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Coulomb field of an accelerated charge: Physical and mathematical aspects
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The Coulomb field of a charge static in an accelerated frame has properties that suggest features of
electromagnetism which are di8'erent from those in an inertial frame. An illustrative calculation shows
that the Larmor radiation reaction equals the electrostatic attraction between the accelerated charge and
the charge induced on the surface whose history is the event horizon. A spectral decomposition of the
Coulomb potential in the accelerated frame suggests the possibility that the distortive e6'ects of this
charge on the Rindler vacuum are akin to those of a charge on a crystal lattice. The necessary Maxwell
field equations relative to the accelerated frame, and the variational principle from which they are ob-
tained, are formulated in terms of the technique of geometrical gauge-invariant potentials.

I. MOTIVATION AND INTRODUCTION

The classical and quantum-mechanical pictures of a
charged particle together with its Coulomb field are well
known in an inertial frame: The classical picture is the
one where the static charge is the source of its spherical
electric field which can be derived from the electrostatic
potential. The quantum-mechanical picture is the one
where the charge is surrounded by a cloud of virtual
quanta [1,2] each one of which is emitted and reabsorbed
by the charge. The (self-)interaction energy due to these
processes gives rise to the "renormalized" experimentally
observed rest-mass energy of the charged particle. If a
second charged particle is present then there are two
clouds of (virtual) quanta. In this case there is a probabil-
ity that a quantum emitted by one charge can be ab-
sorbed by the other, and vice versa. The mutual interac-
tion energy due to such exchange processes is given by

eV(X„X2)=e, ez
X) X2I

ik(X —X )1 ik (X& —X2) d k

the familiar ("Yukawa") scalar potential, which for m =0
reduces to a Coulomb field. A key ingredient to this re-
sult is that the quanta responsible for this interaction are
the familiar Minkowski quanta, the elementary
modifications (="excitations") of the familiar
translation-invariant Minkowski vacuum.

The question now is this: Does the quantum-
mechanical picture of the exchange interaction between a
pair of charges extend to an accelerated frame? In other
words, can the classical potential energy between two
uniformly accelerated charges (in the same accelerated
frame) still be attributed to the exchange of virtual quan-

ta in the accelerated frame?
To answer this question it is not enough to restrict

one's attention to the quantum mechanics based on the
Minkowski vacuum and its excitations. The ground state
of an acceleration-partitioned field is entirely di6'erent
from the Minkowski vacuum. Indeed, that ground state
determines a set of quantum states which is disjoint from
(i.e., unitarily unrelated to) the set of quantum states
based on the Minkowski vacuum state [3]. Physically
that ground state has the attributes which are reminis-
cent of a condensed vacuum state [4].

Very little is known about interactions between parti-
cles and an acceleration-partitioned field in its (con-
densed) ground state. The contrast between such interac-
tions and those that are based on the Minkowski vacuum
state of the field raises some nontrivial issues of principle
which are not answered in this paper however.

Here we shall erect the framework that allows a very
economic analysis of the interaction between currents
and fields. The system is, of course, the classical Maxwell
field with its charged sources. The utility of this frame-
work lies in the fact that the four-dimensional problem
has been reduced to two dimensions in such a way that
the field and the charge current can be viewed relative to
any linearly accelerated coordinate frame.

This paper accomplishes four tasks.
(1) Sections II and III formulate the full classical

Maxwell electrodynamics in terms which are most natu-
ral for a linearly accelerated coordinate frame. This is
done by exhibiting a reduced ("2+2")variational princi-
ple and the concomitant reduced set of decoupled inho-
mogeneous wave equations for the to-be-quantized
transverse-electric (TE) and transverse-magnetic (TM) de-
grees of freedom. The reduction procedure is not new. It
has already been applied to the linearized Einstein field
equation of a spherically symmetric spacetime [5].

(2) Sections IV and V give what in an inertial frame
corresponds to a multipole expansion. Section VI re-
views the well-known quantum mechanical picture of the
interaction between two charges as a spectral sum of ex-
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change processes, and then gives a spectral decomposi-
tion of the Coulomb potentia1 between a pair of linearly
uniformly accelerated charges.

(3) Section VII suggests that the Coulomb attractive
force between an accelerated charge and the induced
charge on its event horizon be identified with Larmor's
radiation reaction force.

(4) Section VIII compares a pair of charges static in the
vacuum of an accelerated frame to two polarons, and
then draws attention to the possibility that their interac-
tion might be diferent from what one expects from quan-
tum mechanics relative to the inertial vacuum.

II. THE REDUCED VARIATIONAL PRINCIPLE

Classical Maxwell electrodynamics is a consequence of
the principle of extremizing the action integral:

r[~„]=f f f f
+J"A„&—g d4x . (2.1)

The resulting Euler equations is the familiar system of in-
homogeneous Maxwell wave equations

A"' —A '" =4m JiP rP

These equations imply charge conservation:

(2.6b)

Here k = (k, k, ) identifies the harmonic.
The a refers to the coordinates x =y or x =z, which

span R, the transverse symmetry plane on which the Eu-
clidean group acts. The expression e', is the antisym-
metric Levi-Civita symbol.

Instead of this set of translation eigenfunctions one
could just as well have used the complete set of scalar
Bessel harmonics (rotation eigenfunctions),

Ykm(& g) J (k&)&™k Qk2+k2

and the concomitant set of vector harmonics. Indeed,
one can equally well use an orthonorrnalized discrete set
of trigonometric or Bessel harmonics on a finite rectangle
or a disk in the y-z plane. %'hich of all these possibilities
one must choose depends, of course, entirely on the
boundary conditions which the Maxwell field satisfies in
the y-z plane. However the reduced form of the varia-
tional principle and the inhomogeneous Maxwell wave
equations [see Eqs. (3.1) for the TM modes and (3.2) for
the TE modes] have the same form for all these difFerent
harmonics.

For the sake of concreteness we shall use the familiar
translation scalar and vector harmonics, Eqs. (2.5) and
(2.6). All the normalization integrals for the vector har-
monics follow directly from

f f ( Y")*Y"dy dz=5(k —k~)5(k, —k,')

J =0 (2.3) —:5 (k —k') . (2.7)

I[A„+A„]=I[A„]. (2.4)

A. Scalar and vector harmonics

But this fact also follows directly from the demand that
I be invariant under gauge transformations
A„—+ A„+A „,i.e., from

Thus one has, for example,

f f ( Y")*,Y „dy dz =k, kb5 (k —k'),

f f ( Y")~ e' Y"'e dy dz =k 5 (k —k'),
k'=k'+k'

Z

(2.8a)

(2.8b)

The fact that the y-z plane accommodates the Euclide-
an group of symmetry operations implies that one can in-
troduce various sets of scalar and vector harmonics
which have simple transformation properties under the
various group operations. We shall use the complete set
of 5-function normalized scalar harmonics

while the "longitudinal" and the "transverse" vector har-
rnonic are always orthogonal:

f f ( Y"),Y"i,e 'dy dz =0 . (2.9)

A11 integrations are over R, the y-z plane.

i(k y+k z)
Y y, z = 8

2~

and the corresponding two sets of vector harmonics,

(2.5) B. Transverse manifold R
and longitudinal manifold M2

and

yak =«k rk
x

a= 0 (2.6a)
In order to reduce the variational principle and the

Maxwell field equations, one expands the vector potential
and the current density in terms of these scalar and vec-
tor harmonics. The four-vector potential is

A~(x )=(A~(x ), Ab(x ))
r

g~k gykg~'(x')Y' g a'(x') +a "(x')'
k ax' Bx

and the four-current density is

(2.10)
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J„(x') = (Js(x '),Jb(x ') )
T

yak gykgj (x }Y'",g j (x ) +J (x ) e'
k k ax' Bx

(2.11)

Here
oo

~ ~ ~ ~ ~ ~

k oo oo
(2.12)

g„iidx "dx = —g dr +dg (2.17)

the metric of the longitudinal submanifold M has the
form

is the mode integral over the harmonics. The scalar (on
R ) harmonic expansion coefficients are a~(x ) and
j~(x ). They are components of vectors on M, the
two-dimensional Lorentz spacetime spanned by
x =(x,x'). Similarly the expansion coefficients for the
vector {on R ) harmonics Y b are a "(x ) and j"{x ),
while those for Y, e'& are 2 "(x ) and J"(x ). All these
coeScients are scalars on M . Evidently the four-
dimensional Minkowski spacetime M, which is coordi-
natized by x'=(x, x', x,x ), has been factored by the
symmetries transverse to the acceleration into the prod-
uct

M4=M'XR' .

Here M is coordinatized by x =(x,x') and R by
x =(x,x )=(y,z). The metric of M relative to the ac-
celerated coordinate frame has the form

In general however, the coordinate frame is not uni-
formly accelerating, and the metric does not have a cor-
respondingly simple form.

Qur task of "reducing" the Maxwell field equations
and its variational principle consists of formulating them
strictly in terms of geometrical objects defined solely on
M . Roughly speaking, we "factor out" the y —z depen-
dence of each harmonic degrees of freedom. Thus we in-
troduce the harmonic expansions Eqs. (2.10) and (2.11)
into the Maxwell wave equations (2.2) and equate the
coefFicients of the corresponding scalar and vector har-
monics. The result is the reduced set of Maxwell wave
equations (3.1) and (3.2) on M .

The reduction of the variational principle is more in-
formative because it directly relates gauge invariance to
the structure of the wave equations. Thus introduce Eqs.
(2.10) and (2.11) into the action integral, Eq. (2.1). Using
the fact that

d~ =g~ dx~d

=g„~(x )dx "dx +g,b(x")dx'dx~ .

It is block diagonal

gAB
t:g„.] ()

(2.13)
&—g d'x =& g"'d'x dy—dz

with

g' '=det[g~ii],

do the integration over R,

(2.18)

g &dx dx =dy +dz

and the scalar and vector fields given by
k k

Y( ') ~Y
d

~Y
axb ' ax'

(2.14)

We shall call M the longitudinal submanifold because
it contains the world line of a linearly accelerated charge.
The geometric objects intrinsic to it are not only its
metric tensor field

Consequently M and R are mutually orthogonal sub-
rnanifolds. Vfe shall call R the transverse submanifold
because it is perpendicular to the world line of a linearly
accelerated charge. The geometric objects intrinsic to it
are its metric tensor field,

f" f" ( ~ ~ )dydz.

I = Q ITM + Q ITE .
k k

(2.19)

Here the mode "summation" is given by Eq. (2.12). The
action for a TM mode of type k = (k», k, ),

Finally make use of the orthogonality and the normali-
zation integrals Eqs. (2.7)—(2.9). After a straightforward
evaluation, the action integral decomposes into two in-
dependent sums over each of the familiar transverse mag-
netic (TM, no magnetic field along the x direction) and
the transverse electric (TE, no electric field along the x
direction} modes:

g„~(xc)dx "dx~ (2.15)

but also the scalar and vector fields given by the
coefficients of the harmonics in Eqs. (2.10) and (2.11).
Relative to a linearly and uniformly accelerated coordi-
nate frame given by

x(AD ~ A~ D)g~Dg cE—
'k'A~A ~+4' ~—ag—
2

+4~k'ja *]&—g "'d'x, (2.20)

t =g'sinhr, x =g'cosh' (2.16) where
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AB=QB Q B
k k (2.21)

Ae —a
—k a

—k
B B,B

refers to the mode —k —= ( —k„,—k, ).
Because the total Maxwell field is real, k~ —k corre-

sponds to taking the complex conjugate of an amplitude.
Thus denoting YB as the complex conjugate of YB is con-
sistent.

The action for a TE mode by contrast is

I = ——'A BA*cg
k

——'k AA +4mJA*]+ —g ~d x

gives rise to charge conservation, Eq. (2.3). The gauge
scalar 4 has the form

@—yak(x c)yk

One sees from Eq. (2.10) that it induces the following
changes on the vectors and scalars on M for each mode
(we are suppressing the mode index k):

aa aa =as+4', a

a~a =a+/,
Aa ~Aa =aa —a a =Aa,

(2.22)

Here we suppressed superscripts by letting A = A, and
we set A *= A "because the total Maxwell field is real.

III. REDUCED MAXWELL WAVE EQUATION

0=: a~ =4~j .5I
IB (3.1b)

For the TE modes one has

It is now straightforward to obtain the reduced
Maxwell field equation by extremizing the action. For
the TM modes one has [5]

5I0=: (Acla —Aalc) +k Aa=47rja, (3.1a)
5aB

Thus one sees that Aa and A are gauge-invariant
geometrical objects on M, while aB and a are gauge-
dependent objects on M . If one demands that the re-
duced action, Eqs. (2.19), be gauge invariant, i.e.,

I [aa+P a;a+/; A]=I[aa, a; 3],
then one has

BIB k2j =0,

i.e., charge conservation for each mode. It is clear that if
the action is required to be an extremum under arbitrary
variations, i.e.,

I [aa +5aa; a +5a; 2 +52 ]=I[aa;a; 2 ],

O=: —A l'+k'A =4~v .
'6I

5A
(3.2)

Here the vertical bar means covariant derivative obtained
from the metric

JlB k J=O. (3.3)

It is obtained from the divergence of Eq. (3.la) combined
with Eq. (3.1b).

A. Gauge invariance and charge conservation

ggB dX dX

on M2. It is clear that Eqs. (3.1) and (3.2) are geometrical
vector and scalar equations on M2. They are equivalent
to the unreduced Maxwell wave equations (2.2). The re-
duced charge-conservation equation corresponding to Eq.
(2.3) is

and thereby gives rise to the Maxwell field equations (3.1)
and (3.2) then charge conservation is guaranteed. This is
so because a gauge transformation is merely a special
type of variation which keeps I stationary.

What is not so clear at first is why the Maxwell wave
equations (3.1) and (3.2) are manifestly gauge invariant,
while the action IrM in Eq. (2.20) does not enjoy this
property. The offending terms in that integral are

f f (j aa+k ja*)+—g' 'd x .

If one assumes charge conservation, i.e., Eq. (3.3), then
these offending terms becomes

=f f (I'aa+I'laa*)& g"'d'x-

= f fj (a*—a* )+—g'"d'x

f f aA*~ (2)d2

The requirement that the action I be invariant under
the gauge transformation

which is manifestly gauge invariant. %'e therefore see
that the manifestly gauge-invariant action functional

4 f f [ 2(Aalc Acla)A —k A A'+4~ aA*]+-
k2 f f [ ~.a~, cg —,k ~~*+4nJA*]V' —g'2'd2

(3.4)
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yields all Eqs. (3.1) and (3.2) except one, namely, Eq.
(3.1b). To obtain it, charge conservation has to be as-
sumed explicitly; it cannot be obtained from the manifest-
ly gauge-invariant action functional.

[+,".hM=
C'ecB Y" —A B Y,b

ABYb 0 (3.12)

IV. ELECTROMAGNETIC FIELD DUE TO A PURELY
LONGITUDINAL CURRENT

B. The electromagnetic Seld

The TE field modes and the TM field modes are totally
decoupled from each other and thus evolve independent-
ly. It is easy to obtain the electromagnetic field. It
decomposes into blocks

+BC +Bb
(3.5)

bB bc

With the help of Eq. (2.10) the Maxwell field of a tyPical
TE mode has the form

0 A BYde"b
I~k
L pv JTE g yk ~d gk2yk~

, B ~bc
(3.6)

Here the gauge-invariant scalar 2 satisfies the inhomo-
geneous TE wave equation (3.2):

—W ~' +k'W =4~J

The Maxwell field of a typical TM mode has with the
help of Eq. (2.10) the form

(A, c B
—AB c)Y' —AB Y"b

I:F„".hM= 0B,b
(3.7)

~C~B B~C @~CB ~ (3.8)

The gauge-invariant vector potential AB on I can
readily be obtained by decoupling the inhomogeneous
wave equations (3.1). Observe that

There is an equally good, if not slightly more direct
way, of solving the vectorial TM equations (3.1). Suppose
the current is purely longitudinal, i.e.,

J"=(J,J', 0,0) . (4.1)

but j %0. The fact that J=0 implies that the TE modes
satisfy the homogeneous wave equation (3.2). They do
not interact with a longitudinal current. The TM modes,
on the other hand, satisfy the TM wave equations (3.1)
with j=0. With the help of Eqs. (3.8) and (3.9) they are

—[AE FE "] ECB+O'A B=4BJB.
A. )B

—0 .

(4.2a)

(4.2b)

As a consequence, the charge current j on M also
satisfies

(4.3)

That A and j have zero divergence implies
("Helmholtz's theorem") that there exist two respective
scalars g and tl on I such that

This happens if, for example, a charge is accelerated
linearly but otherwise quite arbitrarily. This is the exam-
ple in the next section where a uniformly accelerated
Coulomb charge is considered. For purely longitudinal
currents such as these, the reduced current on M have,
according to Eq. (2.11),

J=O, j =0

where

C = AEFeEF .—
t

(3.9)

AB y ECB

jB ~CB

(4.4a)

(4.4b)

e eBD=SD
CB C (3.10)

and take the divergence of both sides of Eq. (3.la). The
result is the master TM wave equation on M:

—e ~D+k'C =4~jB~De' (3.1 1)

From its solution one can recover all components of the
TM electromagnetic field in Eq. (3.7). Indeed, the gauge-
invariant vector potential A.B is obtained from the vector
equation (3.1a). Combining it with Eq. (3.8) one obtains

A B = [4irjB +@ CeB ] /k

Thus for the electromagnetic field for a TM mode, Eq.
(3.7), is

This quantity is a scalar on M and it is the longitudinal
electric field amplitude of a TM mode. It is not to be
confused with the gauge scalar in Sec III A. The quantity
ecB are the components of the totally antisymmetric ten-
sor on M . Multiply both sides of Eq. (3.la) by F. , use Upon integration one obtains the TM wave equation for a

general longitudinal current, Eq. (4.1a),
—y, ~'+k'y=4~~ . (4.5')

This TM equation evidently has a structure identical to
that of the TE wave equation (3.2}. The scalar TM equa-
tion yields the electromagnetic field mode, Eq. (3.12). Its
form with the help of Eqs. (4.4a), (3.9},(4.5), and

~EF @ID
t

is

iD k C k
4,DECB Y P, CEB Y b

k[F „.]TM . DYk 0Y,D ~B,b
(4.6)

This is a TM electromagnetic field mode due to an arbi-

In terms of these scalars the TM wave equation (4.2a) be-
comes, with the help of Eq. (3.10),

—[gB ] c+k g C=4mj EBC=4~g c . (4.5)
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trarily linearly moving charge distribution. We shall now
consider this TM field due to a point charge in a linearly
uniformly accelerating coordinate frame.

V. INTKRACTIQN BETWEEN STATIC CHARGES

In particular, let us obtain in the accelerated frame
what corresponds to the Coulomb field in an inertial
frame and thereby exhibit what corresponds to a mul-
tipole expansion in the inertial frame. This expansion in
terms of the appropriate special functions is a natural
consequence of the 2+2 decomposition of the Maxwell
Geld.

The current four-vector of a point charge e with four-
velocity dz" /ds is [6]

dz" 4J"(x')= f 5 [x'—z (r)]dr .v' —g — dr (5.1)

A charge which is static in a linearly uniformly ac-
celerated frame has the world line

t =$0sinhr, x =$0coshr,

J'= —5(g —$0)5(y —y0 )5(z —z0 ),
J~=S~=I'=O .

(5.2)

Z =Zp

The current four-vector components relative to the
coaccelerating basis are

Q(x —x0) +(y —y0) +(z —z0)

= e g r '(r ) ' 'Pi(cos8)
1=0

of an inertial charge. Corresponding to the multipole of
index I, one has in an accelerated frame multipoles of
(continuous) index k. Their fields at g) g0 are given by

[2ekI, (k/0)J0(kr)]J, (kg), 0(k .

The details and the derivation of Eqs. (5.5) and (5.6) are
given in the Appendix [7—9].

VI. SPECTRAL REPRESENTATION

Quantum mechanically the Coulomb energy between a
pair of static charges is a spectral sum of processes in
each one of which a pair of virtual quanta is exchanged.

In order to motivate the extension of this spectral
decomposition from an inertial frame to a uniformly ac-
celerated frame, let us recall its quantum mechanical
basis relative to the inertial frame. The key features are
already contained in the simpler Yukawa interaction,
which is mediated by a scalar field instead of the vectorial
Maxwell field.

Between two heavy inertial nonrelativistic nucleons sit-
uated at X1 and X2 the interaction is

g2 e 1 2

(6.1)
1 2

It follows from Eq. (2.11) that the source for the re-
duced TM and TE wave equation is

It is the quanta of the scalar field P,

( +m )/=0, (6.2)

j =J=0 .

—i(k yo+k zo)

(5.3a)

(5.3b)

(5.4)

which mediates this interaction. Indeed, the Hamiltoni-
an for the interaction between this meson field and the
two heavy nucleons is

H;„„=gf [F(X,—Y)+F(X,—Y)]P(Y)d'y . (6.3)

Applying the formalism of Sec. IV to Eqs. (5.3) and
(5.4), one finds that the Coulomb potential of the charge
due to (5.2) in the accelerated frame is

(g2+g 2)1/2
V (4 4 y —

yo z —zo)=e —1, (5.5a)

where

Here g is the coupling constant ("charge") of a nucleon,
and I expresses the finiteness of a nucleon, which in the
limit of a point charge yields

F(X—Y)~5 (X—Y) .

The interaction Hamiltonian perturbs the lowest-energy
state of the unperturbed Hamiltonian

[C+e+(y —y )'+( —o)']' —4Ao'

4g'0
(5.5b) H0= f coI,&i*,akd k +2M (6.4)

An alternative representation is

V(k roy —yo z —zo)

=e f 2($0Ii(kg'()Ki(kg) )J0(kr)k dk . (5.6)
0

This representation is analogous to the familiar multipole
expansion

&2, 0~H;„„~n ) & n~H;„, ~2, 0)
2M E„—(6.5)

of the system: two nucleons each of rest mass M together
with the meson field whose quanta have energy cok. The
perturbation in the lowest-energy state is determined by
second-order perturbation theory, and it is given by



COULOMB FIELD OF AN ACCELERATED CHARGE: 3893

The meson field operator

e'"'"d k+Herm. adj.

(6.6)

a decomposition which parallels the one for an inertial
frame, Eq. (6.10).

A normal mode solution to the wave equation in an ac-
celerated frame is

i(k y+k z)

e '"'K (kg)inc) 2
in the interaction Hamiltonian implies that the only in-
termediate states contributing to hE are those consisting
of two nucleons plus one meson. Making use of

( ~ ~ ~ )I. &(nl( ~ ~ ~ )

2M —E„
( )I2, 1i, ) (2, 1|,l(

d k,
COg

and the corresponding basis function is

i(k y+k z)

K;„(kg)
2

(6.12)

Like their inertial cousins in Eq. (6.10a), these basis func-
tions are orthonormal and they form a complete set.

Indeed, the longitudinal (g-dependent) part of this
function satisfies the orthogonality relation

a modest amount of algebra yields

aE= — g, f f f ~r(k)~' '

(6.7)

f sinhncoK;„(kg)K; (kg')

= [5(co co')+—5(a)+pi')], (6.13)

the completeness relation

X(1+1+e
ik(x —x )

(6.8)
f K; (kg)—K; (kf) dco=5(g —g') (6.14)

E =~E, +~Ex .

Here the exchange energy is

(6.9)

Thus the perturbation hE arises from four processes in-
volving the emission and reabsorption of quanta. In the
first, nucleon number one emits and absorbs a quantum.
In the second, nucleon number two does the same. In the
third and fourth, a quantum which is emitted by one nu-
cleon gets absorbed by the other. Thus the perturbation
b,E decomposes into

(K,„is an even function of co) and the difFerential equa-
tion

—k g' K;„(kg)= K;„(kg) . (6.15)

Applying the completeness relation to the right-hand side
of Eq. (Al), expanding the solution to Eq. (Al) in terms
of the longitudinal wave function K; (kg), using Eq.
(6.15), and finally using the orthogonality relation Eq.
(6.13), one obtains

= d
2 ik.(X)—X~)

~E, = — g, fff', , d'k

—m/x, —x, /

g e

/x, —x, [

(6.10a)

(6.10b)

—i(k yo+k z&)=2ee

~ 2ei sjnh~ei Wicu(kk)Kin&(kgp)dcofX
co +1 (6.16)

+R
(6.11)

One can probably give an analogous succinct derivation
for an accelerated frame, but in that case additional qual-
itative features enter. See Sec. VIII. The purpose of this
present section is to give in the accelerated frame a spec-
tral decomposition of the Coulomb energy

This result can also be obtained without using the com-
pleteness of the set of wave functions K; (kg). One sim-
ply accepts a well-documented integral [10] to replace the
product in Eq. (A4) with its spectral representation, Eq.
(6.16).

The total Coulomb potential is now given by Eq. (5.13).
The spectral decomposition of the Coulomb energy
V =ey between two static charges in a linearly accelerat-
ed frame is therefore

(g2+R 2)1/2
V(g, gp, y —yp, z —zp) =e2 —1

-f - f - 2~sinh~~ Ai(kf)K; (kkp) 'e"'" "'+" ""
=28

0 —ao —oo m+1 2m
dcodk dk, . (6.17)
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This is the interaction which is analogous to the
Coulomb interaction, Eq. (6.10), in an inertial frame.

VII. RADIATION REACTION

go+/ +r=e —1

Q(g2+ g2+ „2)2 4g2g2
(7.1)

one might wonder: Where is the emitted Larmor radia-
tion? We shall answer this question with a heuristic ar-
gument which is based on the idea that the future event
horizon is the history of a two-dimensional resistive
membrane [11—13].

Recall the Lorentz-Dirac equation of motion of a point
particle of mass m and charge e under the action of an
external force F":

With a fixed (at go, yo, zo) charge e giving rise to its
static Coulomb potential

m(k 40 y yo z zo)
2 d'x d'x~

power= —e, g & .
ds ds

(7.4)

Let us illustrate an alternative viewpoint by deriving
this power for a Coulomb charge static in a linearly uni-
formly accelerated coordinate frame. The line of reason-
ing goes roughly like this: Let the charge be fixed at
(go,yo, zo) in the accelerated frame. The charge is sur-
rounded by equipotential surfaces, Eq. (7.1):

(g2+g 2)1/2
V(4 4y —y. z —z. )=e —1 =const .

physically the two go together.
The right-hand side, apart from F", is the Larmor ex-

pression for the rate at which the charged particle loses
momenergy in the form of EM radiation. The Lorentz-
Dirac equation demands that this radiation reaction
four-force change the inertial plus bound EM momenergy
of the charged particle. The magnitude of the radiation
four-force is given by the invariant Larmor formula

d dx" 2 2
d2xl"

ds ds 3

2 2dx d X d X
e

3 ds g +F" . (7.2)

The electric field

—1 dy
dg

4/0(go+r —g )

[(g2+g2+ 2)2 4g ]3/2

E =+„u"=Ig"I'"F =

dx" 2 2d x~P"=m e
ds 3 ds 2

(7.3)

It is the sum of the particle's inertial momenergy
( ~ dx "/ds) and the EM momenergy ( ~ d x "/ds ) which
is always bound to the charge no matter what its instan-
taneous state of acceleration might be. Although one
often talks about these two momenergies separately,

This equation together with its physical interpretation
[14,15—17] is a direct consequence of the conservation of
total momentum-energy (="momenergy" [18]), elec-
tromagnetic together with mechanical, of the particle
along its world line.

Also recall that the EM momenergy of a charge splits
unambiguously into two mutually exclusive and jointly
exhaustive parts: (1) that which is radiated and (2) that
which is bound [14] to the charge. Each of these two
parts is determined by its own respective EM stress-
energy tensor, both of which are divergenceless every-
where except on the world line of the charge. The identi-
fying feature of the radiated stress-energy tensor is that
(a) it is quadratic in the acceleration and that (b) its form
is that of a simple null fiuid, even close to the charge [14].

There is a third part of the momenergy; it is purely
mechanical and it describes the "bare" (i.e., without any
EM field) particle. Its stress-energy tensor is also diver-
genceless everywhere except on the particle world line.

As for any total stress-energy tensor, the sum of its
three individual sources vanishes. In fact, the sources
and sinks of the three stress energies are balanced per-
fectly along the whole history of the particle. This bal-
ance is expressed by the Lorentz-Dirac equation (7.2).

Its left-hand side is the rate of change of momenergy

—1 dy
dy

(y —yo)gko

[(g2+g2+ 2)2 4g2g2]3/2

1

dz

(z —zo)Sgo

[(g2+g2+ 2)4 4g2g2]3/2

E —=S u"=Ig'"I'"F =
yo

ko

E,=r,„u~=Ig"I'"F =

ko

(7.5)

is perpendicular to these potential surfaces and hence
also to the event horizon /=0 where y=0. There this
electric field induces the surface charge density [19—21]

e koo= EI ~ (g2'+, 2)2
(7.6)

The total charge induced at the event horizon is

f" f "~dydz= —e. (7.7)

This, by the way, supports the fact the event horizon
behaves like the history of a conductive surface [11—13].

Electrostatics implies that there is an attractive force
between the point charge e and the surface charge density
o. From symmetry this force is directed along the g
direction and has magnitude

E2
IforceI =

—,
' f fEto I & ody dz = f f dy dz

g=o

2 e
3 ko
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of

power= —', e (acceleration) (7.8)

in terms of relativistic units, which we are using. This
force, or power, is a rate of change; furthermore, it is a
rate of change which is tangential to the future event hor-
izon. It therefore expresses a Aow of momenergy across
the two-dimensional membrane (spanned by y and z)
whose history is that future event horizon. Conservation
of momenergy ("for every action there is an opposite and
equal reaction") implies that the momenergy gets drained
from the charged particle at a rate, which yields the mag-
nitude of the radiation reaction on the right-hand side of
the Lorentz-Dirac equation (7.2).

Identifying the momenergy in the event horizon with
radiation momenergy losses along the particle worM line
hinges on a tacit assumption: None of the particle's
bound [14] stress-energy tensor enters into the momener-

gy conservation between the particle's world line and its
future event horizon.

The fact that the rate given by Eq. (7.8) agrees with
Larmor's formula (7.4) leads us into making two observa-
tions.

(1) The existence of charge density on the event hor-
izon is a purely observer-dependent phenomenon. This
hypothesis is illustrated by the difference in the physical
interpretation of Eqs. (7.4) and (7.8). Relative to an iner-
tial observer there is, of course, no charge on the event
horizon of the accelerated frame. Equation (7.4) is inter-
preted as the loss of (four-) momentum from an isolated
charge. By contrast, relative to an accelerated frame, Eq.
(7.8) demands that the loss of momentum from this "iso-
lated" charge is in fact due to an electrostatic interaction
mediated by Eq. (7.5).

Thus the radiation field in the inertial frame becomes
an electrostatic field in the accelerated coordinate frame.

This electrostatic field expresses a Coulomb interaction
between the "isolated" charge and its induced twin, Eq.
(7.6), on the event horizon.

It is possible to cancel (with arbitrary accuracy) the
electric field due to this induced twin charge: At )=0+
merely distribute a layer of actual charge as dictated by
Eq. (7.6). This distribution will cancel the interaction of
the induced charge with the "isolated" charge. Remov-
ing the distribution will restore the interaction. Thus

there is no way of distinguishing the field of the charge
density (7.6) from that of an actual charge on the event
horizon of the accelerated frame.

(2) If we extend our considerations of a Coulomb field
static in an accelerated frame to those of a moving
charge, then the possibility exists of having surface
currents as well as intrinsic electric and magnetic fields
evolve on the event horizon. They give rise, among oth-
ers, to resistive forces [11] which act back on their
sources and thus could give a picturesque account of the
radiation reaction force of a point charge. Such a pic-
turesque account can often be given by referring to a
black-hole analogue. An obvious example is a charged
particle suspended above the equator of a rotating black
hole. This can be viewed as the electrostatic analogue of
a black hole rotating in an oblique magnetic field [22]. A
resistive spin-down torque is exerted on the black hole
[11] The back reaction on the charge can be viewed as
the radiation reaction which enters the Lorentz-Dirac
equation (7.2). This one can do, provided one replaces
the space-time of the rotating black hole with the ap-
propriate Aat space-time analogue: The coordinate frame
of a linearly accelerated observer with uniform transverse
drift [23].

Although one can believe that the back reaction from
the black hole corresponds to the radiation reaction in
drifting Rindler spacetime, the analogue of the increase
of the entropy of a black hole [24] is still rather murky.
This is so because there does not yet exist for Rindler
spacetime a definition of what in gravitation physics is
called a black-hole entropy [24].

That such an analogue should exist is not entirely un-
reasonable if one recalls that radiation losses from an ac-
celerated charge are resistive and hence irreversible in na-
ture. It presumably is this irreversibility which would be
expressed by an increase in the to-be-defined entropy of a
Rindler event horizon.

Vm. ACCELERATED POLARONS7

Compare the Coulomb interaction energy between a
pair of charges static in an accelerated frame as given by
Eq. (6.17), with the Yukawa interaction energy between a
pair of charges static in an inertial frame:

2
—mlXl X

ix, —x, f

I i(k z+k y+k z) dkz~kydkz—e X P z

k'+ k'+k'+I' (2m )' (8 1)

This interaction energy is attributed to a second-order
process which expresses the exchange of quanta of
momentum A'( k„,k, k, ) between two nonrelativistic
charges, each of rest mass m. The emission and absorp-
tion of these virtual "Minkowski" quanta takes place in

an inertial frame where the ground state of the field is the
familiar Minkowski vacuum.

In an accelerated frame, however, the elementary exci-
tations are not the Minkowski quanta. Instead one has
the Fulling quanta [25]. They are elementary excitations
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of a different ground state, the Rindler vacuum. This
ground state consists of a configuration of highly corre-
lated photons [3].

The problem of the Coulomb interaction between a
pair of charges accelerating through this correlated pho-
ton configuration is analogous to the interaction between
a pair of charges in a polar crystal ("interaction between
a pair of polarons"). In such a crystal a single charge is
referred to as a "polaron" because it consists of the
charge together with the local lattice polarization distor-
tion which the charge produces [26]. This affects its mass
("mass renormalization") and its interaction with other
charges [1] ("coupling-constant renormalization"). An
accelerated charge in a correlated photon configuration
may be viewed in the same way. The charge distorts this
correlated configuration (the "Rindler vacuum state")
and gives rise to an "accelerated polaron. " Consider the
interaction between two such "accelerated polarons. "
The description of this interaction in terms of photons is
complicated when it is done in terms of photons, just as
the interaction between two polarons in a crystal is com-
plicated when done in terms of the lattice atoms. A
much more natural description is in terms of elementary
excitations. For "accelerated polarons" this means a
description in terms of (virtual) Fulling quanta, just like
for crystal polarons this means a description in terms of
(virtual) sound quanta. These quanta have however an
effect on the Coulomb interaction [1]. Instead of Eq.
(8.1), the interaction potential (with I=0) is

1 e 1
V(X1—X2)=-

@ 4m X) X2

The potential is still of the Coulomb type, but with a
change in the coupling constant

e~e/e
due to the dielectric constant e of the crystal.

This analogy with polarons in a crystal suggests an in-
quiry as to whether the Coulomb interaction between two
accelerating charges is also altered. In other words, does
the classical Coulomb potential, Eq. (A9) or (6.17), differ
from the Coulomb potential determined quantum
mechanically by a factor which expresses the "polariza-
bility" and hence the dielectric constant of the Rindler
vacuum?
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APPENDIX: COULOMB POTENTIAL IN AN
ACCELERATED FRAME

This appendix obtains (1) the total potential of an ac-
celerated charge, (2) its resolution into what in an inertial
frame corresponds to multipoles, and (3) the concomitant
Bessel function integrals. The potential is obtained by
solving the TM master equation (4.5) with the longitudi-

nal source, Eq. (5.3). This source produces no TE elec-
tromagnetic field. Consequently we may equate this field,
Eq. (3.6), to zero.

Furthermore, the current and the field are time (r) in-
dependent. Consequently the C=1 component of the
TM Eq. (4.5) becomes, with the help of Eq. (5.3a) and
With e01 =

gz

d 1 d +I 2

g2

g(g g )
yy0 z 0 (A 1)

What are the boundary conditions that must be
satisfied by the solution to this equation? They are deter-
mined by its physical significance. The solution deter-
mines all nonzero (spectral) components of the Maxwell
tensor, Eq. (4.6},the electric field

[F1o]TM d 0 d col Y (Y»)k

d k 8[F 0 ]TM= e10Y" (y, Z) = — p„(g)Y"(p,Z}
BJI

d k 8
[Fzo]TM d eloY, z(/, z):—

~
gk(g)Y"(y, z) .

BZ

Relative to the physical ( =or thonormal) basis ( g d r, d g )

it satisfies the boundary conditions

d

dg
~0 as g~ ~ (spatial infinity),

d
d

~finite as $~0 (event horizon) .

(A2)

(A3}

It follows that the spectral potential, obtained from the
solution to Eq. (Al), is

yk(g) =g =2ee y ' ' ' g'0I, (kg' )IC, (Kg },

where

I1 ( k g )K 1 ( k go ) g & go

(k~o)+ (

(A4)

Here K& is the modified Bessel function which vanishes
exponentially as g—+00, and I1 is one which vanishes
linearly as g—+0. The total Coulomb potential is ob-
tained as a sum from its spectral components:

Thus

mk(k) =4 d
= d

is the (spectral component of the) Coulomb potential, Eq.
(4.4a),

~0= —uk(k) = —0 d
d
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i(k y+k z)

~(4 4 y y—o z z—o) =f" f" mk(k)

2~ eikr cos(9—a)
=2ego f I, (kg& )K, (kg& )f -da k dk .

0 0 2' (A5)

Introduce the Bessel function

eikr cos(0—a)
Jo(kr) =

0 27r

where

r =Q(y —yo) +(z —zo), r cos8=y —
yo

k =V k~+k„k cosa=ky .

Consequently, the potential becomes an integral involv-
ing the product of the three Bessel functions

one can use for go & g the integral [9]

f Ii(ikgo)J, (kg)Ko(kr)k dk
0

) i/2(u)

t 2' ( —1)'

to evaluate Eq. (A6). With the help of Eq. (A7) the result
is the same as Eq. (A8), except that go & g, as expected.

We conclude therefore that the Coulomb potential (A5)
due to a static charge e in a (linearly uniformly) accelerat-
ed frame is

(A6)

where

1/2

=( o)
. l ~1/2(u)

(
2 1)i/4

V(k k. y —
yo z —z. )

=2egof I, (kg&)Ki(kg&)Jo(kr)kdk .
0

For g & go the integral is [7]

f I, ( kg) Ki( kg o) Jo( kr) kdk
0

V(k ky —
yo z —zo)

(g2+R 2)l/2=e —1
R

=e f 2', (kg, )K, (kg. )J,(kr)k dk .

where

R =g (u —1)

(A9a)

and

Q,'//z (cosh@ ) =i
2 sinhy

$2+ f2+ r 2

2go

(A7a)

(A7b)

[$2+$2+(yy)2+(zz)2]24/2/2
4'

The representation (A9a) is the familiar expression ob-
tained by Boulware [27]. Its representation (A9b) is
analogous to the familiar multipole expansion,

Then the total potential is

k&ko .u —(u —1)'/

(u —1)' (A8)

For go&/ we expect the spectral integral to yield the
same result. Indeed, by resorting to the identity [8]

I (kgo)K (kg)J„(kr)k"+'dk

=e ' '"f I (ikgo)J (kg)K„(kr)k"+'dk

Q(x —xo) +(y —yo) +(z —zo)

=e g r'&r &' 'Pt(cos8),
1=0

of an inertial charge. The "multipoles" (if one insists on
introducing them) for the charge static in the accelerated
frame are evidently characterized by the continuous in-
dex k instead of the discrete index l for the inertial case.
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