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Swendsen-Wang random surface dynamics for Z, and Z; gauge theories in 2+ 1 dimensions is applied
to the finite-temperature deconfining transition, and the static universality conjecture of Svetitsky and
Yaffe is extended to the exponent z for critical dynamics. Our new dynamic universality conjecture
(z&5 ' =2z%y) is supported both by a qualitative argument and by numerical simulations that show that
the dynamic critical exponents for (2+ 1)-dimensional gauge theories (logarithmic or zgg <0.31+0.1 and
0.5340.03 for Z, and Z,, respectively) are consistent with the values for the two-dimensional Ising-
Potts models (logarithmic or zgy =0.20-0.27 and 0.554:0.03 for Z, and Z;, respectively) at the finite-

temperature transition.

I. INTRODUCTION

Critical slowing down is expected to become a progres-
sively more serious problem for lattice-gauge-theory
simulations of QCD as we approach the continuum limit.
One promising new method to reduce critical slowing
down is provided by generalizations of the Swendsen-
Wang cluster dynamics [1]. In the case of spin models,
cluster algorithms for Potts models and their extension to
continuum spin (or Higgs) systems by Brower and
Tamayo [2] and Wolff [3] have proven that these nonlocal
methods do accelerate Monte Carlo equilibration by
several orders of magnitude on lattices with correlation
lengths in the range of 10 to 100.

Recently, similar cluster methods have been proposed
to reduce the critical slowing down for gauge theories
[4,5]. The resulting dynamics, based on the percolation
of random surfaces in three-dimensional (3D) Z, lattice
gauge theory, was shown to have a dynamic critical ex-
ponent of zrg=0.73%0.15 [4], nearly equal to the
Swendsen-Wang exponent for the 3D Ising model
zgw =0.7540.01 [1].

In this paper we consider the random surface dynamics
at the finite-temperature transition in lattice gauge
theory. There are several reasons that make this a natu-
ral next step. Simulations of pure glue QCD at finite
temperature are already on large enough lattices to see
substantial critical slowing down at the finite-temperature
transition. More importantly, we believe that the origins
of critical slowing down may be simpler at the finite-
temperature fixed point relative to the zero-temperature
fixed point [6]. This is due to the plausible conjecture
that the d-+1 finite-temperature phase transition is
driven by the Z, degrees of freedom in the center of the
SU(N) gauge group, with the Polyakov loop order pa-
rameter coupled in an effective d-dimensional Zy clock
model, which is of course equivalent to the Potts model
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in the cases of most interest—Z, for SU(2) Yang-Mills
theory or Z for SU(3) QCD. Thus the finite-temperature
Z, critical dynamics may itself have the essential modes
necessary to understand and cure critical slowing down
in finite-temperature QCD [7].

Additional support for this picture can be derived from
testing our conjecture that the dynamic universality class
for the (d +1)-dimensional gauge theories at the finite-
temperature transition are the same as the corresponding
bulk transition of a d-dimensional spin model. In partic-
ular, we have qualitative as well as numerical evidence
that the dynamics critical exponent for (2+1)-
dimensional Z, and Z; gauge theories (logarithmic or
Zpg <0.3£0.1 and 0.53%0.03, respectively) are con-
sistent with the values for the two-dimensional Z, and Z;
Potts models (logarithmic [8] or zgy =0.20-0.27 [9] and
0.55+0.03 [10], respectively) at the finite-temperature
transition.

In spite of the physical plausibility of our new dynamic
universality conjecture, one must remember that any
universality in the context of nonlocal models is a fortiori
surprising and should be submitted to tests. For static
universality it is well known that sufficiently strong non-
local interactions do disrupt universality classes. On the
other hand, the surprising picture that is emerging for
the nonlocal Swendsen-Wang cluster dynamics is the
presence of dynamic universality classes [2]. This paper
suggests a nontrivial extension of this emerging picture to
include a universality relationship between cluster and
surface dynamics analogous to the static Svetitsky-Yaffe
[6] conjecture for local statics.

II. RANDOM SURFACE DYNAMICS
AT FINITE TEMPERATURE

Although there is a mnatural generalization of
Swendsen-Wang [1] dynamics for discrete spin models to
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the case of discrete gauge models [4,5], the generalization
exposes contrasting features: The action for a spin model
is defined on bonds while the action for a gauge model is
defined on plaquettes; the correlation function for a spin
model is defined between points encircling lines while the
correlation function for a gauge model is defined on loops
encircling surfaces; and presumably the mechanism for
accelerating the dynamics for spin models is related to
the divergence of the connectedness length for the bond
percolation cluster accelerating the dynamics for gauge
models is related to the divergence of spanning surfaces
for plaquette percolation.

Nonetheless one can in effect interpolate between the
gauge model and its corresponding one-dimensional
lower spin model by going to finite temperature. Accord-
ing to the conjecture of Svetitsky and Yaffe [6], the gauge
model at its deconfining phase-transition point (if the
transition is continuous) is universal to a spin model with
the spin value taken from the center of the original gauge
group. This conjecture has been supported by many
Monte Carlo simulations with very few exceptions
[11,12]. The conjecture in its original form was only pro-
posed for static properties. Here we argue that, in fact,
the conjecture of Svetitsky and Yaffe remains true for the
particular kind of dynamics we are considering. In par-
ticular, we conjecture that the dynamic critical exponents
zgs for the random surface dynamics [4,5] for the
(2+1)-dimensional Z, and Z; gauge theories at the
deconfining phase-transition points are the same as the
exponent zgy for the Swendsen-Wang dynamics for the
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two-dimensional Ising and 3-state Potts models:
ks =zdw . (1)

First we give qualitative arguments which leads to the
above conjecture. Then we present the numerical results
to support the universality conjecture. Also we present
data for static scaling results so that the consistency of
our data with the static Svetitsky-Yaffe conjecture is
verified. Finally, we comment on extensions to models
with other gauge groups and to models in four dimen-
sions.

III. QUALITATIVE ARGUMENT

We begin by presenting a plausibility argument for our
dynamics universality conjecture. First to simplify the
discussion, we consider the example of pure random (or
Bernoulli) plaquette percolation on an infinite cubic lat-
tice [13]. There the relevant correlation function is
defined for a loop I', in a fixed percolated plaquette
configuration, as

1 if ’'=aS,

W)= 0 otherwise ,

(2)
where S is an unbroken surface made of percolated pla-
quettes and 3S is the boundary of S. Analogous to the
confinement-deconfinement phase transition, the behav-
ior of (W(I')) ({---) stands for ensemble average) is
characterized by

exp[ —area(T")] if p, <p* (confined phase) ,

(W())=

exp[ —perimeter(I')] if p,>p* (deconfined phase) ,

where p, and p* are plaquette percolation probability and
critical plaquette percolation probability, respectively.
Now we imagine that one of the directions (call it the
time direction) becomes finite and periodic. Then a new
kind of correlation function can be defined for loops
Q;=Q(x,) and Q,=Q(x,), which wrap around the time
direction through the periodic boundary at fixed spatial
positions x,; and x,:

1 if Q,+Q,=03S ,

Cp(xy,x,)=
prrpT2 0 otherwise . @)
The asymptotic behavior of Cp(x;,x,) as the plaquette
probability p, is varied may signal a new ‘‘finite-
temperature” phase transition distinct from the ‘“‘zero-
temperature” one on the infinite cubic lattice. It is plau-

sible that this new phase transition is characterized by

Ix;—=x;l=> 10 (confined phase) ,
(Cplxy,x,)) const#0 (deconfined phase) ,

(5)

where |x; —x,| stands for the distance between Q, and

Q,. Equation (5) is certainly consistent with Eq. (3), since
0,4+, is a special case of I" with a finite perimeter. No-
tice that the (’s live on a two-dimensional infinite lattice.

In Eq. (4) we have defined the connectedness function
Cp(x,x,) by the condition that curves Q; and Q, be
homologous on a percolated surface. The ensemble aver-
age (Cp(x,x,)) gives the probability that x, and x, lie
in the same 2D percolation cluster for an effective two-
dimensional bond percolation problem. To illustrate the
concept of connectedness defined by the homology condi-
tion, we give an example of connectedness in Fig. 1(a)
where Cp(x,x,)=1, Cp(x,,x3)=1 and Cp(x,x;)=1
and a less trivial case in Fig. 1(b) where Cp(x,x,)=0,
Cp(x,,x3)=0 but Cp(x;,x3)=1. However, since the
crucial property of transitive closure [i.e., Cp(x,,x,)=1,
C,(x;,x3)=1 implies Cp(x,,x3)=1] is never violated,
there must be some underlying bond percolation process
in 2D defined by the projection from the (2-+1)-
dimensional system. In other words Eq. (4) is equivalent
to

. ) 1 if x;+x,=0aC,
X1,X,)=
B2 0 otherwise , 6)



4
= N
a, Qg 0y
.............. (b)
v v
‘ :
0y 0z s
FIG. 1. Examples of the connectedness function for Po-

lyakov loops, Q;, ,, and Q; defined by homology on nontrivial
topological surfaces with a single handle: (a) a handle that does
not break the homology condition between any of the pairs of
Polyakov loops; and (b) a handle that breaks the homology be-
tween pairs ;—Q, and 2, —Q; but not Q; —Q,;.

where C is a continuous curve made of percolated bonds
on an infinite two-dimensional square lattice.

Of course we cannot assume that bond percolation is
restricted to nearest-neighbor bonds and we cannot deter-
mine precisely how the probabilities p,(x; —x,) for bond
percolation depend on the plaquette probability p,. Still
once you assume the existence of this mapping, the dy-
namic universality plaquette percolation on the cubic lat-
tice (with one dimension finite and periodic) and its corre-
sponding bond percolation on a one-dimensional lattice
are trivial. Both lattices with their pure Bernoulli per-
colation ‘““dynamics” have no autocorrelations and thus
“universally” is exhibited by both having zero critical
slowing down.

Now let us look at the new elements encountered in the
nontrivial random surface dynamics of the (2+1)-
dimensional Z, lattice gauge theory. The algorithm that
defines the random surface dynamics for the evolution of
the gauge field configuration [5] involves percolation only
on the nonfrustrated plaquettes, which implies a form of
link correlated plaquette percolation, p=1—exp[ —pf(1
+0p)], where op is the field strength associated with a
plaquette P. However Egs. (2)-(5) still hold if the per-
colation is carried out on the frustration-diluted lattice,
with the modification that Egs. (2) and (4) are now under-
stood as the averages over all the spin configurations
compatible with the fixed percolation configurations.
Now the question remains whether a similar site correlat-
ed bond percolation is induced through Eq. (4). It is not
hard to convince oneself that if Q; and Q, have opposite
signs, they cannot be the boundary of a closed percolated
surface S (i.e., Q,;+Q,=09S guarantees that Q; and ,
have the same sign). So we expect that a gauge model

DYNAMIC UNIVERSALITY FOR Z, AND Z; LATTICE GAUGE...

3913

such as the Z, gauge model has a reduction to its corre-
sponding one-dimensional lower spin model, qualitatively
similar to the pure Bernoulli percolation case. Dynamic
universality would then follow naturally if, as we assume,
the effective lower-dimensional spin model is dominated
by short-range interactions.

We mention in passing that our universality conjecture
is trivial when N, =1 since the spacelike links decouple
from the timelike links due to periodicity. The random
surface dynamics in 2+ 1 dimensions [4,5] gives precisely
the Swendsen-Wang dynamics [1] for the space-time pla-
quettes (i.e., electric term), while the independent space-
space plaquettes (i.e., magnetic term) form a noncritical
two-dimensional gauge theory. Furthermore, the above
picture also emerges in the case of finite N, as long as the
coupling is strong enough such that the plaquette per-
colation is dominated by the smallest area spanning ),
and Q,, or equivalently ignoring the space-space pla-
quettes in the action. It is also easy to see in this limit
that Bspinz(ﬂgauge)N’. Therefore the nearest-neighbor
percolation probability is

Ps(py)=1—exp[—21n""(1/v/1—p,)]

and all other long-range p,(p,) vanish.

IV. NUMERICAL METHODS AND RESULTS

The numerical algorithm, used to study universality in
the case of (2+1)-dimensional Z, and Z; lattice gauge
theories, employs the approach develop by Ben-Av et al.
[4], which uses the field strengths instead of gauge fields
as dynamic variables and the Bianchi identity as a con-
straint on the dual lattice. On each dual bond (or pla-
quette) the flux ®, is an integer defined modN so that the
field-strength plaquette variable op=exp(2mi®p/N) is
an element of Z,. The Bianchi identity requires flux con-
servation (modAN) at all dual sites. This formulation can
be easily translated into an efficient computer algorithm.

(i) Each dual bond is percolated (or turned on) with
probability: p =exp[ —B(1+o0p)].

(ii) A maximal spanning tree is constructed from these
on bonds. No loops are allowed but the tree can have
several disconnected components.

(iii) A random Z, or Z; group element is assigned to
all remaining bonds whose inclusion gives rise to closed
loops.

(iv) By traversing the bonds in exactly the reverse or-
der used to constructing the tree, all bonds are deter-
mined by the Bianchi identity by requiring the product of
group elements at each node to be the identity.

If we were dealing with an infinite cubic lattice, the
above steps would be complete. However, on a finite lat-
tice with periodic boundary conditions (always a necessi-
ty for the case of finite temperature), there are new nonlo-
cal constraints. These new constraints are related to flux
conservation through closed surfaces which do not bound
any volume and hence are not a consequence of the local
Bianchi identities. For a closed surface the product of all
the plaquettes must be positive. In a 3D periodic lattice
there are three independent surfaces given by two-tori
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parallel to any two lattice axes. To correct for this con-
straint, we have added one more step to the above numer-
ical algorithm.

(v) Reject any trial configuration which does not satis-
fy the global constraints.

This rejection is necessary in order to obtain detailed
balance on the original lattice with periodic boundary
conditions. In general, one might estimate that this con-
straint will reduce our efficiency by a factor of 8 due to a
50% rejection rate for each two-torus. In fact this is
correct in the strong-coupling limit. At the critical point,
the reduction is only by about four, which indicates that
the time direction is almost frozen. Deep in the
deconfined phase, the rejection becomes irrelevant be-
cause the number of nonpercolated plaquettes are very
few and disconnected and hence do not feel the global
structure.

We are also able in each iteration to reconstruct in or-
der of volume operations the gauge fields in terms of field
strengths in a maximally fixed gauge. This allows us to
calculate the autocorrelation for the Polyakov lines as
well as the autocorrelation for the energy.

The relaxation time 7 is obtained from the exponential
fit to the standard autocorrelation functions, both for the
energy and Polyakov line expectation values. For all the
Monte Carlo runs a typical iteration number for each lat-
tice size was 5X10°, with the exception of lattices with
L =128 which involve half as many iterations. The error
in the relaxation time is estimated by dividing the data
into ten groups. The error for the dynamic exponents
was estimated through the standard propagation of the
errors for relaxation times.

A, Static universality

We have also used the random surface algorithm de-
scribed above to study the static or equilibrium proper-
ties of the Z, and Z; lattice gauge theories at finite tem-
perature in the neighborhood of the deconfining phase-
transition point. Again we emphasize the universality be-
tween the gauge models and their corresponding spin
models conjectured by Svetitsky and Yaffe [6]. Though
the Z, model have been studied previously, we believe
that the Z; model has not been studied in as much detail.
Also the direct observation of static scaling is important
in demonstrating the reliability of our methods. In addi-
tion to our fast Monte Carlo algorithm, we use the histo-
gram method of Ferrenberg and Swendsen [14] to gen-
erate data away from the critical point. Since the range
of validity of the (single) histogram method coincides
with the scaling region, we expect this method to be
efficient and reliable for our purpose.

Our technique for extracting the critical exponents is
the standard finite-size scaling method [15], whereby the
singular part of the free energy density is assumed to
have the form.

fs(B,h,L)=L _dQ(xtyxh) ’ (7)

with x,=(B—B,)L'"", x,,=hL®*7/¥ and h equal to the
external field coupled to the magnetization. We also as-
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sume the validity of the hyperscaling relations, such as
a=2—wvd, y=vd—2f3 and so on, and ignore the ir-
relevant operators which contribute to the subleading
terms. By taking appropriate derivatives of Q(x,,x,,), we
extract convenient combinations of observable. Let us
define

a"f
C,(B)= , (8)
36" |n=o0
a"f
B)=—— , 9
=g ©)

which in gauge theories are related to the moments of the
action and Polyakov expectations, respectively.

Since our primary concern is the universality of the
gauge models to their corresponding spin models, we
have tried to emphasize this aspect by adapting the fol-
lowing strategy. First we assume the validity of the
Svetitsky and Yaffe conjecture and then check the conse-
quences. Namely instead of trying to fit the values of the
critical exponents from the data, we fix their values from
2D Ising model for Z, gauge theory and 2D 3-state Potts
model for Z; gauge theory. Then we locate the critical
points and check the universality of the scaling functions.
For later reference, we note that these exponents [16] are
v=1, y=1, and B= for 2D Ising and v=2, y =1 and
B=1 for 2D 3-state Potts models.

1. Determination of B,

Aided by the scaling relations, it is easy to obtain the
relation

X+(B)
LY3B)
which is particularly useful for determining the critical

point. Moreover there is another relationship predicted
by finite-size scaling [15], which interpolates between the

G(B)= =const X (B—B,)L'"*+const , (10)

critical point in  the thermodynamic  limit,
B. =P (L = ), and the finite lattice B,(/):
B.(L)—B,=constXL ~1/¥ (1

where B,(L) is the location of the peak in specific heat
C,(B) for a system of size L. In general, the advantage of
determining B, in terms of Eq. (10), instead of Eq. (11), is
that we do not have to know any details about the model
as long as we are close enough to the critical point, while
using Eq. (11) requires the knowledge of the exponent v.
If we ignore the subdominant terms, G(f) is independent
of system size L at B=f,. So the crossing point corre-
sponds to the critical value we seek. In addition, Eq. (10)
tells us how the slope of G(f) should vary as a function
of L at B, even though it does not tell us the absolute
values. All the expectations are borne out in Fig. 2. Ex-
cept for the L =8 data, where presumably the subleading
terms are still strong, all other data do cross within a
very small region. The scatter is used to estimate our er-
rors. The results are
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FIG. 2. Plot of G(f), defined in Eq. (10). The locations of 3
at which all the curves cross correspond to the critical point ..
The dotted, dashed, dot-dashed, and solid curves are the data
for L =38, 16, 32, and 64, respectively.

B.(Z,,N,=2)=0.6562(5) ,
B.(Z,,N,=4)=0.7310(5) ,
B.(Z5,N,=2)=0.9822(5) ,
B.(Z3,N,=4)=1.0668(5) .

The results for Z, are in agreement with Ref. [12]. If we
had used Eq. (11) and assumed that v take the values of
their corresponding spin models, we would obtain con-
sistent results with errors twice as big. Notice that the
maximum of C,() can more easily be found by using the
histogram method instead of using many separate Monte
Carlo runs to scan in 3.

2. Scaling function

The expectation value of the Polyakov loop Q(B), is
equal to X, since the regular part contributes nothing to
the expectation value of the order parameter. Hence, ac-
cording to Eq. (7) and the scaling relations, we have the
following scaling function for the Polyakov loop expecta-
tion value:

30 (x,,xy)

B/v—
Q(BIL Y \

=Q,(x,) . (12)
=0
In Fig. 3 we show results in the four different cases (Z,
and Z; for N,=2,4), which as expected support the
universality as the system sizes are varied. However,
there is another more stringent test of universality [15],
which requires that the scaling functions are universal for
all the models in the same universality class with the
same finite geometry and boundary conditions, up to a re-
scaling factor for x,. The interested readers may check
for themselves that this requirement is indeed satisfied for
the gauge models with different N, values. A rescaling
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FIG. 3.

Plot of Q(x,),
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Xt

defined in Eq. (12) with

x,=(B—pB,)L'"". The B.’s are determined in Fig. 4 and the
1/v’s are taken from the corresponding spin models, explained
in the text. The dotted, dashed, dot-dashed, and solid curves
are the data for L =8, 16, 32, and 64, respectively.

factor of about 2.0 for x,(Z,,N,=4) will bring
Q,(Z,,N,=4) in coincident with Q(Z,,N,=2), while a
rescaling factor of about 1.6 is needed for x,(Z;,N,=4).

3. Determination of vy /v

In principle, after having fitted the scaling functions
for 1/v and B/v, all other exponents can be determined
by using the hyperscaling relations. However, we have
made a separate determination of y /v to illustrate the
power of the histogram method. From the ansatz in Eq.
(7), one can deduce the relation

Iny,(B,)= 'E-lnL +const. (13)

Figures 4(a) and 4(b) show results for the Z, and Z; mod-
els, respectively. The data in the log[x(B.)] versus
log(L) plots are read off from the curves of Q(fB) and
X(B), generated by the histogram method. The error bars
are estimated from the uncertainty of the B, in each case,
which is very sensitively dependent on the precise loca-
tion of the critical point. Finally, we mention that the ex-
pectation that =0 for Z, is reproduced by our data.

Before ending this section, a message of caution is in
order. The sensitivity for extracting critical exponents by
finite scaling depends delicately on precise location of the
critical point B.. A small deviation of B, from its true
value will give very misleading results. It is important to
have more than one criterion for determining 8. and to
check for consistency of its value before fitting the data to
get critical exponents. It is crucial that the histogram
method is in fact a very effective method for accomplish-
ing this consistency check.
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B. Dynamics universality

We simulated the (2+ 1)-dimensional Z, and Z; lattice
gauge theories by sitting at the critical point for fixed
N,=2 or N,=4 and exploring the spatial size dependence
for the relaxation time. Figures 5 and 6 summarize our
results. For comparison, the Swendsen-Wang relaxation
times for the corresponding two-dimensional spin models
[or equivalently (2+1)-dimensional gauge models with

1.0
08 F

0.4
0.2
0.0

6

o

In(x)
- N WA o N

1.0
0.8
c 0.6
0.4
0.2
0.0

1.04

1.06 1.08

1
NwA OO, N
T
1

1n(x)
- N WA OO, N

o

1n(L)

In(L)

FIG. 4. The upper parts of the figure are the Polyakov loop
expectations (/) and susceptibilities y(f3) for Z, gauge models
with N,=2 and 4. The dotted, dashed, dot-dashed, and solid
curves are the data for L =8, 16, 32, and 64, respectively. The
lower parts of the figure are the log-log (base e natural log) plots
according to Eq. (13). The straight lines are the one-parameter
linear fits to the data, with the slopes fixed to the corresponding
values of y /v of 2D Ising model. (b) The data for Z, gauge
models with the same notation as Fig. 6(a). The straight lines
have the slope of 2D 3-state Potts model.
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FIG. 5. Semilogarithmic plot for Polyakov line relaxation
time 7, for Z, gauge theory versus the spatial size of the system
L. The squares are the data for N, =4, diamonds for N, =2, and
crosses for N,=1. The lines are meant to guide the eyes. The
linear behaviors indicate that 7, have a logarithmic asymptot-
ics.

N,=1] are also included.

In Fig. 5 the linear behavior of the relaxation times for
the Polyakov line for different values of N, versus logl,
the logarithm of the linear spatial size, supports the con-
jecture that the dynamics proposed in [5,4] for (2+1)-
dimensional Z, lattice gauge theory at the deconfining
phase-transition point is universal to the Swendsen-Wang
dynamics for the 2D Ising model. Autocorrelations for
energy gave similar results. In particular, the data is con-
sistent with dynamic-sharing exponents zgg=0 and
zgw =0.

We also studied a log-log plot for the relaxation time
versus the spatial size to look for power behavior. Since
our lattices are limited to L <128, we cannot rule out
definitely that the relaxation time for the gauge theory

80 T T T T
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L
FIG. 6. Log-log plot for Polyakov line relaxation time 7, for
Z; gauge theory versus the spatial size of the system L. The
squares are the data for N, =4, diamonds for N,=2 and crosses
for N,=1. The lines are meant to guide the eyes. Parallel lines
indicate 7p’s with the same exponent zgg=0.53(3).
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may have a power-law behavior. However, by assuming
a power-law behavior, the dynamic exponent appears to
decrease with increasing N,[z(N,=1)=0.33,
z(N,=2)=0.27, and z(N,=4)=0.22]. This is very
counterintuitive and very unlikely, since the larger N, is
the closer the model is to the crossover to its zero-
temperature 3D counterpart, which has a dynamic ex-
ponent measured to be z;p =~0.73 [4,5]. In this sense, our
results support the claim [8] that in Swendsen-Wang dy-
namics for the 2D Ising model the autocorrelation time
has logarithmic rather than power-law asymptotics.

Figure 6 shows the results for Z; gauge model. The
power-law behavior is clearly evident for every N, value
simulated, with the exponent being independent of N,
and estimated to be zgg=0.54(3), compared with the 2D
3-state Potts model zgyw =0.55(3) [10].

V. CONCLUSION

Thus far we have considered only the models in 2+1
dimensions with gauge groups Z, and Z;. Since the
definitions for correlation functions in Egs. (1)-(4) do not
depend explicitly on the dimensionality, we expect that
dynamic universality will also hold between the (3+1)-
dimensional Z, gauge theory and 3D Ising model. Un-
fortunately, this point cannot be easily checked numeri-
cally since at present we are unable to find an efficient al-
gorithm for finding random surfaces in 4D. Note that in
this case the dual problem is also a genuine surface prob-
lem. The problem in the (3+1)-dimensional Z; model is
also difficult since the corresponding spin model, the 3D
3-state Potts model, does not have continuous phase tran-
sitions [16], the universality argument cannot be used
here. For other gauge groups a useful embedding of the
percolation variables into the gauge group has not yet
been found, so the formulation of the random surface dy-
namics is not clear.

Finally, we emphasize that the dynamic universality
advocated here has only been discussed for the special
nonlocal dynamics proposed in Refs. [4] and [5]. For ex-
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ample, it is not obvious that the heat bath dynamics for
(2+1)-dimensional gauge theory at the deconfining
phase-transition point is in the same dynamic universality
class as the heat bath dynamics for the 2D Ising model.
Numerical simulations should be performed to investi-
gate universality. In fact in a heat bath algorithm each
link only feels its neighbors, and not the full Polyakov
line, so universality appears less compelling to us.

A special feature of the finite-temperature transition is
evident in the arguments that map the gauge model into
the lower-dimensional spin model. Namely there is a sep-
aration of variables between the spatial gauge potentials
[ A(x) or the magnetic plaquettes] and the temporal
gauge potential [ 4,(x) or the electric plaquettes]. By in-
tegrating out the spatial potentials at strong coupling, the
effective Potts model can be understood as an approxima-
tion. Thus in looking for the source of critical slowing
down one might regard the ‘“magnetic modes” as fast
modes and the “electric modes” as slow.

To test this idea we have performed a Monte Carlo
“gedanken” experiment in which the time links are up-
dated many times (N ) to equilibrate the electric modes
followed by a single update of the spatial magnetic modes
(Np=1). We observe that by regarding the entire update
(many electric hits and one magnetic hit) as single cycle,
critical slowing down is drastically reduced the more we
rely on magnetic updates (N /Np— ). We feel that
additional studies such as this to isolate the slow modes
in Monte Carlo algorithms will help both to advance our
basic understanding of the dynamic universality classes
and to inspire new collective-mode algorithms to circum-
vent the problem of critical slowing down for large-scale
QCD simulations.
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