likely, also play a significant role in
the detection of a QGP in the laboratory and hence in re-
vealing the dynamics of the plasma from observations.

In this article, our main aim is to study color field
correlations in a QCD plasma and thereby obtain infor-
mation about the space-time behavior of the collectivity
in the system. Correlations among the longitudinal com-
ponents of the color electric fields have been studied ear-
lier [4], using gauge-covariant linear response theory, and
have given new insight into QGP s. Consequently, in this
work we follow the same approach and examine color
field correlations in the transverse direction. From these
investigations, we also hope to learn about the color-
magnetic response of the system. We also determine the
dispersion relations for the collective transverse modes of
the plasma although they were obtained nearly a decade
ago by Weldon and Klimov [3]. The reasons for this
reevaluation will become clear later.

The study of collective properties has usually involved
the application of perturbative (field-theoretic) methods
of finite temperature. This has generally been justified on
the basis of the smallness (asymptotic freedom) of the
running coupling constant a, =g /4m at high tempera-
tures. All the same, it has been known [5,6] for many
years that perturbative QCD has infrared problems,
when one attempts to carry out calculations beyond lead-
ing order. For example, a simple (actually incomplete)
linear response analysis [7] gives rise to an incorrect
dispersion relation for plasma oscillations. However,
consistent gauge-covariant [7] and gauge-invariant [8]
formulations of response theory are able to overcome
these difhculties. It should also be mentioned that the
controversy associated with the sign of the imaginary
part of the gluon self-energy has recently been resolved
by Pisarski and collaborators [9], by essentially resuming
the leading contributions from thermal fluctuations with
high ( —T) virtual momenta. It was shown [9] that when
such a calculation is carried out, the external perturba-

tion gets damped and moreover this property is gauge in-
variant. As a result of these developments [7—9], it ap-
pears that the perturbative approach if carried out
correctly (including all terms of a given order in g )

ought to produce a reliable description of the collective
behavior of a QCD plasma.

In view of these considerations, we proceed with the
gauge-covariant formulation of the linear response
theory, for the determination of transverse response of
QCD plasma. For our purposes (space-time correlations)
real-time, finite-temperature field theory [10] (FTFT) is
best suited and we carry out the analysis in the Coulomb
gauge. Section II of this paper contains the derivation of
the basic expression for the correlation function and rela-
tions between the various thermal averages. The
difference between the simple linear response theory and
the modified (gauge covariant) is also discussed. Section
III contains the evaluation of the transverse correlation
function. The results of our calculations and the discus-
sion of the results are given in Sec. IV.

II. CORRELATION I UNCTION
AND LINEAR RESPONSE THEORY

Linear response theory has been discussed by many au-
thors [3,7,11], and hence we very briefiy summarize the
main features. The response function Ã relates the in-
duced field 58 in the system to an applied external field
8,„,. More precisely, for any field 8, we have the relation

58(x)= fd x'X'(x —x')8,„,(x') . (1)

It can be shown that X' is essentially a retarded com-
mutator between the external Hamiltonian 0,„, and the
field operator 8. For a specific choice of H,„,-88,„, it
reduces to a retarded commutator of only the Geld opera-
tors 8 in Heisenberg representation. Since, in practice,
the field-theoretic methods exist to evaluate the time-
ordered product of the operators in question, one has to
find relations between the retarded and the time-ordered
quantities. As we are interested in the response of the
plasma due to an external color-electric (-magnetic) field
perturbation, we consider the time-ordered product of
electric fields ( T [E (x)Eb(x ') ] ) and the correlation
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function of electric fields

C (x,x') = (E,'(x)Ei (x') &, (2)

C,"J (x —x') by CJ (k), then it is related to the Fourier
transform of the time-ordered product by the Quctuation
dissipation theorem [11]according to

where

E,'(x)=a, Ao(x) —aoA (x)—gf' 'Ao(x)A (x) (3)

C,J'(kl=T [&E,'( )E,'( ')&]

=ReT~I ( T[E,'(x)E. , (x')] & ] (4)
and the angular brackets denote the thermal averages.
For a system having translational invariance with respect
to space and time, the correlation functions depend only
on (x —x'). If we denote the Fourier transform of

where T~ denotes Fourier transform. Using Eqs. (2) and
(3) and working in Coulomb gauge with a; A'(x) =0, we

get

(T[E (x)E (x')]&= a,a,'& T[A; (x)A (x')] &+a;a'(T[A'(x)A (x')] &+gf" a'(T[A'(x)A, "(x)A (x')] &

+gf ' a (T[A,'( x)A'( x')A (x')]& gf" a'(—T[A'(x)A, (x)A (x')]&

gf '"a;(—T[A'(x)A'(x')2, (x')]&+g f""f"'"(T[A'(x)A;(x)A'(x')2 "(x')]&

a,.a, , & ~,'(x)~,'. (x ) &

+i 5(t t') —5' —5; — 5(x—x')+g N,'J q2 4~/x —x'/

E' (x)=
8.BJ.

2
E'(x),

p2

8 8JE (x) = 5;J — Ei'(x) . (7)

where N, is the number of colors. The last two terms in

Eq. (5) are obtained by expressing the nondynamical de-
grees of freedom Ao(x) in terms of dynamical degrees of
freedom A;(x) and we have retained terms only up to or-
der g . This is because we intend to evaluate the correla™
tion function to 0 (g ). It is important to note the ap-
pearance of three-point and four-point functions in Eq.
(5) (see Ref. [7]). This is not the case in an Abelian gauge
theory (say electron-positron plasma) where, as a conse-
quence, the dispersion relations for collective modes are
determined by the two-point functions alone. As will be
seen later, the linear response theory with two-point func-
tion alone in Eq. (5) yields an incorrect [7] dispersion re-
lation for plasma oscillation in the case of a QCD plasma
(non-Abelian gauge theory). It is because of this impor-
tant fact and for gauge covariance that we consider the
correlation function of electric fields and not of color po-
tentials A„'(x).

Starting from Eq. (5), it is easy to calculate the longitu-
dinal and transverse correlation function using, respec-
tively, the longitudinal and transverse projection opera-
tors for the fields. These are given by the expressions

III. EVALUATION OF CORRELATION FUNCTIONS

%'e now apply real-time perturbative finite-
temperature field-theoretic (FTFT) methods (see Ref.
[10]) to evaluate the various terms in Eq. (5). It involves
the determination of transverse polarization tensor,
three- and four-point functions. In the real-time finite-
temperature formalism, it is important to recall [10] that
due to the effective doubling of the degrees of freedom,
the propagators as well as the self-energies have a 2X2
matrix structure. Further in the Feynman rules [10]
there are vertices of type 1, type 2 and mixed internal
lines of type 1 and type 2, but the external lines are al-
ways of type 1.

The full propagator matrix 2) satisfies the Dyson-
Schwinger equations [10]

2)'"'=D'"'+(Dm 2))'"' r, s =1,2,T

where we have omitted the Lorentz and color indices for
simplicity. D is 2X2 free propagator and m.z is 2X2 po-
larization tensor and they are given by [10]

1

k —6+is
U,

k —G*—ic

As mentioned earlier, in this paper we consider trans-
verse correlations only. From Eqs. (4) and (5), we obtain
the transverse correlation function (E (x)E (x') & us-
ing the definition given in Eq. (7). The last term in Eq. (5)
is a delta function in time. This can be neglected [7]
when we consider plasma oscillations but it has to be in-
cluded when we consider the correlation function.

sinh(8k ) = e
—P]a [y2

(1
—Pl Ol)i/P

cosh(8k ) sinh(8k )
U=

sinh(8k ) cosh(8k )
(10)
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1
cosh(8„)=

0 )1/2
(12) + +&~ .M~+

(b) (c)

Re(G)=Re(m '"'),

Im(G) =tanh Im(m z~ ~)
2

(13)

(14)

FIG. 1. Feynman diagrams contributing to transverse-
polarization tensor. (a) and (b) are the gluon loops and there is
contribution from both transverse and Coulomb internal lines.
(c) represents the ghost loop contribution and the quark loop
contribution is shown in (d).

(22) (ll)e'rT m'T (15)

vr" '=m' "= i ta—nh(20„) Im(vr'"') larization tensor m'T'" is given as

where T=1/P is the temperature. One obtains D(k),
the free particle propagator, from 2)(k) by setting G =0.
It is important to keep the matrix structure of ~r and 2)
in order to eliminate the ill-defined product of delta func-
tions in the Schwinger-Dyson equation given in Eq. (8).

Thus the evaluation of 2) involves basically the deter-
mination of m'T"'. The diagrams that contribute to the
polarization tensor are shown in Fig. 1. In Figs. 1(a) and
1(b) the internal lines can be either the transverse (T)
gluon or Coulomb (C) gluon or a combination of these;
i.e., in the loop we have contribution from (TT), (TC),
and (CC). The ghost contribution [Fig. 1(c)] is required
to render the theory finite in the vacuum sector (T =0
contribution). Restoring the I.orentz indices (i,j ) the po-

k 7T J kJ
7r 7T"T 2 I 2 ll (17)

(11) {11)~ {11)~T ~Tvac ' ~TP (18)

with

It turns out that if we consider various terms in Fig. 1

(to order g ), the evaluation of m", "does not involve the
vertices of type 2 and D" ' or D' "propagators. Thus,
the calculations simplify. We separate ~T'" into a sum of
a vacuum term (temperature independent) n'z'„",, and
temperature-dependent term ~'T&'. Therefore we have

gX, (ko —k )

TvRc 2 48

—k(, +k —2$(2)+2/(4)
4+A

k—C —ln +——g(1)—g( —', )+21((—,
'

)
4+A

k
C — ln + —12$(—', )+5/(2)+ 5$( —', ) —12$(3)—14$(—', )

Xk+ f dx f dy, dy2dy35(1 —y, —
y2

—y3)yI
0

X In~yz+(2xy& —1)yz+xy&(xy& —1)+xy&(1—x)ko/k
~

1 2y, x (1—x)ko /k —1

4 y2+(2xy, —1)yz+xy, (xy, —1)+y,x (1—x)k02/k2

2
g X~

(ko —k ) —C —ln
24m

—k0+k
4mA

—31'( 1 ) +4/(2) —f(4) (19)

where C = Euler constant =0.577. .. , g(z) = (d /dz)lnI (z) and X& is the number of quark fiavors.
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2+ 2k
Re(n"g) = I dp pf ' 7+ +

8m' 0 ' k'
7(k2 k2)( 2+k 2) (k2 k2)2

0 0

2p k 2p k

4 +k 4 ( k o +p ) p
2 + k 2 (p

2 +k 2 )2+ + 1+ ln
2p k pk Zpk 4p k p+k

+
3 (ko —k )(2p+ko —k)(2p +ko+k)

16p k (p+ko)

X[8p (p+ko) +4p ko+12p k

+4pko+12pk ko+ko+k +6kok ]

(ko —k)(2p +ko+ k)
Xln

(ko+ k)(2p +ko —k)

+2(p2 k2)2(p4+k4+6p2k2)ln P
p+k

(k,' —k')(2p —k, —k)(2p —k, +k}
16p k~(p —ko}3

X [8p'(p —ko )'+4p'ko+12p'k~

+4pko —12pk ko+ko+ k+6k02k2]

( ko+ k)(2p —ko+ k }
Xln

(ko —k)(2p —ko —k)

p —k
+2( —k ) (p +k +6p k ) 1n

g &f p(ko —k )+
2 p pfp p+

2k

(ko —k~) (ko —k)(2p +ko+ k)+, [(2p +ko —k)(2p+ko+k)+2k2] 1n
16k ko+k 2p +ko —k

(ko —k2) (ko+k)(2p —ko+ k)
+

3 [(2p —ko —k)(2p —ko+k)+2k~] ln
16k ko —k 2p —ko —k

(20)

g 2' (ko —k )(2p +ko —k)(2p +ko+ k)
Im(~'T'p')= I dpp (f +f +k +2f f +k )

16~ 0

X[8p (p+ko) +4p ko+12p k +4pko+12pk ko+ko+k +6kok ]8,

( k o
—k )(2p —ko —k)(2p —ko+ k)

+(fp+f, k+2fnfl k}--
0 P P o 16p'k'(p —ko)'

X [8p2(p —k )~+4p2k2+ 12p k —4pk —12pk ko+ko+k +6kok ]&2

+ dp (n +n +I, 2n~n~+k ) —
3 [(2p+ko —k)(2p+ko+k)+2k ]~~

(k' —k )
+(n +n k

—2n n z ) 3 [(2p —ko —k)(2p —ko+k)+2k ]OzP —ko P P ko k3
(21)
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1 1

ePIPI 1
' i' ettlul+1

g, = 1 for —1 ~ 2pko+ k o
—k

=0 otherwise,

(22)

L92= 1 for —1 ~ —2pko+ko —k & 1,
=0 otherwise .

(23)

» Eqs. (19)-(23}p =
I p I, k = Ikl, «c.

In order to evaluate the other terms involving three and four field operators ( A „' ), in Eq. (5) we use Wick's theorem.
Since we wish to evaluate all terms to order g, the field lines that occur are of type 1 only for four-point function
whereas for the three-point function the terms containing the propagator D" ' always occur in product with Boo ',

which is zero in Coulomb gauge. Collecting all the terms we finally get, for the Fourier transform of the time-ordered
product of color-electric fields,

k,-k
TI [(T[E (x)E~ (x')]) j =i5' 5;— —1+k 2)""(k)—k(D(")(k)b, +—+— (24)

where

6=A„„+Ap,
g 2+

~vac
3m

—C —ln
t +——y(1)—y( —')+2/( —')

4 A 2 2 7

(25)

(26)

4~2k 0 ' 2pk 4p'k' p +k
dS' p + 1+ ln (27)

Having obtained the final expressions for various terms
in Eq. (5}, we need to evaluate the integrals involved nu-
merically in order to obtain dispersion relation for plas-
ma oscillations and also the correlation function. After
expanding Xl""(k) in a series in G we can combine the
two-, three-, and four-point contributions along with the
polarization tensor G to obtain an effective O' . It is
defined so that the expression

k, ki5'
EJ

ko—1+
k,' —k' —G'~ (29)

Note that the contribution to the second term in Eq. (24)
comes from the two-point function and the third and
fourth terms are from three- and four-point functions re-
spectively. The last contribution comes from the instan-
taneous Coulomb term in Eq. (5). The function Xl'"'(k)
is defined in terms of the Fourier transform 2)('. '. "(k) of
the two-point function defined in Eq. (8). The relation is

k,.k.
~ab(11)(k) 5ab g

' J ~(ll)(k)
EJ lJ

been omitted since we are interested here in plasma oscil-
lations. In order to obtain the correct dispersion relation
one has to solve the equation

ko ~ Gplasma
=

instead of the equation

ko' —j '—G =0.

(31)

(32}

k, k
C,(k},

ko[sinh (0k)+cosh (Ok)] Im(G' )
C,(k„/k/)= '

[k2 k2 R (Geff)]2+[1m(Geff)]2

(33)

The effective polarization tensor for correlation function
can also be defined in a similar way. The correlation
function Cr(k) is defined by

( ebr(k)= T [( ebr(x —x'}]

=TF[(E (x)E. (x'))]
=Re(TF I ( T [E,'r(x)Ebr(x')] ) j )

is equivalent (to order g ) to the right-hand side of Eq.
(24). This gives us with

(34)

(k() —k )6pi„,=G — (k() +k )6 .
2k

(30) (k() —k )k
Gee G

ko
(35)

The instantaneous contribution [last term in Eq. (24)] has The correlation function in space-time Cr(t, ~r~ ) is ob-
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tained from Eq. (34) by inverse Fourier transform. Since
G' is a function of k = ~k~ and an even function of ko
and using k„=Pk„and x„=Px we can write

CT(t, r ) = J dko cos(kot )I dk sin(k r )CT(ko, k )/r
0 0

(36)

within an unimportant multiplicative factor.

IV. DISCUSSIGN

As we mentioned earlier, it is important to include the
contributions of three- and four-point functions in G' to
get the correct dispersion relation. We have solved Eqs.
(31) and (32) numerically for two coupling strengths
a, =g /(4m ). The spectrum of collective plasma oscilla-
tion is shown in Fig. 2 and Fig. 3. It is clear from the
figures that without these contributions (broken line in
Figs. 2 and 3), for small k there is a rise in the frequency
which is unphysical. The inclusion of these contributions
(solid line in Figs. 2 and 3) makes the dispersion relation
behave like co =co&+6k /5 for small k = ~k~, where
co~=g (N, +Nf/2)T /9 is the plasma frequency. For
large k, the dispersion relation again yields the standard
result co =3'~/2+k and we find no difFerence between
the results of using the efFective polarization tensor and
the usual analysis containing a two-point function for
reasonably small coupling strengths.

We would like to point out that in Fig. 3, for k =0, the
frequency is not exactly co=co =1.1087T as it ought to

1.5—

be according to the dispersion relation for small k. This
is because when we numerically solve ko —k —m T =0 for
k =0, we assume that the coupling cx, is very small and
hence a numerical discrepancy shows up for a,, =0.22
(Fig. 3) but not for a, =0.022 (Fig. 2).

It is worth pointing out [12] that Klimov and Weldon
[3] did obtain the correct (to leading order in g) disper-
sion relation, in a bare one-loop calculation of the
transverse-polarization function mT, keeping only terms
of the form g T f (ko/k). These terms, in fact [12],give
the entire contribution to the dispersion relation to lead-
ing order.

In the present analysis, we have retained all the terms
including terms of the form g k f (ko/k) in the one-loop
diagrams. These terms contribute to the dispersion rela-
tion at the same order in g as two-loop contributions of
the form g T f(ko/k). A proper evaluation of these
subleading terms would require a resummation of
higher-loop contributions as was carried out in Ref. [9]
for the imaginary part of mT. This has not been done in
the present work. A comparison of our dispersion rela-
tions (Figs. 2 and 3) with those in Ref. [3] indicates that
both the calculations show essentially the same pattern of
behavior.

After calculating the correlation function CT(ko, ~k~)

Eq. (34) numerically, we have evaluated its Fourier trans-
form CT(t, r~ ) also numerically. These are shown in Fig.
4 and Fig. 5 for two coupling strengths a, . As in the case
of longitudinal correlation [4] functions these also have a
damped oscillatory behavior in both space and time. The
oscillatory behavior suggests the existence of transverse
collective oscillations as well as dynamic (frequency-
dependent) screening in the transverse direction. As the
coupling strength a, is increased the oscillations become
faster. Unfortunately this analysis does not throw any
light onto whether or not there is static magnetic screen-
ing. But as far as the space-time behavior is concerned it
has all the properties of longitudinal correlations. To ob-
tain the static properties from these correlations is

10—
4.0—

0.5—

n, =0.022
2.0—

0.0
0.0 0.5 & .0

k/T
1.5

1.0—
n, =0.22

FIG. 2. The plasma dispersion relation is plotted as k/T =k
vs co/T=ko. The broken line is the spectrum of collective
modes with two-point function alone and the solid line corre-
sponds to the spectrum resulting from the gauge-covariant
response analysis. The plasma frequency Q~ =co~/T =0.3505
with X,= 3 and Nf =2.

0.0
0.0 1.0 2.0 3.0

I/T
4.0

FIG. 3. Same as Fig. 2 with plasma frequency co~ = 1.1087.
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0.0- O.O
(tT) = 1.5

0.0-
(tT) = 1.25 (tT) = 1.25

0.0-
(tT) = 1.0 (tT) = 1.0

(tT) = o 5
0.0-

0.0-
(tT) = 0. 1

0.0
(tT) = 0.1

0.0-

a,=0.022
(tT) = 0.01 0.0

a,=0.22
(tT) = 0.01

0.0 2.01.0
I I I l 1

I I I I I t I i I l 1 I l I I f i I

3.0
—6 4

0.00 2.001.00 3.00
s s t t I s ~ s ~ s s r ~ t 1 t t t s a

FIG. 4. The transverse correlation function is plotted in arbi-
trary units, and their dependence on r =rT and t = tT is shown.
The strong coupling strength a, =0.022, N, =3, and Xf =2.

FIG. 5. Same as Fig. 4 with a, =0.22.
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