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Static spin-dependent forces between heavy quarks in the
classical approximation to dual +CD

M. Baker
University of Washington, Seattle, Washington 9810$

James S. Ball
University of Utah, Salt Lake Csty, Utah 8/112

F. Zachariasen
California Institute of Technology, Pasadena, California 92125

(Received 15 August 1991)

We compute the static spin-dependent forces Vs(R) (proportional to cri o'q) and Vy(R) (pro-
portional to 3a'i ~ Rcr2 R —oi a2) between two quarks separated by R. This is done by treating
the (weak) spin-dependent effects as a perturbation on the spin-independent potentials and fields
computed earlier for dual QCD. What results is a definite prediction for the heavy-quark potentials
which are similar to, but difFerent in form from, those used in phenomenological treatments. Calcu-
lations of the masses and splittings of heavy-quark states using our potentials will provide a further
test of the dual superconductor picture of QCD.

I. INTRODUCTION

where the right-hand side represents a set of monopoles
with magnetic charge rn; located at w;, and on the left-
hand side H is the color-magnetic field and %~ and Dp
are the dual covariant derivatives. Thus, in terms of the
dual potential C'&, we have

H = —Oo C —V'Cp —ig [ C, Cp ], (1.2)

We have recently reported [1] a classical calculation of
the static potential between heavy quarks in dual @CD,
which is a close analogue of the calculation of the force
between two magnetic monopoles in a Landau-Ginzburg
superconductor [2]. In this paper we wish to extend our
calculation to include the spin-dependent forces between
static quarks.

In many ways this is an easier calculation than that of
the potential. A spin produces a magnetic dipole, which
can be represented as a closely spaced pair of oppositely
charged magnetic monopoles. Thus the spin-dependent
interaction is the same as the interaction of four magnetic
monopoles, arranged as two magnetic dipoles.

Inserting (color-) magnetic monopole sources in the
field equations of dual @CD is easy; they simply appear
as sources in the dual of Gauss's law:

27c H+ ig['DpB, B ] = ) m;bs(x —x;)—:pM,

In the absence of quark sources we found a classical flux-
tube solution carrying a single unit of Z3 flux. The dual
potential C was in the direction Y = As/~3 . In order
to absorb this flux, quark sources p, when present, must
also be in the Y direction in color space, as was the case
in I. Likewise the potential Cp and the magnetic sources

pl must be in the Y direction.
The remainder of the dual @CD field equations are un-

affected by the presence of the monopoles [3]. We are thus
led to a rather simple set of coupled nonlinear diR'erential

equations for Cp, C and the color-magnetic induction B,
which in the case of cylindrical syrrunetry can be solved
quite easily on a computer. Unfortunately, to compute
the two independent spin-spin potentials, it is necessary
to have solutions for dipoles oriented both parallel and
perpendicular to the z axis which are no longer cylindri-
cally syrrunetric.

For this reason we shall calculate Cp, and hence H,
in perturbation theory, starting from the cylindrically
symmetric solutions obtained in the calculation of the
static potential [1]; that is, in the difFerential equation
for Cp we shall use the values of C and B taken from
the static potential problem, rather than attempt to
solve the entire coupled system of nonlinear equations in
three dimensions. This neglects the feedback of the spin-
dependent effects on the fields associated with the static
spin-independent potential, and should be an excellent
approximation, given the fact that the spin-dependent
forces are much weaker than the spin-independent force.

&o = c)o —ig[ Cp, ], II. FIELD EQUATIONS

and

17~ ——V'+ ig[C, ] (1.4)

First of all it will be convenient to define C~(x) as the
scalar potential which would be produced by a given set
of fixed magnetic monopoles in the perturbative vacuum,
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i.e. , in free space. So we define

9' CM(x) = —) m;6 (x —x,), (2.1)

9' c' — g—' B' (c'+ C' ) = 0, (2.6b)

where dl and d2 are the two dipole moments. We also
define B.= x:1 —x2 as their separation.

Next we define the full (dual) scalar potential Cp as

Cp —(cp+ CM)Y . (2.3)

Then, using the same ansatz as in I for C and 8, namely,
in cylindrical coordinates with the quarks lying on the z
axis)

C = C(x)e~Y, (2 4)

B — B( x) e{A7) + B(x)ev (—A5) + B3(x)eg (A2) (2.5)

the field equations are readily written down. They are
(using the same scalings as in I)

V' cp ——g' B' (cp+ CM) = 0,
2

(2.6a)

whereupon, for four monopoles arranged in two dipoles,
we find

(x) = Kd, (x —x&) d2. (x —
x2))

47r L [z —zi [3 /z —z2[

(2.2)

and

"[( '+ C' )' —( ', + C' )']B' =—

(2.6c)

ctW'~I2 Bl2 (2.6d)

These will be recognized as exactly the equations for the
static spin-independent potential given in I (we recall
that CD, defined in I, is the Dirac string potential as-
sociated with the two quarks) supplemented by the dual
Gauss law [Eq. (2.6a)] and including the effect of Cp on
B via Eq. {2.6c).

Since we shall calculate perturbatively in the spin-
dependent potential, we will drop the cp+ CM term from
(2.6c). Then (2.6b) through (2.6d) are exactly the equa-
tions solved in I, so that c', B', and B3 may be taken as
known, and used as input in Eq. (2.6a). (They are func-
tions only of p' and z'. ) This, then, is the only equation
which needs to be solved.

To do this, it is convenient to write out, in cylindri-
cal coordinates, the expression for C~ more explicitly.
Choosing the dipoles to lie on the z axis at +R/2, writing
the dipole moment vectors in terms of their components
parallel and perpendicular to the z axis, and choosing
dl~ in the p = 0 plane, we have

1 dig (z —R/2) + d2 (z + R/2) ) p dii cos t'p

+ + p d2~ cos(P + Pp)
4n [p2+ (z —R/2) ]3/2 [p + (z+ R/2) ]3/ ) 4x [p2+ (z —R/2)2] /2 4m [p2+ (z+ R/2) ] /

= d&LCM, + d2, CM, + di&CM& cosy+ d2&CM& cos(p+ (pp) . (2.7)

+cp~di~ cos (P + cp~d2~ cos((P + (Pp)

Next we note the identity

(2.8)

cos(V + pp) f(p, z) = cos(V + 0 p) T f(p, z),
(2.9)

where

and

8 8 8
=p a pap+a"' (2.10)

Q2 ~2 1/ 2 (2.11)

Consequently Eq. (2.6a) boils down to the four equations

The equation for cp is linear, so the analogous breakup
for this function is also natural:

Cp = Cpz dlz + Cpz d2z
1 2

III. SOLUTIONS

In our previous calculation the behavior of CD and
the location of the string determined the boundary con-
ditions for B along the z axis. These boundary condi-
tions eliminated all numerical problems related to the
source singularities in (2.6c). In our present calculation
the dipole potential CM is much more singular and the
detailed behavior of the fields near the source must be
analyzed to determine the correct numerical procedures.

We will first determine the behavior of B near the point
source. In spherical coordinates, the Dirac field is

1+ cosO

2g'r sin 0

Here we have chosen the string direction along the neg-
ative z axis. Since c vanishes along the z axis, near the
source, Eq. (2.6c) has the form

~2 Il, 2 3 12 ~I2 y I1,2 i ~11&2%

7 cp'~ —2g' B' (cp'~ + CM'~) = 0 .

(2.12a)

(2.12b)

B' (1 + cos 0)
sin 0

This equation is separable and the form B' = 7 T(z)
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where z = cos 0 leads to a second-order differential equa-
tion for T(z) which has three regular singular points. The
solution which is finite at z = 1 is

1 z
T~(z) = &

I
+(1 — 3 3+ 3$

(3.8b)

T(z) = Ql —z 2Fi
I

1 —P, 1+P;2; I, (33)( 1 —zi
)

Here 6 is an arbitrary constant as far as our analysis
is concerned, although it is of course determined by the
global solution for O'. Our numerical solution for B' is
in excellent agreement with this form near the sources.

Given the form of B' near a source, it is now a simple
matter to determine the behavior of cia& and co, . Choos-
ing the dipole to be located at the origin, and keeping
only the most singular terms (cIO is much less singular
than CM), Eqs. (2.12) become

V' co, —2g' O' CM, ——~d, cos0(l —cos 8)r

(3.5a)

and

where P = n(n+ 1) + ~z and 2Fi is the usual hyperge-

t metric function. The requirement that 8' be finite at
z = —1 forces P to be an integer. The smallest value of
n for which this occurs is n = (~3 —1)j2. The resulting
solution for B' is

O' = &&1 —cose rE~-'1r-' .

The general fields near the dipole source are then those
given in (3.6) plus the regular solutions to the homoge-
neous equations. Note also that the solution due to one
source in the neighborhood of the other source is only
the solution to the homogeneous equation as B' vanishes
and the other terms on the right-hand side of (3.5) are
nonsingular.

From our analysis we see that c&& vanishes on the z
axis and will require no special treatment. On the other
hand, co, goes to a nonzero constant. In our usual nu-
merical procedure, the value at the dipole position would
be proportional to the infinite quantity O' C~, . To eval-
uate co, at this point, we use the form given by (3.6a) to
interpolate the value from the three adjacent grid points.
The resulting numerical solutions near the dipole sources
are in very good agreement with our analytic forms.

In our previous calculations described in I, we used the
fact that the fields were symmetric under z goes to —z
to reduce the volume considered to the half-space z ) 0.
As a result, only half the number of mesh points were
required to produce a given step size (density of mesh
points in the p-z plane). The same procedure can be used
in this calculation if we change from fields labeled 1 or
2 according to the source position to linear combinations
that are even or odd in z as follows:

9' co~ = zg' O' CM~ = ~d~ sing(1 —cos8)r CMg CMz CMz &
(3.9a)

and

co, = d, T, (cos 8)r~~ (3.6a)
and

Here the constant K = (3j8vr)g'262. The r dependence
of co, and co~ must therefore be r~ . The field com-
ponents then have the form

CM z —CM J. + CM & ~

/0 /1 /2

(3.9b)

(3.9c)

(3.9d)

co~ = dg sin OTAL(cos 8)r (3.6b)

-(1 —z2) T, (z) + (3 —v 3)T,(z) = ~z(1 —z)dx dz

(3.7a)

and

d
2 (1 —zz) T~(z)+(1 —%3)T~(z) = ~(1 —z),dz dz

The T's are the solutions to the inhomogeneous diA'eren-

tial equations

/e /l /2
cOz = cOs —coz~

ro
co~ = co~+co~~

/e /1 /2
COB —COJ + COJ )

/0 /1 /2
cow = cow co&

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.11a)

The form of the field equations (2.12) is unchanged:
~2 re, O 3 /2 ~/2y re, O, ~/e, oy

which are the polynomials

1 z z'
T, (z) =~(--+ +

1 — 3 3+ 3&

and

(3.7b)

(3.8a)

9' coi —,g' B"(coi + CMi—)—0 . (3.lib)
These four equations need only be solved for z & 0 sub-
ject to the boundary conditions on the z = 0 plane that;
the odd functions vanish and dc'jdz = 0 for the even
functions.

We used the same general numerical techniques de-
scribed in I to solve Eqs. (3.11) for a range of values of
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R. Because B' values from our previous calculation were
a necessary input for this calculation, we chose not to
vary the lattice size but to use the largest one on which
the solution for B' was obtained. The typical lattice size
was 64 x 64. For each value of R we used the Gauss-
Seidel method with the successive overrelaxation (SOR)
technique to produce the solutions to (3.11). The rate

1

of convergence required 400 to 600 iterations to produce
accurate results.

IV. THE ENERCY

In our scaled units, the dual QCD Lagrangian, includ-
ing only the fields co, c, B, and Bs, is given by [1]

& = &((—F )) ( -(c'+ C' )9' (c'+ C' )+ B' 7' B'+ ,'B'7—'B' —-(c' + C' )'7 (c' + C' ) —-(c' + C' )p-g"B"[(c'+ C' )' —(".+ C' )'] —W'}, (4 1)

where pM is the magnetic charge density, Eq. (1.1). As
is the case for time-independent solutions, the Hamilto-
nian is the negative of the Lagrangian. Using Eq. (2.1)
to eliminate the magnetic charge density and the field
equation (2.6a), we find that the scaled spin-dependent
part of the Hamiltonian is

&.pin = —[s(co+ C~)V' CM] .

The fact that co ' + CM' vanishes exponentially as a
function of distance from its source means that the com-
plete spin potential will vanish exponentially at large R.
We note that, from (2.1), for four monopoles arranged in
two dipoles,

1 1 4 Oco'~ (xi)
3ir Rs 3 gp

(4.8b)

V.p, ——Vs(R)di d2+ VT(R)(3di Rd2 R. —di d2)

yields the relations

VT = s(V, —Vi)

Vs —-(V, + 2Vj ) .

A comparison of this form of V,p,
.„with the standard

notation

V' CM(x) = di V'b (x —xi)+d2 V'b (x —x2),
(4 3)

and hence

d~x'C~~7" CM ——d, V'CM(x, ) —d2 V'C~(x~) .

(4.4)

This contributes the usual free space dipole-dipole inter-
action to the energy:

V. RESULTS AND COMPARISON
WITH EXPERIMENT

We first replace the dipole moments di and d2 in (4.9)
by (e/2m&) rri and —(e/2m&) nq, corr. esponding to the
intrinsic spin of the quark-antiquark pair.

In Figs. 1 and 2 we show our results for V~ and Vg
which are calculated at the points marked with a +. The

fE~ sp@cg 4 1 3dl - R d2 . R —dl . d2
spEn Q3

(4 5)

The interaction energy from the cross term between co
and CM can also be evaluated using (4.3),

d xcoV C~: di 'V co (xi) d2 'V co (x2)

Vspin —Vz~lz~2z + VJ ~1J ' ~2J )

where

(4 7)

(4 6)

and, as we have seen in Sec. III, these terms are finite.
The comPlete Vspln is then

, I. . . , I

0.0 0.5 1.0
R in fm.

2 1 4 Bco', (xi)
3ir Rs 3 clz (4.8a)

FIG. 1. The spin-dependent potential m~ U~(R) plotted
as a. function of quark separation R for o. . = 0.39. The +'s are
our calculated points, the solid curve is our empirical form and
the dashed curve is the free space dipole-dipole interaction.
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I I I I I I I I I I I I The quantities Vg and VT are proportional to n, and this
fact is made explicit in our empirical formulas.

The reader should be reminded that all of the potential
terms which we have calculated depend on B which in
turn depends nonlinearly on g' . The other parameters
have been adjusted to give good values for o, , which, for
fixed g', is only a function of A, and the string tension,
which is only a function of I"Q .

We find that V~ comes out to be the free space dipole-
dipole interaction for small R and then falls exponentially
for larger values due to the presence of the dual super-
conducting vacuum. Our empirical form is

—0.01
0

I I I I I I I I I

R in fm.

Vz = '
(—%F0) I (0.1018+0.0534z —0.00761z )m

g

e
—0.36Qx

(5.1)Z3

FIG. 2. The spin-dependent potential m Vs(R) plotted
as a function of quark separation R for n. = 0.39. The +'s
are our calculated points and the solid curve is our empirical
form.

smooth curves are empirical fits used to interpolate be-
tween the points. Because of the 1/R behavior of Vz

for small Itt, it was necessary to use a logarthimic scale
for VT in order to display its behavior at larger values
of R. For comparison, the free space dipole-dipole in-
teraction has also been plotted in Fig. 1. To completely
specify our results for the heavy-quark potential, we show
our results for the spin-independent potential V from I in

Fig. 3. Again the +'s are the calculated points and the
solid curve is an exponential times the Coulomb term
plus the string tension term plus a constant. All of these
quantities have been calculated for g' = 5, A = 1.61, and

—F02 ——420 MeV. This choice fixes n, = vr/Ag'~ = 0.39.

where z = —AEQ R is the scaled source separation.
From our analytic expression for the spin-spin interaction
energy, the R —+ 0 singularity should be that due to free
dipoles. This would require the coefficient of I/zs in
Eq. (5.1) to be I/3x which is very close to our fitted
value of 0.1018.

The free space Vp has only a b-function term, so that
the entire potential shown in Fig. 2 is a new feature due
to the presence of the dual superconducting vacuum. It
behaves like 1/R for small R and falls exponentially with
a scale similar to that for Vz .

Up to this point we have only considered fields outside
of the region of the source since these are easily treated
with our dual potentials. On the other hand, as in or-
dinary electricity, the behavior of the fields inside the
source depends on the nature of the source. For exam-
ple, in ordinary (nondual) electricity, we have

A A

V x A„,.„= (,) -db'(a. ) . (5.2)
4m B3

If we calculate the divergence of the first term on the
right-hand side of Eq. (5.2) we obtain

A A

3R,(d R,) —d 2

4m' 3
(5.3)

which, using Eq. (5.2), is consistent with the requirement
that the divergence of the curl vanish. On the other hand,
in (Abelian) dual @CD, we have

( )—
(5.4)

—2
0

j I I I I ~ I I I J

p

R in fm.

FIG. 3. Fit to the static potential V(B) for cr, = 0.39.
The +'s are our calculated points and the solid curve is our
empirical form.

The divergence of this expression is in agreement with
Eq. (4.3) for a single source. Thus we see that the 6-
function part of 8 depends on the microscopic source of
the quark color-magnetic dipole moment with (5.4) being
the limit of two monopoles and (5.2) being the result of
a color-electric current.

Since the quark dipole moment is the result of cir-
culating color-electric currents, their treatment in @CD
requires some care. In I we were forced to introduce a
"string field" to modify the relation between 0 and C
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to treat, a color charge source. In this case we modify
Eq. (1.2) by adding an H, to give H the proper curl [4]:

(5 5)

independent potential between heavy quarks numerically
computed in I is

V(R) = -- —'.-"4"+ 1.0324R(-S )

V' x H = % x H, = V' x M, (5.6)

( - i/2
—0.5164 (5.9)

where M is the magnetization density given by the
dipoles. Thus H, only exists at the sources:

Thus altogether the static potential predicted by dual
@CD in the classical approximation is

H, = M = di6 (x —xi) + d2b (x —x2) . (5.7) V(R) + VT (R) (3o.i Ro 2 B.—oio..2) + Vs (R)o.i

Let us return to the Lagrangian and our field equations
to see what has been changed by introducing H, . The
term

~s(co + CM )7 (co + CM)

is 3 H which should be replaced with H as given in
Eq. (5.5). Because we no longer have any magnetic
charge, pM is zero and there is no source term in the
Lagrangian. The new cross term between V'Co and H,
is, after integration by parts, exactly equal to the old
source term. As a result the only new term in the La-
grangian is H, which has no effect on the field equations
but contributes to the interaction energy. Its only effect
is to change the 6-function term in V~ to that produced
by dipoles resulting from color-electric currents.

Our empirical form for Vg, including the b function, is
then

with V(R) given by (5.9), Vs(R) by (5.8) and VT(R)
given by (5.1).

To compare our predicted static spin-dependent poten-
tials to phenomenologically determined potentials is very
diKcult. There is a vast array of phenomenological po-
tentials on the market [5], most of which difFer greatly, a
few of which have some distant motivation in @CD, and
many of which are purely ad /ioc. All claim to (more or
less) fit the experimental data.

Since we have definite predictions for V(R), VT (R),
and Vs(R) as given above, and our confining potential,
although similar, is not exactly the form used by oth-
ers, it appears to be necessary to calculate the masses
and the splittings of heavy-quark bound states directly.
These calculations are now in progress.
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9m~ m
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Finally, the simple empirical fit to the spin-
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