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Renormalization of the b expansion
in curved space-time
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Renorrnalization of a recently proposed b expansion for a self-interacting scalar field theory in
curved space-time is examined. The explicit calculation is carried out up to order b, vrhich indicates
that the expansion is renormalizable, but reduces to essentially the AP theory when the cutoff is
removed. A similar conclusion has been reached in a previous paper where the case of Rat space-time
is considered.

I. INTRODUCTION

A new perturbative expansion [1, 2] in quantum field
theory has recently been proposed. In the case of self-
interacting scalar theory in four dimensions, this expan-
sion, called the b expansion, amounts to replacing the
interacting term AP~ in the Lagrangian by Ag~&i+s). The
relevant quantities, such as the Green's functions, of this
theory are then evaluated as power series in b. This
expansion has been proven to be renormalizable using
a momentum-cutofF regularization scheme [3]. In fact,
when the cutoff is taken to go to infinity, the renormalized
Green's functions reduce to the ones in the AP" theory.
Thus it has been argued that all theories with the poten-
tial A$2&i+sl, for b ( 1, are equivalent. The problem of
renormalization of the b expansion from other points of
view has also been discussed in Refs. [4] and [5].

In this paper we would like to address the question of
renormalization of the 6 expansion in curved space-time
following the treatment in Ref. [3]. The interest in study-
ing quantum fields in general background space-time is
twofold. It may be considered as a first step towards con-
structing a consistent theory of quantum gravity. Hope-
fully it, will provide some hint on how to deal with the un-
controllable ultraviolet divergences present in quantizing
Einstein gravity. On the other hand, there are physical
situations, for example, the evolution of the early Uni-
verse or phenomena near a black hole, where the effects
of curved space-time are crucial and must be taken into
account [6]. To apply the b expansion to these more gen-
eral conditions, one has to first resolve the question of
renormalization.

To begin with we have to adopt an appropiate regular-
ization scheme. In Ref. [3] a momentum-cutoff regular-
ization was used. In curved space-time the formalism is
much simpler if we stay in coordinate space. Thus we use
instead a coordinate-space cutoff, or point-splitting reg-
ularization [7—9]. Since we stay in coordinate space, we
will work with the connected Green's functions instead
of the one-particle-irreducible ones.

The paper is organized as follows. In the next section
we give t, he Feynman rules for the 6 expansion [10]. In

II. FEYNMAN RULES

In this section we give the Feynman rules for the 6
expansion [10] generalized to curved space-time. The
asymptotic behavior of the Feynman propagator is dis-
cussed using the Schwinger-DeWitt expansion [11, 12].
The regularization scheme we adopt here is the covariant
coordinate, or point-splitting, regularization.

To construct the b expansion for a self-interacting
scalar field, we begin by replacing the AP~ Lagrangian
(in Euclidean signature)

& = —(74)'+ v'4'+ (oR4—'+ &4',—
2 2' (2.1)

with

6

C = -(V'P)'+ -t 'P'+ (,RP'+ AM'P-'

(2 2)

where D„ is the covariant derivative and M is some arbi-
trary mass parameter. To renormalize the theory order
by order in 6, we add counterterms to Eq. (2.2) to form
the renormalized Lagrangian

LR ———(1+ A)(V'p) + —m p + (Rp—
2 2 2

pn g2
+AZM P ) —, in-

n=1
(2 3)

where the renormalization constants are defined by

particular, the divergent parts of the propagator and the
vertex functions are discussed in some detail. In Sec. III,
we calculate the connected Green's functions of up to b~

and show that the theory is renormalizable at least up to
this order. In the last section we surrimarize our results
and give some discussion on the behavior of the Green's
functions in higher powers of b. In the two appendices, we

evaluate a divergent integral and an infinite sum which
are frequently used in Sec. III.
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A=bAi+b Ag+
m = mp+ bmi + b m2+ .

4 = (p+ b4i+ b'6+
Z = ZP+ bZg+ b Z2

with mp2 = @2+ 2AM2.
The Feynman propagator is given by

(2.4)

that in our notation covariant derivatives act on the first
argument of all t, he bifunctions. o(z, y) is related to the
geodesic distance between z and y. More precisely, if
we take s as the geodesic distance, then o(z, y) = s2/2.
The so-called Schwinger-DeWitt coefficients a„(z, y) are
defined by

o'"V'„ap ——0,

(n+ l)a„+i + o" (7„a„+i

mo-i(
)

t(V„V"-( RO)~ ) (2.5)

( i
( „"—(oR)i

For the asymptotic region y ~ z, we can use the
Schwinger-DeWitt expansion to express the matrix el-
ement:

"(a'/'a ) —gpRa„, n) 0, (2.10)

&'"(z y) - o(z y)
'" '"'

Gp(z, y) = ' ) a„(z,y)

with the coincident limit ap(z, z) = 1. Thus after doing
the integration over f, , Eq. (2.5) can now be written in
terms of the modified Bessel functions I~„(z):

1
&

—e(x,y)/2& ~1/2(z y) ) dna
(47rt) 2

(2 6)

x I&„ i ( 2crm~~). (2.11)

Using the asymptotic behavior of the modified Bessel
functions and the coincident limits [12]

where cr(z, y) and A(z, y) are symmetric biscalar func-
tions defiiied by

(2.7)

=0,

~ = —R„„
6

'7„ap(y = 0,

T„T„ap[y ~
—0,

(2.12)

(2.13)

(2.14)
(2.15)

(2.8)

with the coincident limits o(z, z) = 0 and A(z, z) = l.
o.„=9'„o. denotes the covariant derivative of o. Note

I

fl'il, -*=
I

——6o) R,
6

one can expand Gp(z, y) in a power series of o (z, y):

2 1 1
Gp(z, y) =

~

1+ mp2y (p —— R cr ln -omp2. ,
8+2o ( 6 2

l1 o"o"
2 1 f' 1

+o —R„, —m2p g(1) + — —
l (p —— RW(1) +

12 "' o2 2
(2.17)

where @(z) = d lnl (z)/dz. With this form of Gp, the ultraviolet divergences of various Feynman diagrams can be
examined. For example, the one-loop diagram in Fig. 1 gives

I =—Gp(z, y)ly-

which is ultraviolet divergent. To deal with that, we adopt a symmetric point-splitting regularization, which amounts
to make the replacements [Qj,

2

o 2'
o.„~0,

1 2opov ~ gyves4

Then, from Eq. (2.17),

1 ( 1 q 2
1'i f 1 s l 1 2 1I =

/
1 + —s~ mp q (p ——

/
R ]

lil-mps —tP(l) )

—-mp + —R
4ns~ ( 2 6p ( 2 p 2 24

where the remaining terms are of higher powers of s2 together with some powers of lns.
Now we can give the Feynman rules for the vertices, which are summarized in Table I. In the table,

(2.19)

(2.20)

(2.21)

(2.22)
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v2„ = v2„(b)(rn )

b=O

where

(2.23)

(2.24)

(rn) 2Using the expansion of I in Eq. (2.22), we can express the vertex functions vz„ in a power series of s
i

v., = 2AM ln „+g(3/2) + 1 = 2AM I +AM 8 P+ (2.25)

2I
v~ = 2AM ln + g(3/2) + 1 + g'(3/2) —1 = 2AM I + it!'(3/2) —1 + 2AM s IP+ (2.26)

and, for n&2,
n —1

ui„! = 2AM'( —1)"(n —2)! (— = 2AM2( —1)"(n —2)!(Bm~s2)" ' 1 —
( )8~P+

'2
(2.27)

n —1

u, „=4AM'! —1)"(n —2)! (— !n, + 4(3/0) + 1 +!!(1) —g(n —!))
I

= 4AM (—1)"(n —2)!(8n'-s )" '( I. + Q(1) —@(n —1)

+-s (—(n —1)CL + @(1)—&(n —1)1+1)P+ )
12—
2

(2.28)

I, = —ln2x M s + it(3/2) + 1, (2.29)

1 1P = m() + (o —— R ln —mos —@(1)
6 . . 2

1 2 1——~n" + —R, .
2 24

(2.30)

Now we have the Feynman rules for the vertices and the
propagator. Together with the usual symmetry count-
ing, various Feynman diagrams can thus be evaluated.
We shall do that in the next section to calculate the
connected Green's functions in the 6 expansion for the
self-interacting scalar theory in Eq. (2.2).

III. RENORMALIZATION

Here we consider the renormalization of the 6 expan-
sion for the theory given by Eq. (2.2) up to b2. Since we
are in general curved space-time, it is much simpler to
stay in coordinate space. We choose the covariant coor-
dinate, or point-splitting, regularization. In addition, we
have to consider the connected Green's functions instead
of the one-particle-irreducible ones. Higher-order behav-
iors of the Green s functions will be discussed in the next
section.

TABLE I. Feynman rules for the vertices.

Vertex

bA)V'„V'", b A2V'„V'",
—bmq, —b m2,

2 2 2

—bt) A, —b (2R,
—bv2 Zo, —b v2 Zp/2,(1) 2 (2)

—b v2 Zg,(&)

—b v2„Zg, . . .2 (~)

{n p2)

FIG. 1. One-loop diagrams.
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A. Order 6 X2 X3

First we look at the 4-point connected Green's func-

tion G~ ~. At order b, the only contribution comes from
the Feynman diagram as shown in Fig. 2(a). Using the
Feynman rules given in the last section and Table I, we
have

(a)

X

G, (zi, zz, zs, zq)(4)

X) X2

d'ydg(y) G.(z* y) (-bv~"~.) (31)

As we can see from Eq. ('2.27), (c)

20

X2

(~)
v4 ~s (3.2) X4

(n ~3)
X3

where s is the geodesic distance, our regularization pa-

rameter. To render G, nonzero to order b, we have to(4)

choose at least

FIG. 2. Order-6 diagrams for (a) G( ~, (b) G(, and (c)
G(2n)

1
Zp ~

s2 Gt l(z), z2, zs, z4) = —bA d ygg(y) Go(z* y)

Here we specify our renormalization prescription by
choosing

1
Zp

1.6~~ M2S2

Then,

(3.5)

which is now finite.
Next we consider the 2-point, Green's function. The

relevant Feynman diagrams are shown in Fig. 2(b), which
gives

P

G„(z(,z~) = Go(z(, z2) + d ygg(y)Go(zi i y) bAiV'„7'" —bm, —b(iR(y) —bv2 Zo Go(y, z2). (3.6)

From Eqs. (2.25) and (3.4), we see that

V~ Zp
(y)

8&2s2 (3.7)

For n ) 3, Fig. 2(c) is the only Feynman diagram that
contributes to the n-point Green's function. Since

(3.12)

where I and P are defined in Eqs. (2.29) and (2.30). Here
we adopt an oversubtraction scheme and set as s~0, wehave

Ag ——0,

Amp~ 1 1I — ln —ms s —g(l) ——
8x~s~ 16m~ 2 2

(3.8)

(3.9)

Gt "l(zi, .. . , z2„) = 0, for n ) 3.

B. Order 6

(3.13)

((0 ——
) (ln —mph —g(l)) + —. (3.&0)

1

(zi ~ z2) —GO(zl ) z2) . (3.11)

The second term in Eq. (3.6) vanishes, and

Now we consider the Green's functions to order 6 .
For the 4-point function, we have the Feynman diagrams
shown in Fig. 3. Because of the oversubtraction scheme
we have adopted, the contributions from Figs. 3(b) and
3(c) vanish. Using the Feynman rules in Sec. II and the
usual symmetry counting, Fig. 3(d) gives
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d ygg(y) d'~pa(~), Go(~' u)(b "2(+4"2l
2 (~) (~) 21

1

d%v'~(~) G.(*' ~) ~'~2I+4~2I' o&2l, o(~) (3.14)

(3.15)

and is evaluated in Appendix A. From Eqs. (2.27) and
(3.4),

Csd = ~~v'g(v) Go(x* ~)
i=1

82%2 I (( —1)
- 128~si2(/ l)I ((+ 1/2)

(3.17)

(a)

X3

(r) (S) 2 2 2l —2
2l+4 2l 0 (S )

With the asymptotic behavior of 02t 0 as shown in Ap-
pendix A [Eq. (A7)], it is easy to see that, in the limit
s ~ 0, the surviving term in Csq is finite and is equal to

The infinite sum above and its generalized form

(3.18)

are discussed in Appendix B. The values of diferent sim-
ilar sums that ere need in this section are tabulated in
Table II. In the above equation

X

X4

X3

X

(3.19)

X4r

Therefore,

4
6 A

AV'a(V) ~

'

Go(x' ~)
'

64
2&'(3/»

(3.20)

X4

X3

ow the contributions from Figs. 3(e) and 3(f) (wit" ( &

2) can be obt, ained similarly, giving

X

X)

X3

2I

(1 p 2)
d'v/g(u) Go(x, V)—

62%2
(2G —1)

(3.21)

(e) where G = 0.(l is the Catalan's constant, and

X

X2 X

TABLE II. Specific values of the function defined in Ap-
pendix B and the corresponding derivatives. G is the Cata-
lan's constant and. @'(x) = d lnI'/dx

2I
(I» q)

X4'

FIG. 3. Order-b diagrams for Q~~ ). There are three other
similar diagrams in (c), 3 in (e) and 2 in (f) with permntations
of the x's.

—5.07
—1.49
—0.76
—0.48
—0.34
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Csg(l & 2) = dye(y)

For I = 1, Fig. 3(f) gives

1
Csg(l =1) =—

2
~y/y(~)G0(zi&y)GO(z2iy)GQ(z3& z)GQ(z4& z)6 v4 v4 ZOOQ p(y)+ (3.23)

where the remaining terms come from two other simi-
lar diagrams with permutations of the z's. The vertex
functions

(3.24)

and this combination does not vanish as s ~ 0. Thus to
evaluate Csy(/ = 1), we need to find both the divergent
and the finite parts of O" 0. From Appendix A [Eq. (A9)],

O2 p(y) = [—ln-'mes+ B(y)],Sx~ (3.25)

where B(y) is the finite part of O2 s(y) and is space-time
dependent in general. Note that with I = 1, Fig. 3(f)
is exactly the same Feynman diagram that one will en-
counter in the AP~ theory.

To summarize, we have

Cs" + Cs. + Csg = d'us'y(y)
i=1

1,G, (z, , y) ~

—
~

ln-m, s+ -g'(3/2)+ 16G —ll —B(y) .
64m z) 2

(3.26)

This is of course divergent as s ~ 0. The 4-point function
can be rendered finite to order 6 by choosing an appropi-
ate Zi in the remaining Feynman diagram in Fig. 3(a),
where the vertex functions give

d'pv'g(y)GO(», y)Go(» y)

xb e2'+2v2' ZoOzi o(y).2 (1) (1) 2 (3.30)

V Zo —8 'U Zy
6 (2) 2 (y)

4 4

b'AL, —6—'A(16''M's')Z, 1+ O(s') . (3.27)

Using Eqs. ('2.27), (3.4), and (A7), and the value of f(z)
in Table II, we can evaluate the above equation following
the procedure similar to that in calculating the 4-point
function, an d we h ave

Hence, choosing

1 1
Z]

16m M 8 64+ 2 2
I, + ln-mps+ —g'(3 j2)

+16G —ll [ (3.28)

X

X2

and with Eq. (3.26), we see that, the renormalized 4-point
function to order 6 is

X1

G," (zi, z2, zs, zq) =(4) ~'y V'g(y) Go(z* y)
i=1

(c) X X2
2

b~A2
x —6A+ B(y)64~2 (3.29)

X2

The choice of Zq here is consistent with the oversubtrac-
tion scheme that we have adopted so far. Note again that
this renormalized 4-point function is basically the same
one in the AP~ theory.

The Feynman diagrams relevant to the connected 2-
point function are shown in Fig. 4. The contributions
from Figs. 4(b) and 4(c) vanish because of our oversub-
traction scheme. Consider first the Feynman diagrams in
Fig. 4(d),

X

X1 ~z 2

2I+1
(I a 1)

FIG. 4. Order-b diagrams for Gc
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/' 62 A2
d'yV'g(y)GQ(» y)GQ(z2 y) l—

1024~4 )1, 1
x —3)l)'(3/2) —2 + P ——@'(3/2) + 8G —5

8 2

+ — / (1/2) —KG+ 1 rno+ (D ——~R — R —g (3/2) + G —1 ).11 1 -1, 4

4 . . ' 6) . 6 .6 3
(3.31)

Next let us consider the Feynman diagram in Fig. 4(e). The contribution is

1

~; (2l+ 1)! 0( 1» 0(» ) "2l+"2'l+.Zo G.(y z)'" (3.32)

First, we covariantly Taylor expand Gp(z2, z),

1
Gp(z, z2) = Go(y, z2) —[Q„GQ(y, z2) cr" (y, z) + —[V„V' Go(y, z2)]a "(y, z)cr" (y, z) + (3.33)

in order to separate the divergent part of Eq. (3.32). Then,

~ - (2l+1)! d y Gp(zl y)GQ(z2 y)»21+2V2)y2ZQO2l+1, 0
. (~) (~)

1

(2l + 1)!
d y Go(z1, y) —V&V'"Go(y, z2) ~ v2l+2v2l+2ZQO2l+1, 2+ (3.34)

Again for l = 1, the combination of' the vertex functions v~&+~v~&+~Z0 does not vanish as s 0, and we have to treat
this case separately. For / & 2, the surviving terms are

b~A~«.(' & ~) = d'uv'g(u) Go(» u)&D(~~ v)( ~56,
—

1 8-
x —, @'(3/2) —4G+ — + f'(3/2) + -4'(3/2) ——P

S 3. -8 4 6-

3 q 1, 2 1, 10——m, + (0 —— R @'(3/2) —— ——R @'(3/2) ——
16. 6 3 48 9

b A 10
d yQg(y) Gp(z1, y) T„V'"Gp(y, z2) —

4 @'(3/2) ——.

For/=1,

(3.35)

1
C4, (1 = 1) =—

6
d ygg(y)GQ(z1) y)GQ(z2) y)6 v~ v4 ZpO3 Q

+ d y'/g(y)GQ(z1 y) 7p 7 Go(y z2) ~ v4 v4 ZQO3, 2 + ' ' (3.36)

Only the first two terms above are divergent. From Eqs. (A8) and (A9),

3
Oso(y) =

32~4 2s2 4 6
mp+ (0 —— R ! ln —mps!

3 2 1 3 ~ 1 1
+ —Q(1) mp+ (0 —— R ~ —mp ——R ln —mps+ E1(y)0 6 4 48 2

(3.37)

O3 2(y) = [—ln2mps+ E2(y)],

where E1(y) and E2(y) are the finite parts of O30(y) and 032(y), respectively. Thus we have

(3.38)
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Cg, (/ = 1) = ( b2A' l
d'y V y(y) Go(zI, y) Go(z~, y) l 384~4 r

1 1
x ——— m,'+ (o —— R ln —mos

l

8 2 6 2 )
( /'

m() + gp —— R
l 3$(1) —1 + —m() ——R

l
ln —m()s

l6 2 ' 24 (, 2 )
1 1 2 1 1+ m'+ (o —— R //(1)+ —m ——R+ E )—/0 6

b'A' 1+ d glfg(g)Go(», v) ass/ Go(V, zo)
l s

—ln —mos+ Ro) ~ Rs(zo, zo),15367r4 2
(3.39)

where Es is the finite contribution from the remaining terms in Eq. (3.36). Now we come to the last diagram for G,
in Fig. 4(a):

62
d gv/g(g)Go(zo, g)(6 1 7/o//" s—6 mo —6 IoR ——no Zo —6 ns Z/)Go(g, *o)

d gs/g(//)Go(zl 1/) (6 A2VI V 6 mo // $2R)GO(V, zo)

b2 l
d ygg(y)Gp(zI, y)Go(zp, y), l

—
2

L —Q'(3/2) + 1

A2 I Pl 1 1—+ —
~

ln —mos 6 —6/(3/2) + 16G —ll
327r2 s2 2 r 2 2

(3.40)

Fi«lly, G, (zI, z2) is given by the sum of the contributions in Eq. (3.4O), (3.31), (3.39), and (3.35). TQ render jt
finite we choose counterterms

A2 & 3, 5
A2 — ln —mp s + —It '(3/2) ——

(3.41)

2 I A2L 1 1 A2
mo = 2 7. —8'(3/2) + 1 + ln —mos+ —d'(3/2) + I/IG —11 + —7/6'(3/2) + 16G —6 )16m 8 327r2 2 2 64m~

X'm2 1 9
ln —m() s + ln —m() s — f'(3/2) + 77t (1)+ 8G ——

1024~4 2 2 2

+d(1) f (3/2) —8G+8'+ f (3/2)+ 8 f ('1/2)+ gd'(3/'2) —2G+ 2) (3.42)

——
~

1»—snos)—7'2 ( '2

A —3 lll —77lps + 111—mps
l

— 7//'(3/2) + 7@(1)+ 8G —8
l&024~4 6 2 2 (, 2 r

+go(l) ( f (3/2) —8G + 8') + f (1/2) y —lg'(3'/2) + 2G ——

1, 5 16
48

f'(3 /2) ~ —(j)'(3/2) + —G ——
9 9 27

Gt l(zI, zg) = Gp(z I, z2) +
/'bA

d'y/y(y)Go(zI, y)Go(», y) l 384, &I(y) l

f b~A2
+ 8'yV'g(g)Go(zs, V) Sgssg" Go(g, zo) l s Ro(g)) + Ro(z/ *o)

(, 1536~'
(3.44)
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Note that E), E2, and Es all come from Fig. 4(e) with / = 1, and this is the same diagram one would encounter in
the AP~ theory.

For n & 3, we need the Feynman diagrams in Fig. 5 to calculate the n-point Green s function. For Fig. 5(a),

Cs
2n $2

dlvzP(2) (Gz(z;, 2) ——vz„Z2 —5 vz„Z1).
i=1

(3.45)

1""rom Eqs. (2.28), (3.4), (2.27) and (3.28),

U~„Z) - (s )" lns 0,

as s ~ 0 for n & 3. Thus Cq, ——0. For Fig. 5(b), with / & 2, a typical diagram gives

(3.46)

(3.47)

r 2A

d'yV'g(y) d"V'g(z) Go(z y)
j=r+1

G(, , )~6 (},(}„,Z G{y, ) (3.48)

From the asymptotic behavior of O„~(z) in Appendix A, we see that, for l = 2,

and, for /&3,

2+I 2n r+l () ( 0 —( )
(1) (1)

as s ~ 0. Thus Cs(, (t & '2) = 0 also. Finally, for t = 1 in Fig. 5(b), we have

(3.49)

(3.50)

C»(' = 1) = d'yv g(y) d'zv g(z) [ Go(, y) 2( 1' ) +1 2 —+1ZDGp(22 2))
2 (1) (1) (3.51)

(1) (1) 2 2 n-3
~2+) 222 —2+1 0 ( ) (3.52)

which vanishes as s ~ 0 except for n = 3. That is, up to order 6,
G('"}(»,. . . , »„) = 0, (3.53)

for n & 4. For G, (zq, . . . , zq), we can have r = 1 or r = 3 in Fig. 5(b) with t .= 1. However, in our oversubtraction()
scheme, the diagrams with r = 1 vanish. Thus the only surviving diagrams are the ones with three external lines on
each side, and

Gi }(zg, . . . , zs) = d yQg(y)

Gv(z;, z)G2(22, z)((2 ) }+d"y~g(y) d zv g(z)
2 4 2

i=1

d zing(z) G()(z, , y) Go(z~, z)b t)~~' t)4 ZnGO(y, z) +
i=1 j-4

3 6

Gp(z, , y) (3.54)

where the ellipsis represents nine other similar diagrams
with permutations of the x's. Again all these diagrams
are exactly the ones we have in the AP theory. This con-
cludes our calculation of the n-point connected Green's
functions up to order b2.

2A

IV. CONCLUSIONS X„ X

In the last section we have obtained the renormalized
connected n-point Green's functions in the 6 expansion
up to order 6 . We stay in coordinate space throughout
the calculation and adopt, the covariant point-splitting
regularization in which the geodesic distance 8 is used
as the regularization parameter. There is no apparent

c+2

FIG. 5. Order-b diagrams for G, ", n & 3. There are
again similar diagrams with permntations of the x's in (b}.
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obstacle to carry out this renormalization procedure to
higher orders in b. This result leads us to believe that the
b expansion is renormalizable for a general space-time, at
least for the self-interacting scalar theory discussed here.
This extends the result obtained in Ref. [3] where flat
space-time is considered.

It is curious to see [for example, from Eqs. (3.29) and
(3.44) j that the contributions to the renormalized Green's
functions come from diagrams which are the same ones
present in the A/4 theory. It seems likely that for higher
orders in 6, the same pattern will be followed. That is,
solely those diagrams with only four-particle interactions
will contribute to the connected n-point Green's func-
tions. Therefore the class of theories with b & 1 all
degenerate to the AP theory once the cutoff is removed
upon renormalization. A similar conclusion has also been
reached in the Aat-space-time case.
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APPENDIX A

Oy-..(o)=—/ 4'yVy(y)[y~(*, y)
' Go(*, y). , (A1)

comes from Feynman diagrams such as the one in Fig.
3(e). To extract the ultraviolet-divergent part of this
integral, we resort to using the Riemann normal coordi-
nates around z. To simplify the notation we shall call
this particular coordinate y again. Then we can expand
the relevant quantities in a power series of the Riemann
tensor:

In this appendix we would like to give the asymptotic
behavior of an integral which we come across frequently
in Sec. III. This integral,

(7"(z, y) ~ y",

1
Vy(y) 1 R4 yyy +'''o

(A2)

2'(z, y)
" ~ y)', (A4)

Go(o, y) (4oo y )
" 1+ —y mo+ 4o —— R 1n—moy —14(1) ——mo+ —Ro„4- ), (Ay)22-n2 2 1

6 " y2

where y = (y"y&)iiz. Making these replacements in Eq. (Al), we have

2x'
(4z.2)2 dy y 1+ —mp +

I fp —— R y ln-mpys+p-2n
6 2

4—y R ——1 + —y —mo~l 4(1)+ —
~

—
1 to ——14'(1)R + '').

24 &
'

E 2) E 6)
(A6)

We have to consider this integral for three separate cases. For n & 4+ p/2,

2+2 ( s~+~ 2" ')
2 n(2n —4 —p) ( 2 1 i 1 1

,p =
(

~.„ I I +s
I mo+ 6 &

I
»mos —@(I)+2n —6 —pp

1, (n —2&—mo+ I IR +
i 24n

(A7)

where we have shown only the two most ultraviolet-divergent terms. s is the geodesic distance which is used as the
regularization parameter here. For n = 3+ p/2,

n 2 1 2 2 n 1+ —0(1) mp + (o —— & + —mo + R ln —mps+
.2 4 48 2

(A8)
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The remaining terms are finite as s ~ 0. Finally, for
n=2+p

1Q„g„4—— —In —mss + (AQ)

In this appendix we evaluate the sums

where we have again only shown the divergent part of
the integral.

AP PEN 0IX 8

I' c)
I (b)1 ( —b)

dttb 1(—1 t)c b —1—

x (1 —tz)

where Re(c) ) Re(b) ) 0 and )arg(I —z)I «.
using the fact that

where F(a, b; c; z) is the hypergeornetric function. In ar-
riving at the above expression, we have made use of the
integral representation of F(a, b; c; z),

I'(l + 1)
(l + )I'(l + 3/2)

(B1)
z

F(1, 1; 2, sin z) =
sinz cosz '

we have

(B5)

r(1+ 1)
~; (l + a)2I'{l + 3/2)

' (B2)

4
f(a) = ~

7r /2
dz z{sinz)

Using the integral representations of both the ratio of the
I' functions and 1/(l + a) in f(a), we get,

8f'(a) = ~
x/2

dz z(sinz) ln(sinz);

1=
r(3/2)

dt t'(1 —t)-'('

dA A' ' F(l, 1; 3/2; A),

dA A'+ -'
f(a) can be evaluated easily for a = ~, 1, ~, . . . , whereas
the corresponding f'(a) has to be solved numerically.
The values of f and f' that we need in Sec. III are listed
in Tab1e II.

Present address: Institute of Physics, Academia. Sinica. ,

Nankan0;, Taipei, Taiwan 11529, R.O.C.
[1] C. M. Bender, K. A. Milton, M. Moshe, S. S. Pinsky, and

L. M. Simmons, 3r. , Phys. Rev. Lett. 58, 2615 (1987).
[2] C. M. Bender, K. A. Milton, M. Moshe, S. S. Pinsky, and

L. M. Simmons, 3r. , Phys. Rev. D 37, 1472 {1988).
[3] H. T. Cho, K. A. Milton, 3. Cline, S. S. Pinsky, and L.

M. Simmons, Jr. , Nucl. Phys. 8329, 574 (1990).
[4] C. M. Bender and H. F. Jones, Phys. Rev. D 38, 2526

{1988).
[5] l. Yotsuyanagi, Phys. Rev. D 39, 485 {1989).
[6] See, for example, N. D. Birrell and P. C. W. Davies,

Quantum Fields in Curved Space (Cambridge University
Press, Cambridge, England, 1982).

[7] S. M. Christensen, Phys. Rev. D 14, 2490 {1976).
[8] S. M. Christensen, Phys. Rev. D 17, 946 (1,9"(8).
[9] S. L. Adler, 3. Lieberman, and Y. 3. Ng, Ann. Phys.

{N.Y.) 106, 279 (1977).
[10] S. S. Pinsky and L. M. Simmons, Jr. , Phys. Rev. D 38,

2518 {1988).
[ll] 3. Schwinger, Phys. Rev. 82, 664 (1951).
[12] B. S. DeWitt, Dynarnica/ Theory of Groups and Fields

{Gordon and Breach, Nevr York, 1965).


