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%'e consider the recent results of Kinoshita in which he improves the accuracy of the theoretical value
for the anomalous magnetic moment of the muon. This is needed now that a new, more accurate experi-
ment has been approved at Brookhaven National Laboratory. Kinoshita's results are completely numer-
ical. Here we perform an independent check of his results in fourth and sixth order by analytical Ineans,
using expansions in the small mass ratios which occur in the computation. Our result for the fourth-
order contribution is a„' ' —a,' '=5 904475. 1(3)X 10 ' . This is to be compared with Kinoshita's result
a „'"' —a,' '= 5 904 485 X 10 ' . For the sixth-order vacuum-polarization contribution we obtain
(a„' ' —a,' ')(vacuum polarization) =24064. 8(6) X 10 ' . Kinoshita's result is (a„' ' —a,' ')(vacuum polar-
ization) =24069(6) X 10 ' . Our result for the tota1 QED contribution isa„=1 165 846 943(28)(27) X 10 ' . This agrees with Kinoshita's result a„"- (E)

65 846 961{44)(28) X 10 . Our final ~~s~lt for the muon anomaly
= 116591 901{77) X 10 ". This should be compared with Kinoshita's result a „'""'
=116591919(176)X10 " and the experimental value a„" '=1 165923(8.5) X10 . Our value makes
use of a recent computation of the hadronic contribution, in which the error may be overly optimistic.

I. INTRODUCTION

One of the most important tests of quantum electro-
dynamics (QED) is the comparison between theory and
experiment of the anomalous magnetic moment of the
muon a„=(g —2)/2. The most accurate measurements
now available come from the CERN g —2 experiment [1]
in which it was found that

a'"~' = 1 165 936(12)X 10 (10 ppm),
a'"f' = 1 165 910(11)X 10 (10 ppm),P

and the combined result is

(2)

a„'" ' =1 165 923(8.5) X 10 (7 ppm) . (3)

A new g —2 experiment is planned at Brookhaven Na-
tional Laboratory (BNL), and an improvement in the ac-
curacy by a factor of about 20 is expected. In order to
properly compare experiment and theory one must corre-
spondingly improve the accuracy of the theoretical pre-
diction.

In an heroic feat, Kinoshita, Nizic, Okamoto, and
Marciano have recalculated the muon anomaly [2,3] a„.
The electron anomaly [4] a, was also computed. Both a„
and a, were computed to eighth order (the tenth order
was also estimated for a„). All of the multidimensional
integrals which arise in these calculations were computed
numerically. Because of the complexity and the impor-
tance of these calculations, they should be independently
checked by another group.

In this paper, we check Kinoshita's results for a„ in
the fourth and sixth order, analytically, by making use of
the expansions of a„' ' and a„' ' for large mass ratios
m„/m, ))l, m, /m, ))1, and m /m„)) 1. UVe find

some small difference with Kinoshita s intermediate re-
sults in some cases; however, our final result for a„ is
consistent with his.

In order to get the complete result for a„, one must
also include the contributions from hadronic and weak
effects. However, unlike the QED contributions which
can be calculated very accurately, the hadronic contribu-
tion is not known very precisely.

One of the goals of the new g —2 experiment at BNL is
to measure the weak contribution with some precision.
This can be done only if the QED and hadronic contribu-
tions are known accurately. Then one would have a very
good test of the standard model and possible extensions,
such as supersymmetry, composite models, etc. %'hat we
propose to do in this paper is to improve and check the
QED contributions in fourth and sixth order.

II. PRELIMINARY DEFINITIONS

m(
~ =~, +~2

m2

m m) ml+23
m2 m3

1+Aq
m3

where m2 and m3 are the masses of the other two lep-

Generally the anomalous magnetic moment of a lepton
(e, p, or r), which is a dimensionless quantity, can be
grouped into two parts: mass-independent and mass-
dependent parts. The latter can be further divided into
two parts, one involving two leptons and the other in-
volving all three leptons. That is, for a lepton with mass
m &, we can express its anomalous magnetic moment as
[2,3]
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tons. A, is the mass-independent part which is the same
for all three leptons. A2(m, /mz) and Az(m, /m3) are
the mass-dependent parts involving two kinds of leptons
and A3(m&/m2, m, /m3) is the mass-dependent part in-
volving all three leptons.

In Eq. (4), all of the terms can be expanded as a series
in (a/m. ):

Ak=Ap —+Ak(2) (4) +Ak
'3

+ (k =1,2, 3) . (5)

In this way, the anomalous magnetic moment of a lepton
can be written as

tm
) + A( )+A( ) +A( )

1 1 2 2
m2 m3 m3

3

a + A (6) + A (6) i + A (6)mi m&
2 2

m2

+ A'," m) m) + ~ 0 ~ (6)
m2 m3

L

We note that, in the second order, we cannot have mass-dependent terms and, in the fourth order, we cannot have the
term which involves all three leptons.

Since we already know a, very accurately, the best way to calculate a is to calculate (a„—a, ), from which we can
easily find

a„=a,+(a„—a, ) .

By applying Eq. (6) to the electron and muon, we have

a —a =
p e A (4)

m e

+ A'" m

m e

+ A"'
2

+ A,'"

m
A (4)

2
m@

+ A(6)
m e

mp

m~

4) e
2

m~
r

A (6)
2

mp
A (6)

m

A (6)
3

r

me me

mp m,

3

+ ~ ~

=(a —a ) +(a —a ) +(4? (6?
p e p e (7)

In the following, we will use the lepton mass values
m, =0.51099906(15) MeV, m„=105.658 387(34) MeV,
and m, =1784.1(4) MeV. We will also use the more ac-
curate value [5] m„/m, =206.768262(30) (0.15 ppm).
The value of the Qne-structure constant used is the latest
value determined from the quantized Hall eff'ect [6]
a '=137.0359979(32).

exchange JM and e, as shown in Figs. 2(c) and 2(d). So
there are only four diagrams (Fig. 2) contributing to
(a„—a, )' ': two from a„' ' and two from a,' '. The major
contribution comes from the diagram in Fig. 2(a). This
contribution can be expressed analytically [7] to all or-
ders in k =m, /m„&&1 as follows:

III. THE FOURTH-ORDER CONTRIBUTION TO (a„—a, )

From Eq. (7) we see that the lowest-order contribution
to (a„—a, ) is the fourth-order contribution

(a —a )'4'= A' ' +A' '
m m

p e 2 2
me

(4)
2

mp
A (4)

m
(8)

There are a total of nine diagrams contributing to a„' '.
Among these, there are seven mass-independent diagrams
as shown in Fig. 1 and two mass-dependent diagrams as
shown in Figs. 2(a) and 2(b). We have similar diagrams
for a,' '. The mass-independent diagrams are the same as
those of a„' '. For the mass-dependent diagrams, we just FIG. 1. Mass-independent diagrams contributing to a„' '.



IMPROVED ANALYTIC THEORY OF THE MUON ANOMALOUS. . . 3937

A2 = — + k ——ink+(3+4 ink)k — ~—k + +(4) JfL 25 7T 1 5 , , ~2 44
m, 36 4 3 4 3 9

1 I +21 2k k4+ k61 k k63" 15
"

225

+ + 2(n+3)
ink

8n +44n +48n+
k "+ =1.09425828(5)

2 n(2n+1)(2n+3) nz(2n+1) (2n+3)
(9)

The contributions from Figs. 2(b), 2(c), and 2(d) can be
obtained from the analytical expression [7] in Eq. (10):

~(4)(k) k + k ink+ 9 k4 131 k6+ 4k
45 70 19 600 99 225 315

8n +28n —45

[(n +3)(2n +3)(2n +5)]
oo nk "

+2k ink g (n +3)(2n +3)(2n +5)

(10)

(a„.—a, )' '=1.09433 521(6)

=5 904 475. 1(3 ) X 10

This di8'ers somewhat with Kinoshita's result
2

(14)

(a, —a, )"'=1.O943 37O — = S 9O448S X 1O-" .

determined more precisely, one can include more terms
in the expansions in Eqs. (9) and (10), as needed. Finally
we obtain the total fourth-order contribution

r

g (4)
2 m

=7.745(4) X 10

Qur result for Fig. 2(c) is

where k =m2/m, « 1 (see Fig. 3).
For Fig. 2(b) we obtain

The difFerence

6=ours —Kinoshita's

= —10(1)X 10

(15)

(16)

A2(4)

mp
=5. 1978(5)X 10 (12)

is due to the fact that we have included more terms in the
expansions in Eqs. (9) and (10).

and the contribution due to Fig. 2(d) is negligible:

A2(4) =2X10 '. (13)

The accuracy in Eqs. (9), (11), (12), and (13) is limited
only by the experimental accuracy of the measured
masses of the charged leptons. When these values are

I

IV. THE SIXTH-ORDER CONTRIBUTION TO (a„—a, )

In total, 122 diagrams contribute to a„' ', including 72
mass-independent and 50 mass-dependent diagrams.
Again we consider just the mass-dependent diagrams be-
cause it is only these diagrams that contribute to a„—a, .

From the previous section we know that the sixth-
order contribution can be expressed as

(a a )(6)— g (6) & + g (6)m m
p e 2 2

me

r

+ ~ (6) ~ ~ ~ (6)
3 2

me m~ mp
g (6)

m
g (6)

2
me me

7

mp m~

3

(17)

In the following, we wiH present the analytical and nu-
merical result for each term in Eq. (17) and the corre-
sponding diagrams. A2 '(m„/m, ) contains six light-by-
light scattering diagrams with electron loops (as shown in
Fig. 4) and 18 vacuum-polarization diagrams with
second- and fourth-order electron-loop insertions into a
fourth-order and a second-order muon vertex, respective-
ly, as shown in Fig. 5.

The light-by-light scattering contribution to
2 2 '(m~/m, ) is known numerically [8(a)]:

(b)

yy =20.9471(20)
m e

There is also a new result [8(b)]:

(c)

FICz. 2. Mass-dependent diagrams contributing to a„'"' —a,' '.

Diagrams (a) and (b) contribute to a„'"' and (c) and (d) contribute
to a,'4'.
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FIG. 3. General case of mass-dependent diagram in fourth
order. Its contribution is a 2 '(k), k =m&/m &.

FIG. 4. Light-by-light scattering contributions to a„' ' —a,' '.
Its contribution is A 2 '(m„/m„yy).

m„
A26' ",yy =20.9469(18) .

m~
(18b)

It can be seen that there is beautiful agreement be-
tween these two results.

The result in Eq. (18b) was obtained using vEaAs on
our IBM 3090-200S. It required approximately 1500
hours of CPU time and 5 X 10' function calls. (The in-

tegrand used is that of Aldins et al. [8(c)].) This result
invalidates an earlier result of Samuel and Chlouber
[8«H.

The vacuum-polarization contributions are calcu1ated
separately for each subgroup corresponding to Figs. 5(a),
5(b), 5(c), and 5(d). The results are

m
A' ' ", Fig. 5(a)

me
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3
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A~@ ' ",vacuum polarization =1.92015(5) .
m~

(24)

(b) (c)

After multiplying by (a/n ), we obtain our result

(a„' ' —a,' ')(vacuum polarization) =24064. 8(6) X 10

(25)
These results in Eqs. (19), (20), (21), and (22) should be
compared with Kinoshita's new results given in Table I
[13]. His total sixth-order vacuum polarization result to
be compared with Eq. (25) is

(a„'s' —a,' ')(vacuum polarization, Ã) =24069(6) && 10
FICs. 5. Vacuum-polarization diagrams contributing to

a „'
' —a,' '. (a) Second-order electron-loop insertion into a

fourth-order muon vertex. (b) Proper fourth-order electron-
loop insertion into a second-order muon vertex. (c) Double-
bubble second-order electron-loop insertions into a second-
order muon vertex. (d) Mixed-bubble second-order loop inser-
tions into a second-order muon vertex.

where

oo

a 4
= g =0. 5 17 479 061,

2 n

oo

g(3)= g =1.202056903,
n

1 + (2n+1)!! 0 26758
2 „,(2n+!)!!n

and

1 (2n —1)!!" = —0.34201 .
(2n)!!n

Our errors are estimated by multiplying the next uncalcu-
lated term by ten. Our results in Eqs. (19)—(22) agree
with the previously known results to 0 (m, /mz) given in
Refs. [9—12], respectively.

The presence and large contributions of the
(m, /m„) ln (m„/m, ) terms in Eqs. (20) and (21) are
somewhat surprising.

The total vacuum-polarization contribution in sixth or-
der is

(26)
The agreement is excellent.

Adding Eqs. (18b) and (24) we get the sixth-order result

mpA' ' =22. 8671(18) .2 m
(27)

(') ",yy =1.836X10-'.
m

As for Az(m„/m vacuum polarization), we have
analytical expressions for all the diagrams. These formu-
las were derived by Barbieri and Remiddi [14] in calculat-
ing the muon contribution to the electron anomaly, and
can also be applied to our cases. The results correspond-
ing to Figs. 6 and 7 are given by, respectively,

A2, Fig. 6(6) I ~ 2 P

m~ 3 m

(28)

2689 m2 23
5400 15 90 m„

= —2.063 X 10

Next, we consider the contribution from
Az '(m&/m, ). The corresponding diagrams can be ob-
tained by replacing the electron in those graphs for
Az '(m„/m, ) by the r. However, the results cannot be
simply obtained in this way, due to the difference in the
masses of the electron and the ~.

As in the case of Az '(m„/m, ), we again divide
Az '(m„/m, ) into two parts: light-by-light scattering
and vacuum-polarization subgraphs. They are represent-
ed by Az '(m„/m„yy) and A'z '(m„/m„vacuum po-
larization), respectively. We can estimate
Az '(m„/m„yy) by using Aldins et al. [8(c)]. Our re-
sult is (Fig. 4 with e ~r)

TABLE I. Comparison of 3& '(m„/m„vacuum polarization) with Kinoshita's results. Please see
Appendix, part 2.

Figure Ours Kinoshita

3

(10 '
)

'3
(10-")

S(a)
5(b)
5(c)
5(d)

Total

—2.392 396(6)
1.49 346(3)
2.71 857(3)
0.100 519(1)

1.92 015(5)

—2.39 238(43)
1.49 373(13)
2.71 863(5)
0.100 519(5)

1.92 050(45)

0(5)—3(2)
—1(1)

0
—4(6)

—69(5)
295(2)

69(1)
0

295(5)
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FIG. 8. Mixed-bubble contribution to a„' '. This contribution
depends on all three lepton masses.

FIG. 6. Second-order ~-loop insertion into a fourth-order

muon vertex.

P1
g (6) P F.

tPl

41
486 rye

=0.296 X 10 . (30)

Combining all the contributions in Eqs. (28), (29), and
(30), we obtain the total value for 2 ~z

i (m„/m, ):

m =6.9 X10-' (31)

We see that a large cancellation makes the total contribu-
tion from the ~ nearly negligible.

Now we come to the term A3 (m„/m„m„/m, ).
There are two diagrams corresponding to this contribu-
tion, as shown in Fig. 8. Generally for a two-bubble dia-
gram shown in Fig. 9, we have the expression

Pl Pl
3 Pl ) Vl2

= J dx(l —x)[ —m(x, k, )][ vr(x, k2)]—,
0

(a —a, )' '=22. 8677(18)p e
'TT

(34)

V. THK QKD CONTRIBUTION UP TO TENTH ORDER

In the previous two sections, we calculated the fourth-
order and sixth-order contributions a„—a, . The contri-
bution in eighth order that dominates is the contribution
of the class of diagrams obtained by inserting an electron
bubble in a leg of Fig. 4. Our 1977 result [15]is

This result agrees with Kinoshita's result to three
significant IIigures.

Other contributions to a„' ' —a,' ' come from the anom-
alous magnetic moment of the electron. That is,
3~ i(m, /m„), A2i i(m, /m, ) and Ai3 i(m, / m„, m/m, )

The corresponding diagrams can be obtained by exchang-
ing the electron and the muon in Figs. 4, S, 7, and 8 and
by replacing the muon by the electron in Fig. 6. One can
use the method used in calculating A 2 '(m„/m, ),
2 ~2 '(m„/m, ) and 3 ~2 '(m„/m„m„/m, ) to compute
these contributions. However these terms are very small
and can be neglected.

Now we are in a position to get the total contribution
in sixth order. Adding up Eqs. (27), (31), and (33) we
have

I 3

where

8 8 1 8 8 —1
~(x, k )=—— "+ —— ' a in '

9 3 2 6 ' 8+1
and

(32)
a„' '(yy ) = 117.4(5) .

This agrees with Kinoshita's recent result [2,3]

a„' '(yy ) = 116.8(1) .

(35)

m,
k = (p=1,2) . By using Kinoshita s total contributions for the eighth

and tenth order,

In principle, one can And an analytical expression for
3 ', '

( m /m „m /m z ). but a numerical result is sufficient.
We have

(a —a )' '=127.00(41)p e

4

(37)

tlat fft
A3 ' ", " =5.24X10

m, m
(33)

(a —a )""'=57O(i4O)—
p e

'7l

'5

(a)

FIG. 7. Fourth-order z-loop insertion into a second-order
muon vertex.

FIG. 9. General case of mass-dependent contribution
3 3 '(m /m &, m /m2).
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'2

(a —a, )O =1.09433 521(6) — +22.8677(18)p e
7T

'3

4

+ 127.00(41 ) — +570( 140)

we can obtain the total QED contribution which is given
by

one-loop contribution [18].
Although we use the result of Ref. [17] for a„"'d""",it

should be noted that the error in Eq. (44) may be overly
optimistic. More accurate experiments to measure
o(e+e ~hadrons) are urgently needed to reduce the er-
ror in Eq. (44).

Collecting all the contributions from QED, hadronic
and weak effects, we finally find the anomaly of the muon

=6 194 805(27) X 10 (39)
a'""'~ = 116591 901(77)X 10 (46)

The anomaly of the electron, a, has been calculated to
eighth-order [4):

which is in very good agreement with the experimental
value

a, =1 159 652 140(5.3)(4.1)(27.1)X 10 (40) a„'"~'=1165923(8.5)X10 (7 ppm) . (47)

where the first and second uncertainties come from the
numerical uncertainties in the sixth order and the eighth
order, respectively, while the third reflects the uncertain-
ty in a.

Adding a„given by Eq. (40), to Eq. (39), and subtract-
ing

a'"'""= 116591 919(176)X 10 (48)

Our result given in Eq. (46) implies the following value
for the gyromagnetic ratio g:

Equations (46) and (47) should be compared to
Kinoshita's value

a hadronic+ a weak
1 6 g ~p

—12
ae ae (41)

we can find the pure QED contribution to the muon
anomaly which is

g =2.00233 183 802(154) .

Kinoshita's result in Eq. (48) implies

g =2.00233 183 838(352) .

(49)

(50)
aO = 1 165 846943(28)(27) X 10

This should be compared to Kinoshita's value

aO (K)=1 165 846961(44)(27)X10

(42)

g =2.002331846(17) . (51)

These results in Eqs. (49) and (50) should be compared
with the present experimental value

the first error is an estimate of the theoretical uncertainty
and the second reflects the uncertainty in a. Thus the
difference is

a~ED —aOED(K)=( —10—4—2+1—3) X10P p

= —18X]0-". (43)

This difference reflects the uncertainty coming from
the uncalculated terms in our analytical calculations and
the uncertainty in the numerical integrations in
Kinoshita's results where the —10 comes from fourth-
order, the —4 comes from sixth-order, the —2 comes
from a,"'"""",the 1 comes from the ~ contribution and
the —3 from the light-by-light contribution.

VI. NON-QED CONTRIBUTIONS AND
THE MUON ANOMALY

h o i —i
P

a ""= 195(10)X 10P (45)

where the hadronic contribution includes fourth and
sixth order and the weak contribution includes only the

Unlike the anomalous magnetic moment of the elec-
tron, which is dominated by the QED effect due to the
smallness of its mass, the anomaly of the muon has sub-
stantial contributions from hadronic and weak interac-
tions. Unfortunately, those contributions have not yet
been computed very accurately. So far the best estimates
are [14,16,17]

In the Appendix, we will give a detailed comparison
between our results and Kinoshita's results.
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APPENDIX

So far the QED contribution to the anomaly of the
muon, a„, has been calculated and estimated up to the
tenth order. In this endeavor, Kinoshita has made a
great contribution. However, we find that our results and
Kinoshita's results in fourth and sixth order are slightly
different, for some contributions. In this appendix, we
will present this comparison in some detail.

1. Fourth order

For the fourth-order contribution, differences occur in
the calculations of A2' '(m„/m, ) and A2 '(m„/m, )

terms. For the A2 '(m„/m, ) term, Kinoshita just kept
terms up to the second order in (m, /m ) and got the re-
sult
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=1.0942596 .
Age

(A 1)
TABLE II. Contributions to 3 ~ '(m„/m, yy ) and

A 2 '(m„/m„vacuum polarization).
3

In fact, the contributions from the third-order and even
the fourth-order terms should be taken into account. For
the 3 2' '(m„/m, ) term, Kinoshita's result is

A' ) " =7.794(32) X 10 (A2)
Pl

Figure

4(e —+~)
6
7
Total

Contribution (10 )

1.836
—2.063

0.2959
0.0689

is, — [10 "]

23.0
—25.9

3.7
0.86

To the accuracy required, we agree on the quantity
Az '(m, /m„) which is to be subtracted. Kinoshita's
value is

at this level of precision.
As seen, the total difference is given by

Ole =5.198X10 ' (A3)
a, = —4(6) X IO-t2 . (A5)

Our values are given in Eqs. (9), (11), and (12). These
should be compared with Kinoshita's results in Eqs. (Al),
(A2), and (A3), respectively. Thus the total difFerence in
the fourth-order contribution is given by

10X 10 (A4)

2. Sixth order

We find that our results, corresponding to each sub-
group of Ai2 '(m„/m, ), are somewhat different from
those of Kinoshita. For the vacuum-polarization part,
the diagrams in Fig. 5, the results are listed in Table I.

In the tab1e, 6' is the difFerence between our results,
without the nz, /m„and smaller terms, and Kinoshita's
results. It is clear that these terms improve the agree-
ment with Kinoshita's results and are definitely necessary

aa ~'D= —18X10-"
which is just the one given by Eq. (43).

(A6)

As stated above, this difFerence rejects the uncertainty
coming from the uncalculated terms in our analytical cal-
culations and the uncertainty in the numerical integra-
tions in Kinoshita's results.

The other difFerence in the sixth order comes from
Kinoshita's neglect of the contributions from ~. The con-
tributions due to Fig. 4 with e ~~ and Figs. 6 and 7 are
given in Table II. We see that the total result turns out
to be relatively small due to the cance11ation which
occurs.

Collecting all the differences from the fourth- and the
sixth-order contributions, as well as the one from
a,"'d""",we get the total QED diIFerence given by
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