
PHYSICAL REVIEW D VOLUME 44, NUMBER 12 15 DECEMBER 1991

RenormaHzation connterterms in linearized lattice QED

GeoA'rey T. Bodwin
High Energy Physics DiUision, Argonne National Laboratory, Argonne, Illinois 60439

Eve V. Kovacs
Fermi National Accelerator Laboratory, P.O. Box 500, Batauia, Illinois 60510

John Sloan
Department of Physics, The Ohio State Uniuersity, Columbus, Ohio 43210

(Received 5 August 1991)

We analyze in weak-coupling perturbation theory the renormalization-counterterm structure of
linearized lattice quantum electrodynamics (QED). We find that, although the linearized theory is gauge
invariant, counterterms appear that would be forbidden by the Ward identities in the compact formula-
tion of lattice QED. For example, the photon develops a mass, the light-by-light scattering amplitude
becomes noncovariant, and the coupling constant is renormalized even in the quenched version of the
theory. Gauge invariance does not preclude the appearance of such counterterrns in the linearized
theory because the formulation is nonlocal.

I. INTRQDUCTI(3N

It has been suggested recently [1] that one can formu-
late quantum electrodynamics (QED) on the lattice by
linearizing certain parts of the usual compact lattice ac-
tion for QED. Specifically, the suggestion is that one
linearize, with respect to the transverse component of the

gauge field, the electron-photon interaction terms in the
lattice action. In this paper, we argue that such a pro-
cedure leads, in weak-coupling perturbation theory, to
the appearance of ultraviolet counterterms that are not
present either in the compact lattice theory or in the con-
tinuum theory with a gauge-invariant regulator.

The linearized QED action for the "naive" lattice tran-
scription of the Dirac operator is

Q 2 4I = g [B„(x))+a gg(x)y„[[l+iea0„(x)]U (x)g(x +ay) —[1 iea0„—(x —aP)]U„(x aP)g(x —a—p)j
X,P, V X,P

+a gm1ij(x)1b(x),

B„=b,+0 (x)—b, +0„(x), (1.2)

where m is the electron mass; a is the lattice spacing; p, is
a unit vector in the p, direction; e is the electron charge; lb

is the electron (Dirac) field; the y„are the
anti-Hermitian (Euclidean) Dirac matrices, with

[y„,y ]
= —25; 0„ is the photon field; U„(x)

=exp[iea0„(x)]; and B„ is the electromagnetic field
strength, which is given by

with

0T(x ) =QP„,(x —y )0 (y ),
y, v

0„(x)=+[5„5 —P„„(x—y)]0 (y),
P, V

d4IP„(x—y)= exp[il (x —y)]
(2rr )

(1.4)

b,„+f(x)=(1/a)[f(x+ap) f (x)] . —(1.3) and

Xexp[i(l a —l„a)/2]P„,(l) (1.5a)

The superscript T or I. indicates that the superscripted
quantity is to be evaluated using the transverse or longi-
tudinal component of the photon Geld, respectively. The
transverse and longitudinal components of O„are defined
by

sin(l„a/2) sin(l a/2)
P„,( l ) =5i'—

g sin (l a/2)
(1.5b)

In order to simplify the analysis, we work throughout
in the Landau gauge
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gb,„8„(x)=0,

where

6„f (x)=(1/a)[f (x) f (—x —aP)] .

Then O„vanishes, and we need consider only the interac-
tions of transverse photons with electrons.

The Feynman rules for weak-coupling perturbation
theory for the linearized action (1.1) are given in the ap-
pendix, along with the rules for the compact form of the
action. Throughout this paper, we use the terms "com-
pact" and "noncompact" to indicate the form of the in-
teraction between the electron and the photon, not the
form of the purely photonic part of the action, for which
we always choose the expression given in (1.1). {The
compact form is obtained by replacing the factors
[1+ie8„]in (1.1) by U„and ( U„), respectively. ) In the
linearized case, there is a single interaction vertex involv-
ing one photon and an electron, whereas in the compact
case there are additional multiphoton-electron seagull
vertices. This is the only difference between the linear-
ized and compact formulations in perturbation theory,
and it is central to our analysis.

One need not formulate the linearized theory in terms
of the naive lattice transcription of the Dirac operator.
For example, in Ref. [1] staggered fermions were em-
ployed. A different choice of lattice Dirac operator, of
course, leads to a different expression for a particular
Feynman diagram. However, the presence or absence of
that Feyman diagram in a given theory is independent of
the choice of fermion formulation, once one has specified
either the compact or linearized form for the interactions
of the electron with the photon field. As we shall see, our
conclusions about the counterterm structure of the
linearized theory do not depend on the details of the
Feynman rules, but only on the presence or absence of
certain diagrams. We refer to the case of the naive-
fermion formulation in order to have a definite example
at hand, but our arguments are more generally valid.

The main point that we wish to demonstrate is the fol-
lowing: although the action (1.1) is gauge invariant and
the photon couples to a formally conserved current [1],
the Ward identities in the linearized theory do not con-
trol the ultraviolet (UV) behavior of the theory in the
usual way. We show that new UV counterterms appear:
the transverse photon develops a quadratically divergent
transverse mass, there are noncovariant renormalizations
of the photon's wave function and the light-by-light
scattering amplitude, and the vertex renormalization Z&
is no longer equal to the electron's wave-function renor-
malization Z2. As we shall see, these UV counterterms
appear, despite ihe gauge invariance of the theory, be-
cause of the nonlocal nature of the transversality projec-
tor (1.5a). The appearance of such counterterms is not
surprising since nonlocal, gauge-invariant interactions of
the form g„(8„) or [g„(8„)] are allowed in the action
once 0 is treated differently from 0 .

In the remainder of the paper, we explain how the new
UV counterterms arise in the linearized theory, and we
discuss their consequences. Therefore, we focus on the

ultraviolet-divergent subgraphs in the theory, and we ig-
nore contributions that vanish in the continuum limit. In
Sec. II we examine the quenched version of the theory
(no electron loops); in Sec. III we discuss electron loops
with no radiative corrections; in Sec. IV we analyze the
case of radiative corrections to electron loops; and in Sec.
V we summarize our results and discuss their implica-
tions for numerical simulations.

II. THE QUENCHED THEORY

In the quenched theory, that is, the theory with no
electron loops, the only divergent subgraphs are the elec-
tron self-energy corrections and electron-photon vertex
corrections. In the compact version of the quenched lat-
tice theory, the vertex correction receives contributions
from continuumlike graphs [for example, Fig. 1(a)], and
also from the seagull graphs [for example, Fig. 1(b)] [2].
Then, repeated application of the graphical (perturbative}
Ward identities [2] allows one to derive the Ward identity
relating the vertex correction to the propagator:

g(2/a ) sin( —,'l„a )I „(p,l) =S '(p +l) —S '(p), (2.1)

(b)

FICs. l. One-loop contributions to the electron-photon vertex
in compact lattice QED. (a) The continuumlike contribution.
{b) One of two lattice seagull contributions. The second seagull
contribution is the mirror image of the one shown.

where I „(p,l) is the complete electron-photon vertex
with external legs truncated, S(p) is the complete elec-
tron propagator, p is the incoming electron momentum,
and I is the incoming photon momentum. Unless other-
wise noted, when we speak of truncated Green's func-
tions in the linearized theory, we mean that both the
external transverse-photon propagators and the associat-
ed transversality projectors have been removed.

In the lattice formulation of QED, unlike the continu-
um formulation, the seagull contributions [such as the
one in Fig. 1(b)] are essential in deriving the Ward identi-
ty (2.1). The reason for this is that, on the lattice, the
nonseagull vertex depends on the incoming electron
momentum, whereas in the continuum the vertex is
momentum independent. The seagull contributions com-
pensate for the momentum dependence of the lattice ver-
tex [2].

In the Landau gauge, the linearized version of the lat-
tice theory does not contain seagull graphs. Consequent-
ly, the continuumlike Ward identity (2.1} is modified.
The Ward identity now contains contributions, corre-
sponding to the missing seagull graphs, in which the
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external lattice momentum (2/a) sin( —,'l a) is dotted into
the seagull vertices. It is easy to see by direct computa-
tion in one-loop order that the seagull contributions to
the Ward identity are nonvanishing.

All of the seagull contributions that potentially modify
the Ward identity (2.1) involve the external photon.
Furthermore, since the seagull vertices themselves are
suppressed by powers of the lattice spacing a [see (A4)
and (A5)], a Feynman graph containing a seagull can give
a nonvanishing contribution in the continuum limit a ~0
only if a loop integration containing the seagull diverges.
Hence, the seagull contributions to the Ward identity
have the structure of an ultraviolet counterterm that re-
normalizes the electron-photon vertex. In the compact
lattice theory (or the continuum theory), one establishes
the equality of the vertex renormalization Z, and the
electron wave-function renormalization Zz by consider-
ing the Ward identity (2.1) in the limit l~0. In the
linearized theory, owing to the presence of seagull contri-
butions to the Ward identity, Z, is no longer equal to Z2.
This implies that, in the linearized theory, even in the ab-
sence of dynamical electrons (electron loops), the cou-
pling constant is renormalized by a factor Z, =Z&/Z2.
Because the seagull vertices contain at least one explicit
power of a, the loop integration corresponding to the fac-
tor Z, must be power divergent in the UV if the contri-
bution is to be nonvanishing. Hence, there is no logarith-
mic dependence on a: Z& is a finite renormalization.

Since the Ward identity (2.1) does not hold in the
linearized theory, one might wonder whether the elec-
tromagnetic current is conserved. In the Landau gauge,
the photon propagator is proportional to the transversali-
ty projector P„(I ) given in (1.5). Of course, since

g P~ (l)P ~(l) =P~~(l), one can always associate a
transversality projector with the current to which the
transverse photon couples. Thus, in this somewhat for-
mal sense, one can define a conserved current. However,
owing to the presence of the transversality projector, the
conserved current is nonlocal, with infinite range, and the
corresponding charge is ill defined. In an arbitrary
gauge, there are longitudinal as well as transverse photon
modes. The longitudinal modes, however, couple to the
electron in the usual compact way, so all the seagulls re-
quired for current conservation are present.

Suppose we were to emphasize the conservation of the
infinite-range, nonlocal current in the linearized theory
by deriving a Ward identity for the vertex function with
external legs truncated, but with a transversality projec-
tor appended at the photon connection. The result would
be (2.1), except that the right-hand side would now van-
ish. Unfortunately, we learn nothing about Z& by taking
the limit 1~0 for this Ward identity because P„„(l)is ill
defined at I =0. To put it another way, because P (x) is
nonlocal, with infinite range, once we have appended the
transversality projector to a Green's function, we lose in-
formation about the short-distance contributions con-
tained therein. Although we have formal current conser-
vation, the fact that it is enforced through an infinite-
range, nonlocal mechanism deprives the associated Ward
identities of their power to control UV counterterms.

III. KI.ECTRQN I.QQPS
WITHOUT RADIATIVK CARRECTIGNS

Now let us consider the subgraphs involving an elec-
tron loop, but with no radiative corrections on the loop.
The subgraphs of this type that have a divergent power
count are the lowest-order contributions to the vacuum
polarization (photon self-energy) and the light-by-light
scattering amplitude.

Consider first the vacuum polarization. In the com-
pact lattice theory, the lowest-order vacuum polarization
receives two contributions. One is the continuumlike con-
tribution, shown in Fig. 2(a), and the other is the seagull
contribution shown in Fig. 2(b). In the compact theory,
one can show, through repeated application of the graph-
ical Ward identities [2], that the vacuum polarization is
transverse. That is,

g(2/a ) sin( —,'l„a )II„(l)=0, (3.1)

where II„(l) is the vacuum polarization with external
legs truncated, and I is the external-photon momentum.

On the other hand, in the linearized theory, the seagull
graph of Fig. 2(b) is absent. Consequently, II„,(l) is no
longer transverse; there appears in (3.1) a term which
can be expressed as the scalar product of the lattice
momentum (2/a ) sin( —,

' l a) with the seagull graph of Fig.
2(b). It is easy to see that this seagull contribution to the
Ward identity (3.1) is nonvanishing.

Since, in the linearized case, II„(l) is no longer trans-
verse, one cannot argue that II„(0)vanishes. Hence, the
leading divergence, which according to power counting is
quadratic, need not vanish. Indeed„one finds by direct
calculation that there is a divergence proportional to
(1/a )5„, which is precisely the negative of the leading
divergence in the missing seagull graph. This divergent
contribution corresponds to a counterterm of the form

„[8„(x)],which renormalizes the mass of the trans-
verse photon.

As in the quenched linearized theory, one can exhibit
current conservation by associating a transversality pro-
jector (1.5b) with each electron-photon vertex. If II„(l)
were defined in this way, then (3.1) would hold. Howev-
er, this formal transversality of II,(l), so defined, is
insuFicient to eliminate the quadratic divergence. Obvi-
ously, a divergence proportional to (1/a )5„ is merely
converted into a divergence proportional to ( I/a )P„(l).

To see why the formal transversality of II„(l) fails to

FIG. 2. One-loop contributions to the vacuum polarization
in compact lattice QED. (a) The continuumlike contribution.
(b) The lattice seagull contribution.
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control the quadratic divergence, let us recall the Ward-
identity argument for the vanishing of the quadratic
divergence in the compact theory [2]. We differentiate
(3.1) with respect to l to obtain

the linearized theory all transverse-photon seagull ver-
tices that contain four or fewer photons. The coefficients
of the seagull vertices would, of course, be required to be
identical to those in the compact theory.

cos( —,'l a )II (I)+g(2/a) sin( —,'l„a ) II (l) =0 . (3.2)
p 'p

Now, since the electron mass protects electron loops
from infrared divergences, (t)/Bl )II„,(I) is finite in the
limit l ~0. Hence, we conclude that

11,.(0)=0 . (3.3)

That is, the leading divergence in Il (I) vanishes. On the
other hand, if II (l) is defined to contain transversality
projectors, then (r)/Bl )11„(l) is no longer finite in the
limit l —+0 because the derivative of the transversality
projector with respect to l is singular. In this case, the
second term in (3.2) contributes as I ~0, and we can no
longer conclude that the leading divergence in II (I)
vanishes. Once again, we see that, for Green's functions
containing the transversality projector, the infinite-range,
nonlocal nature of the projector prevents us from using
the Ward identities to constrain local (UV) contributions.

In addition to the leading (quadratically divergent)
counterterm, the vacuum polarization generates nonlead-
ing counterterms. One of these corresponds to the usual
logarithmically divergent counterterm associated with
renormalization of the photon's wave function,
which, in the Landau gauge, is of the form

(2/a) sin ( —,'l„a)[8 (I)] in momentum space and

[5„8 (x)] ='
—,'g„„„[e„„(x)]in coordinate space.

This counterterm is, of course, covariant in the continu-
um limit. Because of the absence of seagull graphs in the
linearized theory and the consequent lack of transversali-
ty of the vacuum polarization, there is also a counterterm
that is not covariant in the continuum limit. It is of the
form g&„(2/a) sin ( —,'I„a)[8„(l)] in momentum space
and g „[5„+8„(x)] in coordinate space. Power-
counting arguments show that this counterterm is finite.
In the compact theory, this counterterm is forbidden by
the Ward identity (3.1).

In the linearized theory, we also expect the light-by-
light scattering amplitude (with external legs truncated)
to be nontransverse and to contain a covariant counter-
term of the form g„„,[8„(x)][8 (x)] and a noncovari-
ant counterterm of the form g„[8„(x)]. Power-
counting arguments indicate that these counterterms are
finite. Nevertheless, even the covariant counterterm
must be subtracted in the lattice theory in order to bring
the lattice amplitude into agreement with the continuum
one.

Fermion-loop amplitudes with more than four external
photons are, of course, convergent and hence generate no
new counterterms. In the absence of radiative correc-
tions, the superficially divergent fermion-loop amplitudes
would, in the compact theory, involve seagull vertices
with no more than four photons. Thus, in the absence of
radiative corrections, the new counterterms we have dis-
cussed in this section could be eliminated by including in

IV. ELECTRON LOOPS
WITH RADIATIVE CORRECTIONS

(a) (b)

FIG. 3. (a) An order a'e' contribution to the electron —two-
photon vertex in compact lattice QED. (b) An order a e' con-
tribution to the vacuum polarization in compact lattice QED.

In the quenched version of the linearized theory, we
found a new counterterm Z&, which could be canceled by
tuning the strength of the electron-photon vertex. In the
linearized theory with electron loops but with no radia-
tive corrections, we found several new counterterms that
could be eliminated by introducing a finite number of
transverse-photon seagull vertices with the same
coefIicients as in the compact theory. Hence, one Inight
hope that a procedure involving the tuning of Z, and the
inclusion of a finite number of seagulls would be sufhcient
to control all of the counterterms that arise in the linear-
ized theory with dynamical electrons. However, if we
consider radiative corrections to electron loops, then it
becomes clear that this is not the case. The di%culty
stems from the fact that the linearized theory lacks cer-
tain radiative corrections involving seagulls of higher or-
der than e . In isolation, such radiative corrections
would be of higher order in a, and, hence, negligible in
the continuum limit. If the radiative corrections are em-
bedded in a divergent fermion loop, however, the com-
plete graph may be non-negligible. Thus, such a graph
can yield a contribution to the new counterterms that ap-
pear in the linearized theory.

To illustrate this phenomenon, let us consider an exam-
ple. The radiative correction of Fig. 3(a), which involves
an order e seagull is, by power counting, of order a'.
On the other hand, when it is embedded as a subgraph in
a contribution to the vacuum polarization [Fig. 3(b)], the
divergence in the electron loop makes the overall ultra-
violet behavior order a . In the compact theory, such a
contribution is canceled by contributions from graphs in-
volving lower-order seagull and nonseagull vertices, since
the transversality of the vacuum polarization guarantees
that the order-a divergence vanishes. In the linearized
theory, the truncated vacuum polarization is non-
transverse, and so, presumably, contains in order e a
divergence of order a, which corresponds to the lead-
ing divergence of the absent seagull graph [Fig. 3(b)].
Similarly, if we were to embed the radiative correction of
Fig. 3(a) in a light-by-light scattering graph, that graph
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would generate covariant and noncovariant counterterms
that arise in the linearized theory in the light-by-light
scattering amplitude in order e' .

More generally, suppose that one includes in the linear-
ized theory all of the seagull vertices from the compact
theory through order e". Then it is clear that one can
construct a radiative correction involving a seagull of or-
der e "+' which, when embedded in a vacuum-
polarization or light-by-light-scattering graph, will yield
a contribution corresponding to an uncompensated coun-
terterm in the linearized theory. Hence, we see that there
is no finite set of seagulls, with coe%cients identical to
those in the compact theory, whose inclusion in the
linearized theory, together with tuning of the electron-
photon coupling, would account for all of the new coun-
terterms that arise in the linearized theory. Of course,
one might try to introduce seagulls with arbitrary
coefficients and tune the coefficients so as to cancel the
new counterterms. However, such a procedure offers no
advantage over including an explicit term in the bare ac-
tion for each of the new counterterms.

V. SUMMARY AND DISCUSSION

We have seen that, although it is gauge invariant, the
linearized lattice formulation of QED gives rise in weak-
coupling perturbation theory to UV counterterms that
would be excluded by Ward identities in either the com-
pact lattice formulation or the continuum theory with a
gauge-invariant regulator. Specifically, we have found
that the vertex renormalization Z

&
is not equal to

electron's wave-function renormalization Zz, the trans-
verse photon develops a quadratically divergent mass;
there are subleading noncovariant corrections to the pho-
ton propagator; and the light-by-light scattering ampli-
tude develops covariant and noncovariant counterterms.
Since 0„ is gauge invariant, counterterms involving 0„
and its derivatives are constrained in form only by the
lattice remnant of rotational invariance and by the re-
quirement that the expression be of dimension four or
less. All such counterterms appear in the perturbative
analysis. Hence, the counterterms that appear in the
linearized theory are equivalent to the counterterms that
appear if one explicitly breaks the gauge symmetry. That
is, there is no advantage in linearizing with respect to 0„
rather than 0„: equivalent counterterms appear in the
two cases.

The Ward identities for the linearized theory do not
preclude the appearance of such counterterms because,
owing to the absence of seagull-vertex contributions, the
Green's functions with external transverse-photon legs
truncated do not, in themselves, respect current conser-
vation. Rather, there is a conserved current in the sense
that one can associate a transversality projector (1.5)
from a transverse-photon propagator with each photon-
electron vertex in a Green's function. Since the transver-
sality projector is an infinite-range, nonlocal object, it is
not surprising that the Ward identities for Green s func-
tions with transversality projectors appended yield no
constraints on the UV counterterms, which arise from
short-distance contributions.

This absence of the usual constraints on renormaliza-
tion counterterms appears to be a rather general
phenomenon that can occur whenever gauge invariance is
realized through an infinite-range, nonlocal mechanism.
For example, in a theory in which the UV regulator (ei-
ther continuum or lattice) breaks chiral gauge invariance,
one can restore that invariance by introducing a massless
auxiliary scalar field [3]. When one carries out the func-
tional integration over the auxiliary field, the resulting
effective action contains generalizations of the Wess-
Zumino term [4] that restore the gauge symmetry. How-
ever, because the auxiliary field is massless, there are
infinite-range, nonlocal interactions: transversality pro-
jectors of the type (1.5) appear [5]. Consequently, the
theory generates ultraviolet counterterms that ordinarily
would be forbidden by gauge invariance [5—10].

Another example of this phenomenon can be con-
structed in the context of continuum QED. Suppose that
one adds to the QED action —either by hand or through
the effects of a regulator that violates current
conservation —a photon mass term g„A„. Such a term
is, of course, gauge variant, but one can compensate pre-
cisely for the gauge transformations of the photon field
by introducing a massless auxiliary Stiickelberg field P
(Ref. [11]). The photon mass term then takes the form

g„(A„—c)„P) and the action regains a gauge invariance.
However, as in the previous example, when one in-
tegrates out the massless auxiliary field, one finds an
effective action that exhibits infinite-range nonlocality. A
term of the form g„(A „) appears; that is, the transverse
component of the photon field develops a mass.

In both of the examples cited above, we can under-
stand the failure of gauge invariance to constrain the
forms of the counterterrns by noting that, in the local ac-
tion, a transformation of the auxiliary scalar can, by it-
self, compensate for a gauge transformation of the vector
field. Thus, gauge invariance imposes constraints only on
the forms of the interactions involving the auxiliary field.
But the auxiliary field is unphysical since, by a suitable
choice of gauge, it can be decoupled from the theory.
This situation is, of course, familiar from standard elec-
troweak theory. There, the transformations of the mass-
less, azimuthal components of the scalar (Higgs) field
compensate for transformations of the gauge fields and,
hence, allow the appearance of gauge-field mass terms
and other potentially nonrenormalizable interactions that
would otherwise be forbidden by gauge invariance. The
standard-Inodel interactions involving the radial com-
ponent of the Higgs field then play a crucial role in main-
taining the renormalizability of the theory.

The effects discussed in this paper can be understood
simply in terms of a toy model. Consider continuum
QED with a Pauli-Villars regulator and with an ir-
relevant operator of the form f[g„(A„) ]g included in
the action. This operator is gauge invariant but nonlocal
(with infinite range), owing to the explicit appearance of

It corresponds to a two-photon —electron seagull.
Although the seagull is of dimension five, it can contrib-
ute in leading order in the inverse Pauli-Villars mass
through graphs such as the one in Fig. 2(b). Thus, there
appear new counterterms of the sort that we have found
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in linearized QED. Of course, since Lorentz invariance is
not broken by the Pauli-Villars regulator, the noncovari-
ant counterterms are absent. As in the case of linearized
QED, the irrelevant operator that we introduce is explic-
itly nonlocal (as opposed to being obtained from a local
field theory by integrating out a scalar field). One might
be tempted to try to make the theory local by replacing

with ( A„—B„P),but, as we have already seen, such a
procedure does not yield any additional constraint on the
counterterms.

The analysis that we have presented is couched in
terms of weak-coupling perturbation theory. Neverthe-
less, our principal conclusion —that an infinite-range,
nonlocal implementation of gauge invariance does not
constrain the appearance of UV counterterms —seems to
have a generality that extends beyond perturbation
theory.

Our discussion in this paper has focused on infinite
range, nonlocal implementations of gauge invariance.
One can also construct gauge-invariant theories involving
finite range, n-onlocal mechanisms. This, however, entails
the introduction of an additional scale in the action. It is
clear that, once a new scale has been introduced, many
new counterterms can, in principle, arise.

The appearance of new counterterms in linearized
QED has important consequences for numerical simula-
tions. For example, we have found that, even in the
quenched approximation, the electric charge is renormal-
ized in linearized QED. Hence, in a quenched numerical
simulation, it would be necessary to tune the electron-
photon vertex, as one approached the continuum limit, in
order to maintain a correspondence with the continuum
limit of the compact formulation. In the linearized
theory with dynamical fermions, additional new counter-
terms appear. The set of counterterms in the linearized
theory is, in fact, the same as the set that one would ob-
tain by breaking gauge invariance. In the absence of ra-
diative corrections these additional counterterms could
be eliminated by including in the linearized theory a finite
set of transverse-photon seagull vertices whose
coefficients are the same as in the compact theory. How-
ever, if one allows for the possibility of radiative correc-
tions to electron loops, then there is no finite set of such
seagull vertices which, when combined with tuning of the
electron-photon vertex, would eliminate the new counter-
terms. Thus, in a simulation, one would be faced with

the formidable task of tuning all of the new counterterms
as well as the charge and the electron mass.
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APPENDIX: THE FEYNMAN RULES

The Feynman rules for weak-coupling perturbation
theory for the action (1.1) are as follows [12]. The photon
propagator in Landau gauge is

„(/)
b,„(l)=—

(2/a) sin ( —,'1 a)
(Al)

with P„(/) given in (1.5b); the electron propagator is

SF(p) = 1

(1/a)gy„sin(p„a)+ m
(A2)

and the electron-photon vertex is

V„'"(p, /) = —ey„cos(p„a+ —,'l„a ), (A3)

where p is the incoming electron momentum and l is the
incoming photon momentum. As usual, for each closed
loop there is an integration f ~'& t/ k/( 2m. ), and for
each electron loop there is a factor —1.

In the compact theory there are, in addition to the
electron —one-photon vertex (A3), electron-multiphoton
seagull vertices. For example, the electron —two-photon
seagull vertex is

V„','(p, 1„/2)=ae 5„,y„sin(p„a+ —,'l,„a+—,'/z„a ), (A4)

where I, and l2 are the incoming photon momenta. The
higher-order seagull vertices can be obtained from the re-
cursion relation [2]
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V„.. . „(p+1„+„1,, . . . , 1„)—V„„(p,l„.. . , 1„)
V . . . (p, /„. . . , /„+, )=e5

~1 ~n+1 ~nI n+1 (2/a)sin[ —,'(1„+,)„a]
(A5)
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