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Total source charge and charge screening in Yang-Mills theories
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New gauge-invariant definitions for the total charge on a static Yang-Mills source are suggested which
we argue are better suited for determining when true color screening has occurred. In particular, these
new definitions imply that the Abelian Coulomb solution for a simple "electric" dipole source made up
of two opposite point charges has zero total source charge and therefore no color screening. With the
definition of total source charge previously suggested by other authors, such a source would have a total
source charge of 2q and therefore a screening charge in the field of —2q, where q is the magnitude of the
charge of either point charge. Our definitions for more general solutions are not unique because of the
path dependence of the parallel transport of charges. Suggestions for removing this ambiguity are
ofFered, but it is not known if a unique, physically meaningful definition of total source charge in fact ex-
ists.

I. INTRODUCTION

In discussions of the classical sector of SU(2) Yang-
Mills theories gauge-invariant definitions for the total
color charge of an external source, the-charge in the fiel
and the total charge of the system have been given [1,2].
The total charge on the external source is defined by sim-
ply adding the magnitudes of the local charge vectors
which make up the source. The total color charge of the
system is defined from the 1lr behavior of the color-
electric field for large r. Both of these definitions can be
given in a gauge-invariant way. The difFerence between
them is presumed to be the screening charge in the field.

Unfortunately this gauge-invariant definition for the
total charge on the external source leads to implausible
conclusions for some familiar cases. We discuss below
the particular case of a finite dipole source, but it will be
evident that the discussion immediately generalizes to
any distribution of static charges which allow the
Coulomb solution.

Because of these peculiarities we offer in this paper al-
ternative gauge-invariant definitions for the total source
charge. For any static system described by the Coulomb
solution these definitions will give a unique answer. As
we discuss, there is a lack of uniqueness in these
definitions when applied to systems whose field
configurations have a nonvanishing curvature F'J. Al-
though certain choices from these definitions suggest
themselves, we do not know if any choice will be useful or
physically relevant, and hence we do not know if the no-
tion of color screening in classical Yang-Mills theory is
indeed a well-defined physical concept.

Before elaborating on these remarks, let us review the
definitions of the total source charge and total color
charge of the system presently employed in the literature.
Our notation is standard with A" the four-potential. We

D„F" =4mj

where

(1.2)

D„F""—:(8„+gA„X )F&

and j is the current density for the external source. It
follows that j satisfies the equation of continuity

D„j"=0.

Here we will be interested in static sources so that

j"=p(r)5t'o .

It follows from Eq. (1.3) that

pXA =0,

(1.3)

(1.4)

(1.5)

and thus p and A must be parallel or antiparallel in
isospace.

If we restrict ourselves to static solutions and, con-
sistently, to time-independent gauge transformations,
then A transforms as an isovector. It follows that one
can always transform to a gauge where p and A have
components along the same fixed direction in isospace,
e.g. , the third isodirection. In such a gauge one can show
that if the third isocomponent of p never changes sign
(which can always be arranged by a gauge transforma-
tion) then the third isocomponent of A must always

use boldface characters to represent the three isocom-
ponents for potentials and fields. Our metric is such that
g =+1,g"=g =g = —1. We use units where c =1.
In this notation the isovector components of the field ten-
sor are obtained from A" by

F" =8"A —8 A"+g A" X A

The field tensor satisfies the field equation
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Jz-= 8(n —F" )=n.j"+ (D n) F"',-=- 1 -= ~ 1

4~
(1.7)

where the second term can be interpreted as the current
density due to the color in the field. The total color
charge Qr is then given by

Qr ——IJrd r = f nF' dS; (1.8)

In the gauge where p and A point in the third iso-
direction, Eq. (1.8) is simply Gauss s law for the third iso-
component of F' . Making reasonable assumptions one
can argue that this third component of F' is the only one
which can behave like 1/r for large r with the other iso-
components going to zero faster [3]. Thus Eq. (1.8) is a
reasonable definition for Qz. . It follows from our earlier
discussion about the relative sign of the isocomponents of
p and A that Qz. must be positive. One can also show
that Qr &Q~ [3].

have the same sign as that of p [3].
It follows from this that we can in any gauge define a

unit isovector n(r) which gives the isodirection for both p
and A . We define then p(r) and C&(r) as the magnitudes
ofp and A so that

p(r ) =p(r)n(r) and A =&5(r)n(r) .

We point out that our definition of n(r) is more restric-
tive than that given by Lai and Oh [2]. They define n(r)
as any unit isovector field. However, in the specific ex-
amples they discuss they use the same definition we give
above. Their definition is so general that it leads to com-
plete ambiguity in the definitions for the color charges
given below. Our definition for n(r) agrees with that
given by Isidro Filho, Kerman, and Trottier [1].

Since p=n. p is gauge invariant, a gauge-invariant total
source charge can be defined by [2]

Q~ = Ip(r)d r, (1.6)

which is positive definite.
The total color charge for a solution can be defined by

introducing the conserved gauge-invariant current densi-
ty Jz. such that [2]

with A'=—0. The only nonzero components of the field
tensor are

F'= —BA (2.3)

Using the definition of n( r ) given in Sec. I we have

n(r)—:sgn(z)e3, (2.4)

with sgn(z) the sign function which is + 1 for z )0 and
—1 for z (0. Using this n(r) we find

p(r)=q[5 (r az)—+5 (r+az)), (2.5)

and thus from Eq. (1.6), Qs=2q. It is clear from Eqs.
(2.2) and (2.3) that F' -Ilr for large r and thus from
Eq. (1.8) that Qz =0. This implies, according to the
definitions of Sec. I, that there is color screening and that
there must be a color charge of —2q in the field.

Indeed the screening charge can be seen directly by
looking at the second term in Eq. (1.7) which gives the
current in the field JP. For the present case where n(r) is
given by Eq. (2.4) we have

JP'= (8;n) F' 5" = 5(z)e F' 5"1;p 1
(2.6)

and thus there is only a static field charge. One can show
by integrating Eq. (2.6) that the charge in the field is
indeed —2q. However we can infer that this is correct by
a simple electrostatic analogy.

The charge density of Eq. (2.6) can be recognized as be-
ing completely equivalent to the electrostatic charge den-
sity on a grounded, thin, infinite, conducting sheet locat-
ed in the xy plane, induced by two positive point charges
equidistant on either side of the conducting sheet,
equivalent to those of Eq. (2.5). It is well known that
such an electrostatic configuration has a field which
behaves like a dipole field at large r and that the total
charge induced on the conducting sheet is —2q.

This dipole case also illustrates why we feel the impre-
cise definition of n(r) given by Lai and Oh [2] is not use-
ful. Instead of defining n(r) as we did in Eq. (2.4) we
could, according to Lai and Oh, also define it simply as
n(r) =e3. In this case we would find

II. THK "ELECTRIC" DIPOLE
p(r)=q[5 (r —az) —5 (r+az)], (2.7)

p(r)=q[5 (r —az) —5 (r+az)]e3, (2.1)

where q is the magnitude of the charge on each of the two
point sources, z is the unit vector in the z direction and e3
is the unit vector in the third isodirection. The Abelian
Coulomb solution for this source is given by

q

/r —az/ /r+az[
(2.2)

We consider here the case of the simple finite dipole to
illustrate why we feel that alternate definitions to Eq.
(1.6) for Qz are needed. For simplicity we assume that
the point sources only have components in the third iso-
direction and are separated by distance 2a along the z
axis. The source density p is

from which it follows that Qs=Qr=0 and that the
charge in the field is identically zero. Thus for the same
solution to the Yang-Mills field equations with the same
external source we would draw entirely opposite con-
clusions about whether there is color screening depending
on which n(r) we use. Clearly this implies that color
screening is not well defined by these techniques.

It seems to us that even if we adhere to the definition of
n(r) given in Sec. I and shown explicitly for the dipole in
Eq. (2.4) the situation is still not satisfactory. The finite
dipole solution is analogous to a simple electric dipole
made up to two opposite point charges separated by a
finite distance. We should be able to interpret it in an
analogous way. In the electrostatic case we would say
that the total source charge is zero because the two
charges are equal and opposite. In the Abelian Coulomb
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case the total source charge should also be zero. it seems
unreasonable to attribute the fact that the total charge is
zero to color screening in the field. We will make this
more precise in the next section.

We should point out that the gauge we have used here
is not the special gauge discussed in Sec. I in which the
source density p(r) would be lined up in the third iso-
direction such that p(r) =p(r)e3. In that gauge we would
have n(r) =e3 instead of the form given in Eq. (2.4) and
A' would not be zero. Qf course the results for Qs and

QT are independent of the gauge choice.

III. NEW DEFINITIONS FOR TOTAL
SOURCE CHARGE

dq= —g( A"Xq)dx„, (3.1)

which is consistent with the equation of continuity, Eq.
(1.3), for the case where dx" is along the world line of q.
We note that only the isodirection of q is affected by this
transport, not its magnitude. While Eq. (3.1) could apply

The difficulty with the definition of Qs given in Sec. I
as it applies to examples like that of Sec. II can be elim-
inated if we make use of the notion of parallel transport.
Two isolated isocharges can be compared in a gauge-
invariant way only if they are first parallel transported to
a common point. In Yang-Mills theories the parallel
transport is given in terms of the connection A". Thus,
it would seem natural that a meaningful definition of to-
tal source charge would involve the gauge fields A" as
well as the external charge density p(r).

That one must consider transport when characterizing
an external source is not a new idea. For example, one of
us (W.B.C.) pointed out soine time ago that one has to be
careful in defining a point source to take into account the
singularity properties of A" at the location of the source
[4]~

In the dipole example of Sec. II one can use transport
to make a comparison of the two point sources. If one
does, one finds that indeed the two sources are equal and
opposite. This conclusion is based on a gauge-invariant
procedure which we discuss below. Thus our intuition
based on the equivalent electrostatic case is good; the to-
tal source charge is zero and there is no color screening
by the field. This differs from the conclusions we drew in
Sec. II using the definitions of Sec. I.

The situation in Yang-Mills theories is of course like
that of general relativity: we do not know the geometry
until we have a solution to the field equations. Thus we
will assume that the field equations have been solved giv-
ing us a static solution for a static external source as
defined in Sec. I. Knowing A" then allows us to compare
isovectors at different space-time points using parallel
transport. If we have two points infinitesimally separated
by a four-displacement dx" we require the covariant
differential of q between these points to be zero, i.e.,

Dq = (d +g A"dx„X )q =0,
or

to actual physical transport of q it can also be understood
to tell us how to compute the isocomponents of q relative
to the isocoordinates at a nearby space-time point.

We want to compare source charges at the same in-
stant of time in the frame where all the charges are at
rest. We take this to mean that dx" should be spacelike
with dx =0. We write dx'=dr; and Eq. (3.1) becomes

dq=g( A'Xq)dr, . (3.2)

In order to compare q with a charge located a finite dis-
tance from q, we must integrate Eq. (3.2) along some path
connecting the two charges. This integration generally
depends on the path and thus our comparison is ambigu-
ous. In order to remove this ambiguity we restrict the
path to the straight line connecting the two point
charges. Equation (3.2) is actually a differential equation
for q along the path of transport. If we introduce the pa-
rameter A, which is the distance along the path then we
can rewrite Eq. (3.2) as

=g ( A'XR)A, ;, (3.4)

where it is understood that R(0)=I, with I the identity
isodiad. Instead of writing the solution we seek as R(A&)
we use the more symmetric notation R(r', r), so that
q(A&)=R(r', r) q. The advantage of this notation is
made clear in the discussion below.

We could define a gauge-invariant total charge for the
pair of charges as

Q[q(A&)+q'] =+q +q +2q'. R(r', r).q . (3.5)

We note that this definition is completely symmetric be-
tween q and q'. Because the transposed of R(r', r) is its
inverse, we see that q'. R(r', r) gives us the components of
q' transported to the position of q. Thus Eq. (3.5) can be
viewed equivalently from the point of view of either
charge. This equation also suggests one way we could
define a total source for any distribution of charge.

If we assume that we have found R(r', r) for the
straight line transport between all possible pairs of source
points then we can define

Qs=—Q Jp(r') R(r', r).p(r)d r'd r (3.6)

=g( A'XqQ, ;, (3.3)

where A, =dr/d A, is the unit vector pointing in the direc-
tion of transport. We write the solution to Eq. (3.3) as
q(A, ). When A, =O we have the isocomponents of q rela-
tive to its actual location at r. When A, =A,

&
——~r' —r~ we

have the isocomponents of q relative to the location of
the other charge q', at r'.

Instead of solving Eq. (3.3) for q(A,I) we can use, this
equation to solve for the rotation matrix in isospace
which relates q to q(A&). The advantage is that this ma-
trix depends only on r, r', A' but not on the particular
charge being transported. We will write this matrix as an
isodiad. If R(A, ) is the rotation which relates q to q(A, ),
i.e., q(A, ) =R(A, ) q, then it is easy to show using Eq. (3.3)
that
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which is equivalent to Eq. (3.5) for two point charges. For
the gauge used in Sec. II, A'=0, thus R(r', r) =—I and Eq.
(3.6) yields Qz =0 for the dipole case, the same result we
would get in electrostatics and verifying our earlier asser-
tion.

Another way we could use this equal time transport to
define a Qs is to transport all parts of the source to a
common point and then simply add the transported iso-
vector charges. For convenience we will take this com-
mon point to be the origin and define the isovector

Qz—= f R(O, r) p(r)d r,
from which we define the gauge-invariant charge
Qz—=QQ& Qs. This Qs is also zero for the dipole case
of Sec. II, again because A'=0. This definition for Qs
does depend on the origin and therefore has an additional
ambiguity that Eq. (3.6} does not have. However for a
given situation there might well be a natural choice for
the origin.

The choice of path used in defining R(r', r) is irrelevant
when the field configurations have zero curvature F'~, as
is the case for the Coulomb solutions discussed above.
However, when F'JWO a prescription must be given.
Here we have chosen the straight-line path between r and
r'. Other choices could be used provided they are con-
sistent with the condition R(r, r) —= I and do not depend
on gauge. Straight-line paths seem to be a natural choice
but one might well ask if there is some other choice
which would minimize the value of the Qs's we have
defined here.

As a practical matter either Eq. (3.6) or Eq. (3.7) could
be difficult to apply since solving for R(r', r) could be
difficult. Because of this Eq. (3.7) may be the more useful
definition. The transport which gives us R(0, r) is radial-
ly inward along —r, with r the radial unit vector, and
thus only the A" component of A' will contribute in Eq.
(3.4). One can always transform to a gauge where A"=0.
In this gauge R(0,r) =I and Qs is simply the integral of
p(r). Thus if one could work in this gauge from the be-
ginning or at least easily transform to it, Qs could be ob-
tained by a straightforward integration.

IV. CONCLUSION

The discussion of the dipole example in Sec. II suggests
to us that even when one employs gauge-invariant

definitions for total charge Qz. , and total source charge
Qs, the concept of color screening in classical Yang-Mills
theory is ambiguous. While the definition of total charge
given in Eq. (1.8) is physical and unambiguous, providing
one defines n(r) as in Sec. I, the problem lies in giving a
physically sensible definition for the total source charge.
As seen from the dipole example, the commonly em-
ployed definition of Qz in Eq. (1.6) is inadequate.

We have not been able to remove the ambiguity in
defining Qs but we have given definitions which off'er the
hope of being able to distinguish between situations
where Qz =0 because the source is a color singlet and
those where there is true color screening. The important
ingredient in our new definitions is parallel transport
which we feel is indispensable in trying to analyze the na-
ture of a source.

We are not the first to suggest that defining color
screening can be ambiguous. Hughes [5] pointed out that
the total-screening solution of Sikivie and Weiss [6], if
looked at in a particular gauge, appears to be a solution
for a color-singlet source. Interestingly Lai and Oh [2]
have criticized Hughes' conclusion because it appears to
be gauge dependent. As we pointed out in Secs. I and II,
while the definition of Lai and Oh is gauge invariant, it is
nevertheless ambiguous because their definition for n(r}
is ambiguous.

Our conclusion would be that the Sikivie-Weiss total-
screening solution is even more complicated than any of
these aUthors has suggested. In fact we would conclude
that their solution actually corresponds to a time-
dependent external source even though p(r) is not time
dependent. This is because their A' has linear time
dependence and thus R(r', r) would be time dependent.

Note added in pvoof We hav. e recently realized that
the integral under the radical in Eq. (3.6) could in some
situations be negative, leading to an imaginary Qz. This
can be avoided by using the absolute value of the integral
but may indicate that Eq. (3.6) is not a physically useful
definition for Qs.
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