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Virtual-photon corrections to the scattering of a heavy charged fermion, M && T, in a plasma result in

infrared divergences that are worse than at T =0. These divergences cancel in the observable cross sec-
tion, which must include a summation over the absorption and emission of real photons that are too soft
to escape the plasma. The calculation requires determining the exclusive amplitudes for photon absorp-
tion and emission at TWO. In the semiclassical approximation of Bloch and Nordsieck the problem can
be solved exactly and the finite residual effects retained.

I. INTRGDUCTION

At T =0 the Kinoshita-Lee-Nauenberg (KLN)
theorem [1]guarantees that even though the perturbative
expansion of 5-matrix elements may be infrared singular,
these singularities do not appear in the physically
measurable probabilties. Experimental measurements
cannot detect particles with an energy less than some
threshold c.. To obtain a measurable probability one must
compute the production rate for particles of energy less
than c and add them to the exclusive rate. The same
theorem also guarantees that the physical probabilities
are well behaved as the masses go to zero.

Infrared divergences are considerably worse at T&0
than at zero temperature because the usual infrared loga-
rithms Jdklco are enhanced by the Bose-Einstein func-

tion:

dk 1 (1.1)
0 co exp(co/T ) —1

which diverges like J dk/k for co=k. Strictly speaking,
the actual divergence is eliminated by the bosons acquir-
ing effective thermal masses so that co~m, ~ as k~O.
This makes (1.1) finite and of order T/m, tt. However, it
is clear that this does not solve the practical problem [2]
because nth-order corrections are of order (ctT/m, tt)"
and T/m, tt is often so large that it would destroy pertur-
bative expansions. For example, in a plasma of electrons,
positrons, and photons if T »m, then m& =eT/3. Con-
sequently T/m

&
= 10. In the nonrelativistic regime

T (&I„the thermal mass is mr =e(n/m, )'~, where n

is the electron density. This gives T/mr —10 to 10 for
main-sequence stars and even larger for less dense sys-
tems.

Since including the thermal masses is not sufhcient, one
must look elsewhere. The obvious extension of the KLN
prescription is that an observable rate must include the
possible absorption and emission of low-energy real parti-
cles in the plasma. Absorption of real bosons should be
weighted by a Bose-Einstein factor %, emission by 1+%.
This extension of the KLN prescription is plausible but

unproven. Explicit calculations have verified the cancel-
lation to two-loop accuracy for dilepton production [3]
and for P in 6 dimensions [4]. Calculations including the
resummation of hard thermal loops [5] have been done
for energy loss, dE/dx [6], and for real-photon produc-
tion [7]. Recently Altherr [8] has shown that the KLN
cancellation holds for decay rates to all orders in the cou-
pling.

The physical context that underlies the definition of an
observable cross section is quite different than at T=0.
Measurements are performed outside the plasma, which
has a finite size characterized by a length L,. Any charge
propagating through the plasma will radiate photons.
Low-energy photons will have a sufticiently short mean
free pathA, (,k) «L, to be thermalized; high-energy ones
will not. Define the energy threshold c, by

A(s) =I. . (1.2)

The energy e. is an essential property of the finite plasma.
Photons with k (c are thermalized and the average num-
ber of photons with momentum k is given by the Bose-
Einstein function N(k). Photons with k &c. are not
thermalized; their average number is zero. This bimodal
distribution has direct experimental consequences. When
a charge radiates photons, those with k & c. can escape
and may be measured and may carry useful information.
Radiation photons with k (c will have an emission prob-
ability enhanced by the stimulated-emission factor 1+TV.
They will undergo too many collisions to be useful. A
detector which measures their spectrum will only see a
thermal distribution. At the same time, the propagating
charge is also bombarded by low-energy photons (k (E)
from the plasma itself. The probability of absorption is
proportional to N (k). All the soft emissions and absorp-
tions are unmeasurable by the detector.

The particular problem discussed in this paper is a
plasma of electrons, positrons, and photons at arbitrary
temperature T. A heavy fermion with mass M » T
enters a plasma with momentum p, undergoes some hard
scattering, and leaves with momentum p'. The physically
observable cross section to first order in o. will be
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dQ' .b. dQ'
+f d k(1+N)

d kdQ
ab

+ f d'kN +O(a ) .
d kdQ

(1.3)

A p~dk 1

k exp(k /T) —1

2(x
ln —1 for Q &)M .

M
(1.6)

do
dQ, b,

do
e

bare

(1.4)

The first term der/dQ is the exclusive cross section
for scattering with no real photons. Since it includes vir-
tual photons, this cross section will be infrared divergent.
These divergences must be canceled by similar diver-
gences in the rates for emission and absorption of real
photons. At T =0, (1.3) reduces to the KLN prescription
in which case c is determined by the quality of the detec-
tor and can be made very small in a very expensive detec-
tor. At TAO, the value of c, has nothing to do with the
detector. Rather it is the maximum energy of photons
that will thermalize as defined in (1.2).

This paper is concerned entirely with infrared diver-
gences, not with collinear singularities that result from
making the fermions massless. To order a one can calcu-
late the rates in (1.3) by extending the analysis of Yennie,
Frautschi, and Suura [9], to finite-temperature Feynman
diagrams. However in higher orders the diagram ap-
proach fails to calculate the correct physical quantity. A
correct calcu1ation should be equivalent to computing the
probabilities at T =0 for all processes and then thermally
averaging the probabilities. The calculation may be reor-
ganized so as to introduce exclusive probabilities that de-
pend on T, which are later summed. But one should not
indiscriminately square thermal Green's functions since
they are themselves thermal averages. Squaring these
thermal averages does not produce a thermal probability.
This failure is equivalent to the discovery by Kobes and
Semenoff [10] that the absorptive part of self-energy dia-
grams cannot be expressed as absolute squares of thermal
Green's functions.

To go beyond one-loop order, it is instructive to defer
the problem with thermal Green's functions by simplify-
ing the problem. In the long-wavelength limit the emis-
sion and absorption of soft photons should produce a
negligible recoil of the heavy fermion. This means that
soft photons are emitted and absorbed independently and
results in a Poisson distribution for both real and virtual
photons [9]. The charged particle is treated as a classical
current j"(x) coupled to the quantized radiation field
A „(x). This semiclassical approximation, originated by
Bloch and Nordsieck [11], makes the problem much
easier than those examined in Refs. [2—8] and allows it to
be solved exactly. However in order to trace the infrared
cancellation of real photons against virtual photons, it is
necessary to correctly define the exclusive amplitudes for
absorbing and/or producing real photons at TWO. The
amplitudes are easily computed and the Bloch-Nordsieck
cancellation is explicitly shown to all orders in u. The
observable cross section indeed requires summing over all
real photons that are absorbed or emitted by the current
with energy below the threshold c. The finite, observable
cross section is

Here A is an ultraviolet cutofF that must be introduced at
T=O since the semiclassical approximation does not
treat the hard photons correctly.

The paper is organized as follows. Section II computes
the one-loop corrections using finite-temperature Feyn-
man diagrams. Section III introduces the semiclassical
approximation and computes the infrared corrections to
all orders. Section IV discusses the result and shows that
e&M and usually c& T.

II. QRDKR-a INFRARED DIVERGENCES

The basic process is that of a fermion of mass M » T
entering a plasma with momentum p and leaving with
momentum p . Without radiative corrections the ampli-
tude is u (p')I (p', p )u (p); the cross section is

t

de 1 1

dQ b„, 16m.s(s —4M ) 2'

X g iu(p')I (p', p)u(p)i
SPII1S

(2.1)

The task will be to calculate those radiative corrections
that produce infrared divergences.

A. Virtual photons

Infrared divergences come from the fermion denomina-
tors when the virtual photon is on shell [9]:

D„(k) —+g„ iir5( k )( 1+2N),
1

exp( k /T) —1

(2.2)

The integration is of the form

f d k 5(k )(1+2N)F(k") . (2.3)

The temperature-independent part will be infrared diver-
gent if F-1/(k ) . The parts of F that behave like 1/k
appear to produce temperature-dependent infrared diver-
gences. However, since the integration (2.3) is even in k,
all 1/k parts cancel out so that only the most singular
part of F, i.e, 1/(k ), contributes. The only way F can
behave like 1/(k ) is if each fermion denominator con-
tributes 1/k . Therefore k" Inay be set equal to zero in
the numerators and in I (p' —k,p —k). This is a great
simplification because it means there are only minimal
changes from zero temperature. Each fermion propaga-

The 8(a) corrections to exclusive scattering are shown
in Fig. 1. The first-order vertex correction, Fig. 1(a), is

d4k
ie f D„(k)u (p')X" u(p),

(2m )

X"'=y"S(p' —k )I (p' k,p —k )S(p——k )y' .
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Therefore Fig. 1(b) is given by

P

P

(b}

1, , p BF—u(p')I (p',p) u(p),
2 m ()p ~

d4kF=ie f D,(k)y"S(p —k )y

a
y S(p —k)y" u(p)~—Map. "

pP
u(p) .p.k —ig

Working out the derivative in the infrared limit gives
T 2

(c) k Thus the self-energy corrections are

u (p')I (p', p )u (p) —+-6 e
2 2

(2.&)

FIG. 1. Finite-temperature vertex and self-energy correc-
tions. The vertical line represents the bare vertex I (p2,p&)
which may have complicated momentum dependence but has
no virtual photons.

where

d4kb=e f m5(k )(1+2%)
(2n )

pP

p k —ig
(2.9)

tor behaves like 1/k since, when k "k„=O,

(p —k) —M = 2(E k p—cosS~k —
~) .

and c is the same but with p replaced by p'.
The total infrared-divergent part of the first-order am-

plitude for scattering with no photon absorption and no
photon emission is of the sum of (2.S) and (2.8):

The fermion numerator can be rearranged using

(p' —k'+M)y "u(p)=u(p)(2p —k') —
—,'[k', y ]u(p) .

(2.4)

Thus the infrared-singular term comes from

S(p —k)y "u (p)~u(p) p.k —ig
The first-order vertex correction is

JR(0,0)=u (p') I (p', p )u (p)
a+b+c

By defining

fp p
R~(k) =. p'. k —i g p.k —i g

the combination can be written as

d4ka+b+c= f m5(k )(1+2N)R (k)R "(k)
(2~)'

(2.10)

u(p')I (p', p)u(p)—

d4k
e f — ~5(k )(1+2%)

2 (2m)

(2.5) d3k i+2K
o (2~)'2k

X —,
' [R„(k)R"(k)+R„(—k)R "(—k)] .

xg„. ,
p" p'. k —ig p-k —ig

(2.6)

Note that a (0.
The self-energy corrections, without mass-counterterm

insertions, are shown in Figs. 1(b) and 1(c). The fermion
self-energy is more complicated than at T =0. However,
because M && T the infrared-divergent part has the usual
structure [12]

(2.11)

The usual ultraviolet cancellation between the vertex and
self-energy corrections has been lost since only the
infrared-singular parts were retained. Consequently a
cutofF A is required for the T=O part in (2.11). Since
k„R"=0,R" is spacelike. Therefore R (0 and (2.11) is
negative, infrared divergent. From (2.10) the cross sec-
tion for exclusive scattering is

XtR(p)=5M+(P M)f(p ) . —

The graph requires computing

(2.7)
(1+a+b+c)

dg dQ~
(2.12)

1
(X,R —5M )u (p) =f(p )u (p) . though the infrared divergence renders it meaningless.

Because of the structure (2.7), one can compute this by
differentiating:

~&iR
u(p)=f(p')u(p) .

M ()p

B. Real-photon emission and absorption

The two possible diagrams for photon emission are
shown in Fig. 2. The amplitude for emission of a photon
with momentum k and polarization e„ is
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P

—,'[R„(k)Ri'(k)+R„( k—)R "(—k)]= —y ~e„J"(k)~
pol

(2.20)

the corrections to the exclusive rate can be written

a+b+c= —f, (I+2%)+le„J"(k)l' . (2.21)
o (2ir)'2k pol

FIG. 2. Finite-temperature diagrams for the emission of a
real photon.

JR(1,0)= ieu (p')/S(p'+ k )I'(p'+ k,p )u (p)

+ ieu (p') I (p', p —k )S(p k)8—u (p ) .

In the infrared limit, using (2.4), this becomes

A, (1,0)~u (p')I (p', p )u (p)e„J"(k)

where

(2.14)

IQ pJ "(k)=ie p'-k+ig p.k —iq
(2.15)

em

(2ir) 2k-
d kdQ' bare pei

(2.16)

Similarly the amplitudes shown in Fig. 3 for photon ab-
sorption have the infrared behavior

The amplitude for scattering with the emission of one
photon is

C. Cancellation of infrared divergences

dQ, b, dQ
+ f d k(1+X)

d kdQ
ab+f dkN

d kdQ
(2.22)

This combination is infrared finite when (2.12), (2.16),
(2.18), and (2.21) are substituted. The negative contribu-
tion of the virtual, on-shell photons with 0 & k & c, cancels
against the positive contribution of the real emitted and
absorbed photons. All that remains is the integration
over the virtual photons from z to A:

In the plasma it is not possible to distinguish exclusive
scattering (2.12) from scattering in which a very-low-
energy photon is emitted or absorbed by the charge.
Low-energy photons can have a mean free path that is
suKciently small to produce a thermal distribution of real
photons. I,et the threshold energy for photon thermali-
zation be c. Then the observable cross section must allow
for the possibility that an undetected low-energy photon
was either emitted or absorbed. The statistical weightings
of these events are 1+% and X, respectively. Conse-
quently,

(2.17)

d"
(2m) 2k

d kdQ
(2.1S)

bare pol

JR(0, 1)~u (p')I'(p', p )u (p)e„J"(—k)

and the cross section for absorption
r

de
dQ

where 8 is infrared Gnite:

(1+8),
bare

d ka= —f (I+2+)y ~e J (k)~'.
2k (2m )

P P

(2.22')

(2.23)

The emission and absorption cross sections are automati-
cally equal since

III. INFRARED CANCELLATION TQ ALL QRDERS
J "(—k)=J"*(k) . (2.19)

The current (2.15) will be of importance in Sec. III. For
the moment, note that because of the identity

P

A. Semiclassical approximation

As explained in the Introduction, in order to compute
to higher order it is convenient to make the semiclassical
approximation of Bloch and Nordsieck [11]. The four-
vector (2.15) has a simple physical interpretation. Let

P

d4kj "(x)= f exp( ik x )J "(k)—.
(2ir)

Explicitly calculating this gives

(3.1)

FIG. 3. Finite-temperature diagrams for the absorption of a
real photon.

e5 (x tp/E)p" /—E if t (0,
e5 (x—tp'/E')p~'/E' if t )0 .j"(x)= (3.2)

It thus is the classical current for a charge moving at con-
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stant velocity v before time t =0 and at a different con-
stant velocity v' after time t =0. This classical current is
coupled to the quantized radiation field by

A general final state will be of the form
IF &

=
I
m &, m 2, m 3, . . . &. Every matrix element therefore

factors:

X,= —j"(x)A„(x) . (3.3) &P'ISII&= g &m, IS, In, & . (3.14)

Because only 2„ is quantized, the commutator
[XI(x),XI(x')] is a c number. This makes the scattering
operator very simple [13,14]. Up to an overall phase it is

S=exp i fd4x XI(x) (3.4)

d kf d x%1(x)=f [a(k)e J"*(k)
(2m) 2k

00
1ZI= g exp( —p Ik, l/T)=

1 —exp( —Iki I
T)

(3.15)

(Note that EFWEI generally because of the external
current. ) Since the interaction only changes the energy
levels of each mode, the partition function is the same as
for free photons: Z = +iZ&, where

+a t(k)e„J "(k)], (3.5)
C. Definition of exclusive amplitudes at TAO

where a sum over the two polarization states is always
implied. The photon creation operators are normalized
by

[a(k), a (k')]=(2m) 2k 5(k —k') . (3.6)

B. Box normalization

It is very convenient to instead normalize the photons
in a box of volume V so that the momenta are discrete.
Then (3.6) is replaced by

[a, , a,']=5, , (3.8)

and (3.5) by

f d4x LI(x)= g [aIe„J"'(k,)+a,"e„J"(k~)] .
1

+2k) V

(3.9)

The scattering operator is a product over each mode. If
we define

SI =exp(iXI*a&+iXIa& ),
e J "(kI)

X =
+2k, V

'

then

(3.10)

(3.11)

Each plasma state is a direct product of free-photon
modes labeled by a set of occupation numbers I n1]:

(ai) '

II &
= In„n, n, . . . &

= Q
'

10,0, . . . & .
l Q(n( )l

(3.12)

At T=O the virtual-photon corrections of order a are
given by

(
d k0 i fd x%1 0 = —f le J"(k)l . (3.7)

2k (2m)

P, = g l&mlS IO&l (k, &E) .
m=0

(3.16)

Using completeness and unitarity, this sum is 1. That
eliminates the infrared divergences. For modes with en-
ergy above threshold, kI & c, the detector vetos any pho-
ton emission process so that the single-mode amplitude is
I &OISt IO& I . The observable probability is

P.„= g I & ols, lo & I' (3.17)
kI &c

and is free of infrared divergencies.
For TAO, there is a threshold energy e for thermaliza-

tion defined by (1.2). There is a Bose-Einstein distribu-
tion of real photons with kI (c. that are constantly ab-
sorbed and reemitted. The appropriate probability for
these modes is again an inclusive sum over all final occu-
pation numbers. The new feature is that the initial state
is not empty, but may have any occupation number n

with probability exp( —nki /T ) /ZI. Thus the probability
is

Qo oo

P(= g g I& l
mlSn &I exp( nk(/T) (k—i &e) .

I m =On =O

(3.18)

The real difFiculty is in deciding what to calculate. It is
helpful to first review the procedure at T=0. Since all
amplitudes factor, one can focus on the amplitude
& mI IS1 InI & for a single mode. At zero temperature the
initial state is empty. Consequently &OISIIO& is the am-
plitude for the purely exclusive process in which no real
photons are radiated, but all virtual photons are included.
Similarly & 1ISI Io& is the amplitude for emitting one real
photon with all virtual-photon corrections. A realistic
photon detector will not respond to photons with an en-
ergy kI less than some threshold energy c. For modes
below this threshold any number of photons can be emit-
ted without triggering the detector. The appropriate
probability is a sum over all the occupation numbers of
that mode:

Ii has energy

EI —gn, k, .
I

(3.13)

Again using completeness and unitarity, this sum is 1.
Thus all infrared divergences again cancel.

Despite the formal cancellation of infrared divergences
in (3.18) the remaining nontrivial problem is what re-
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places (3.17) for the ki ) e modes. In particular, it is
necessary to generalize the notion of exclusive amplitudes
to TAO in order to distinguish virtual photons from real
photons. The answer is as follows. The amplitude for
the charge to enter the plasma with momentum p and
leave with momentum p' with no emission or absorption
of real photons in mode l is

Therefore the test of the exclusive amplitudes (3.22) is
that for any operator S& they satisfy

(Ni)" (1+NI)'
IAC, (s, r)l =Pi,

,=o, =o gf
(3.25)

where I'I is defined by the inclusive sum on the right-
hand side of (3.18).

00

Afi(0 0)= g &mlSilm &exp( —mki/T) .
m=o

(3.19)
D. Virtual yhotons

This includes all virtual photons, but no real photons. It
replaces &OISIO&. The amplitude for the emission of one
real photon is

OO

&m I[~i SI]lm &exp(
m=o

(3.20)

The matrix element is of a commutator because
& m

I a,S, I
m & without the commutator would allow the

photon aI to come directly from the heat bath as
represented by I

m &. The aniplitude for absorption of one
real photon is

oo

& & m
I [S,, ai ] Im &exp( —

mki /T) .
1 m=0

(3.21)

Again the commutator guarantees that the photon is ab-
sorbed by the interaction, not just lost in the heat bath.
The general exclusive amplitude for absorbing r real pho-
tons and emitting s real photons is

oo

Jkti(s, r) = y & m I[(ai)'Si(ai )"]„„Im&

I m=0

Let us first calculate the amplitude for the charge to
enter the plasma with momentum p and leave with
momentum p' with no emission or absorption of real pho-
tons. This is the amplitude

1
JKi(0, 0)= g & m IS& lm &exp( —

mki /T ) .
ZI

(3.26)

To evaluate this, we first use Glauber's identity [14] to
normal order S&.

SI =exp( —
IX& I

/2)exp(iXiai )exp(iXi*ai) . (3.27)

(3.28)

Inserting this into (3.26) and interchanging the order of
summation gives

oo

Jki(0, 0)=exp( —IX/I /2) y —.
,

( —IX/I )

Consequently &OISil0&=exp( —IXil /2). For (3.26) we
need the general diagonal matrix element

m

& m
I S, I

m &
=exp( —

I X& I /2) y ( —I X, I

')' j!j!(m —j )!

X exp( —mki /T ), (3.22)
1

" m!
X g exp( —mki/T) .

Z, , J!(m —j)!
where the subscript "con" means connected as defined by
the repeated commutator. For example,

[(&i) Si&i ) o
= [~i [~i [St &i'))] . (3.23)

1

exp( lki I /T) 1—(3.24)

The commutators may be taken in any order because
[a a ] cornniutes with S.

The above definitions are physically motivated but
their more fundamental significance is as follows. Return
to expression (3.18). Let Si be any operator, not neces-
sarily unitary and not necessarily related to the scattering
problem. The transition probability I & m IS& I

n & I is
thermally averaged over initial states and summed over
final states in (3.18). But the initial and final states are
mixtures of real and virtual photons. The exclusive am-
plitudes (3.22) are supposed to describe initial and final
photons that are real. The temperature dependence of
the exclusive amplitudes A, may be very complicated.
Real photons in the heat bath have a statistical absorp-
tion probability XI and an emission probability 1+NI
where

(3.29)

(
—lx, l')&

JISM&(0, 0)=exp( —
IX&I /2) g ., (NI)

gl
(3.30)

Performing the summation yields

JR((0,0)=exp[ —IX(I (Ni+ —,')] . (3.31)

The complete amplitude for no real photons in any mode
l is the product

JN(0, 0)= +Ati(0, 0)=exp(8„;,/2)
1

where

a„,, = —g IX, I'(1+2N, )
1

(3.32)

d'k= —f —, (1+2N) g le„J"(k)l . (3.33)
o (2~)'2k

The sum over m in the second line is elementary and
gives powers of the Bose-Einstein function: (NI)J. The
amplitude is therefore
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This is infrared divergent. The exclusive cross section for
scattering with no absorption or emission is

This generalizes (3.17) to TAO. Explicitly, P,b, =e
where

d(J
exp(B„;,) .

bare

(3.34)
B= —g I Xi I ( 1+2' )

The first-order result (2.12) results from the 1+B„;,ex-
pansion of the exponential. Since (3.33) is negative and
infinite, the cross section is zero for the charge to scatter
without absorbing or emitting radiation.

E. Real-photon emission and absorption

The amplitude for emitting one real photon (3.20) re-
quires the commutator [ai,Si]=iXiSi Th. e amplitude
for absorbing one real photon (3.21) requires
[Si,ai ]=iXi'S& T.he general exclusive amplitude (3.22)
for absorbing r photons and emitting s photons requires
the repeated commutator:

= —I, (1+2N) g le„j"(k)l',d k
(2n ) 2k pol

(3.42)

de dO
2

e
. obs Q bare

(3.43)

This has no infrared divergence but does give a finite
correction to the scattering.

G. Calculation of B

where A is the ultraviolet cutofF' necessitated by the
failure of the semiclassical approximation for hard pho-
tons. The physically observable cross section is

Using the current (2.15) the integrand of B contains

X g (mlS Im }exp( —rnk, /T) .
m=0

(3.35) g I e„J"(k)I

2= e
pol

2p 'p
(p.k)(p' k)

m m

(p k)' (p' k)'

Ai(s, r) =(i')'(i'')"exp[ —IX(I (Ni+ —,')] . (3.36)

This sum was already calculated in the previous section.
Thus, The integration over photon angles gives

2

pol

(3.44)

(3.45)

F. Cancellation of infrared divergences

Photons emitted by the charged particle or absorbed
by the charged particle with ki (c cannot be detected.
For these modes the physical probability is

(Ni)" (1+Ni)'
Pi= g g, , lu, (~, r)l' (ki«) .

=0 =0 s! (3.37)

Pi =CI C~exp [—I Xi I (2Ni + 1 )],
where

(3.38)

The virtual photons in JRi will now be canceled by the
real photons in this sum. Inserting the explicit form
(3.36) gives

In the limits of small and large momentum transfer,
2f~1+ for Q ((M, (3 47)

3M
2

f~ln
M

for Q))M . (3.48)

where f is a function of the momentum transfer
Q = l(p —p')'I'":

2 1/2
2Q+4M

1
Q + 1+ Q

Q(Q'+4M')'i' 2M 2M

(3.46)

(1+Ni )c/= y ' —(lx, l')'
s!s=0

(Ni )"
Cx = g, (IX(I )=exp(IX(I Ni),

p!
(3.39)

Consequently

B=— (f —1)I (1+2N)2' &dk
k

(f 1) ln —+2I(E)—2(x A
E,

(3.49)

=exp[IXil'(1+Ni)] . (3 40) w~ere

Combining gives P&=1 for the below-threshold modes.
This eliminates the infrared divergence, but now we are
equipped to calculate the residual finite effects.

The observable probability for the charge to propa-
gate through the plasma with no detectable photon ab-
sorption or emission is

dk 1

k exp(k/T) —1

How large a contribution I is wilL be discussed next.

IV. DISCUSSION

(3.50)

p.„= ~ lu, (0,0)I'. (3.41) The size of c determines how large the infrared correc-
tions will be, but the determination of c does not depend
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on the semiclassical approximation. As explained in the
Introduction, high-energy photons have too large a mean
free path for them to thermalize. The threshold c. is the
energy at which the mean free path becomes comparable
to the plasma size L:

T 1I (e) =———ln
E, 2

2mT +y/2 (c«T) .

The ln E cancels when this is substituted into (3.49):

(4.5)

A.(E)=L . (4.1) B = — (f —1) +ln +~2' 2T A
277T 2

(4.6)

ALT (e&m, ) .
m~

(4.2)

For a photon of energy k, the mean free path is
A, (k) =1/no(k) where n is the electron density and o(k)
is the Compton cross section. The cross section is essen-
tially constant for k & m, and decreases when k & m„
which increases the mean free path. Figure 4 shows that
(4.1) is always satisfied at e & m, .

(I) Minimum possible e/T. Small values of E/T can
only occur when T»m, in which case the density
n = T . The Compton cross section falls with energy like
o =a~/m, k for E &)m, . Using (4.1) gives

I(E)=—exp( e/—T) (E )& T) .
T

(4.7)

This applies for all low-temperature (E&m, ) T) and for
most high-temperature plasmas.

(3) Average energy loss. The average energy lost by the
charge to the heat bath in mode kh is

With the worst-case value (4.4) this gives an exponent
B= —0.7a'i (f —1).

(2) Typical e. Except for the extreme case discussed
above, one usually has c. & T. The corrections for large c,

are

For very small L one must also check the constraint

2m

L
(4.3)

(Xi)" (1+Xi)'
( &&i ) = g g (ski ki )—, ,

I
JN, (, ) I'

—
Q Q

r!

=k, lx, '. (4.8)

The minimum energy that satisfies (4.2) and (4.3) is
e=aT(27rT/m, )' . Imposing E) m, then gives

8 2/3
T (4.4)

It does not seem possible to actually achieve such a small
value. For example, in an electron-positron plasma this
would occur in a plasma of dimension L =600 fm and
temperature T=7 MeV at an energy v=2 MeV. A plas-
ma with any other L or T would have a larger c/T.

In the unlikely case that c. & T the corrections will be
large. The integral I is evaluated in the Appendix with
the result

Summing this over all unobserved modes gives

d k«~)= J'
o 2k(2~)'

If (Q) —1]s . (4.9)

This is not only finite, it is numerically small. Conse-
quently it was consistent to ignore the recoil of the
charged fermion and replace it by a classical current.

(4) Bremsstrahlung cross section. Suppose one photon
in mode k&&e is detected. Since JRi(1,0)=ixiM&(0, 0)
the bremsstrahlung cross section is

do'

brem

I&l'J„" "
", ZZ l~, (0,0)l'

dQ b IQlll (2 jr) k )
dc'

bare

k
I f (Q) —1]ln

k min

B (4.10)

(5) Inclusive exclusive conn-ection Afurther ch. eck on
the definition (3.22) of the exclusive amplitudes is the fol-
lowing. Let r and s be positive integers. Consider the in-
clusive process in which at least r real photons are ab-
sorbed and at least s real photons are emitted. In terms
of exclusive amplitudes the total probability for this pro-
cess 1s

(Ni )" (1+Xi )'
lu, (.+-...+-.) I' .

Q Q
7! s!

One can prove that this is identically equal to

(4.1 1)
FIG. 4. Schematic plot of the energy dependence of the pho-

ton mean free path A,(k) showing the threshold energy c, below
which photons will be thermalized in a plasma of 6nite size L.
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( m
~ [(at )'St(at }"]„„(n ) ~ exp( —nkt /T) .

m =On =0

The first two terms in (A.3) give exponential integral
functions E„(a):

(4.12)

Section III, in particular (3.25), only required r =s =0.
The equality of (4.11) and (4.12) is true regardless of the
operator Sl. For the present case the inclusive probabili-
ty (calculated by either method) is ~Xt ~'+'.
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I(a)= —E2(a)+ —E&(a)+H(a) .1 1

As a ~0 these give

I(a)~ +——ln(a)+ —y —1+H(0) .1 1 1

a 2 2

The remaining integration to perform is

(A5)

(A6)
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1 1 1——e ——ex(e"—1)

Write

d 1

a x (e"—1)
(A 1)

APPENDIX

In the limit c.«T the thermal integral I de6ned in
(3.50) can be done as follows. Let a =E/T so

x"
H (0)= dx —x" 'e ——x"e

x 2
L

(A8}

This is convergent both at small x and at large x. How-
ever if one splits it into three integrals then each is sepa-
rately infrared divergent. For evaluation it is easier to
compute

1 1=—x "+—,'e "+r(x) .
ex

Then

I(a)= f dx e "+ e +H(a),1 „1
0 x 2X

H(a)= f r(x) .
a X

(A2)
For p& 1 none of the three integrals has an infrared
divergence. One can evaluate each of these separately,
add them together, and then analytically continue down
to p=0. The erst integral yields a Riemann zeta function
and the other two are just I functions. Combining gives

(A3)
H (0)=—r(~) 2g(p, )+1 1Jp

2 1 p
(A9)

(A4)
This is valid for Re(p }& —l. At @=0it has the value

H(a) is convergent at small x since r(x)~x/12+0(x )

and convergent at large x since r(x) falls exponentially.
H(0) = lim H„(0)=1—

—,'ln(2~) .
@~0

(A10)
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