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Rotational invariance in light-cone quantization
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In the study of the decay of a heavy scalar particle at rest in the Yukawa model at the one- and two-
loop levels, it is shown explicitly that naive light-cone quantization leads to a violation of rotational in-
variance. Noncovariant counterterms are constructed in detail to restore Lorentz covariance. An
analysis of surface and zero-mode contributions clarifies the origin of the problem.

I. INTRODUCTION

Starting out with the light-cone quantized Yukawa
model [3]

X=f(ill —m )f+P(V+1, )P+yffP, (1.2)

we note that any deviation from a uniform ff distribu-
tion in physical S-matrix elements would indicate a seri-
ous violation of rotational invariance.

This paper investigates the decay (1.1) at the one- and
two-loop levels. A discussion beyond one loop is impor-
tant in order to decide whether self-induced inertia terms
[4], which naturally arise from normal ordering of the
Hamiltonian, could cure the problem. Violations at
higher loops would mean, in particular, that any clever
arrangement of self-induced inertia terms cannot restore
a covariant answer for physical S-matrix elements, since
self-induced inertias are of second order in the coupling.

We demonstrate an alternative treatment by adding
counterterms to the Lagrangian respecting only those
symmetries, which are manifestly preserved on the light

Light-cone quantization might be a very valuable tool
toward a better understanding of the strong interaction.
The main advantages of the formalism are the simple vac-
uum structure, the manifest boost invariance in the z
direction, and the Hamiltonian formulation that leads to
a very physical approach to field theory.

One of the major disadvantages of the formalism [1] (as
for any Hamiltonian form of dynamics) is its nonmanifest
Lorentz invariance (here, rotational invariance). Being
not manifestly Lorentz covariant one still expects that
physical observables (S-matrix elements) exhibit the full
Lorentz covariance of the underlying Lagrangian. Since
the verification of Lorentz covariance of the S matrix in a
noncovariant formalism is in general rather tedious, it
has become common practice to simply assume covari-
ance of the S matrix in naive light-cone quantization [2].
This paper deals with the problem of Lorentz covariance
(in particular, rotational invariance) in light-cone quanti-
zation.

A powerful test of rotational invariance is given by ex-
amining the angular distribution of the decay products of
a heavy scalar particle at rest, such as

cone, i.e., transverse rotations and boosts along the z axis.
The goal of this paper is to construct them explicitly and
show how rotational invariance can be restored for physi-
cal S-matrix elements. To complete the discussion, in
Sec. IV we address the question of why light-cone quanti-
zation leads to incorrect results, if naively applied.

II. BREAKDOWN OF COVARIANCE
AT THE ONE-LOOP LEVEL AND ADDITION

OF NONCOVARIANT COUNTKRTERMS

Overall light-cone energy conservation constrains the
external momenta, leading to

(2.2)

Note that, in order to allow for noncovariant counter-
terms, two different masses have been introduced [5]. A
vertex mass m, appears in the numerator and a kinetic
mass m appears in P conservation and in all denomina-
tors associated with the diagram [6]. Equations (2.1) and
(2.2) lead immediately to

2 — 2

y ~M'= —2
s, , s e+(1—e+)

—2X +8m, . (2.3)

a, p+=1

Pg=O, X,

FIG. l. Tree-level matrix element for the decay o ~ff. The
dashed line represents a heavy boson with Inass A, at rest:
p+ =p,p& =0. The sum runs over the fermion (mass m) spin
labels sf sf.

We begin our considerations with the decay of a scalar
particle into a fermion-antifermion pair cr~ff at the
tree level. The corresponding matrix element squared is
(see Fig. 1)

(2.1)
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Obviously rotational invariance is obtained if and only if
m, =m; i.e., no problems arise in tree-level physics.

At the one-loop level the set of diagrams in Fig. 2 con-
tributes to the decay. Note that to order y only interfer-

ence terms between one-loop and tree-level diagrams con-
tribute. As an example we calculate the contribution
from interference between a boson-exchange graph and
the tree graph (see Fig. 3) [7]:

4 & dk+ 2(),) 8(1—q+ —k+ )

0 (16m ) (q++k+)(1 —q+ —k+)k+

Tr[(P —g+ m )(Pz+ m )( —gf, +m )( —g+ m ) ]

m +(q~+k~) m +(q~+k„) m +(q~+k~) A, +k~ m +q~
q++k+ 1 —q+ —k+ 1 —q+ —k+ k+ 1 —q+

(2.4)

Using the Brodsky trick [8] to include instantaneous fermion contributions, performing the trace, combining energy
denominators and integrating over k~, we obtain

& dk+ 9(1 q+ k—+) —
p & 1

o 16m. (q++k+)(p —q+ —k+)k+ "o p

2+8 I (e) C
(M )' M

(2.5)

where

CX + (1—~)(1—q+)
(k++q+)(1 —q+ —k+) k+(1—q+ —k+)

'2

M'=p ' —q'p ' CX 1 —a
(q++k+)(1 —q+ —k+) 1 —q+ —k+

(2.6)
m +q~

+
m +q~
q+ —k+

2(4m q+ —m —
q ) 8=-

(q++k+ —1)q+

m +q~ +(1—a) p
1 —q+ —k+

2(4m q+ —4m q++m +qj )

(1—q+)q+

m +q~
1 —k —

q
+ +

C acquires terms from zero and linear order in the in-
tegration variable k~ of the Dirac trace. The linear terms
give a contribution after shifting momenta. Since the ex-
pression is rather lengthy we do not display it here.

Similar steps must be performed for all the other dia-
grams of Fig. 2. This involves renormalizing the dia-
grams using minimal subtraction and performing the in-
tegration over k+ and e numerically. Then rotational in-
variance can be checked for the total one-loop S-matrix
element by computing the diagrams for two different sets
of external momenta:

g 3

SfSJ

(2.8)

I

In both cases, we have chosen A, = 1, m =V 3/16. Since
both sets obey Eq. (2.1) and describe a scalar at rest, i.e.,
P+ =P and P~ =0, the answer is supposed to be the
same for both of them, unless rotational invariance is
broken.

For the asymmetry r, i.e., the result of the numerical
integration for the difference of set I and set II, in terms
of

set I: q+= —,', q =—,', q~=0,

set II: q+=-,', q =0, q =0 .

sf, sE

(2.7)
we find r=0.02a. That means rotational invariance is
broken for physical S-matrix elements at the one-loop
level. In Appendix A we give details of this calculation.
In particular it is shown there that the piece which
violates rotational invariance comes from the instantane-

P+=1,Pj =0, A,

P

---+ C.C.

FIG. 2. Fourth-order contributions to o +ff. The 5m inser-—
tion represents the one-loop mass counterterm.

FIG. 3. Typical contribution to the vertex correction of
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ous contribution in the external self-energy diagrams
shown in Fig. 4.

In order to keep our discussion as clear as possible, we
restrict the number of spatial dimensions to two in what
follows. This enables us to disentangle the specific renor-
malization procedure on the light cone from the ordinary
ones, since the Yukawa model is superrenormalizable in
2+ 1 dimensions.

The remaining goal of this section is to show that the
term that violates rotational invariance is of the same
form as the first term in the right-hand side (RHS) of Eq.
(2.3). Thus, by allowing independent renormalizations

FIG. 4. Instantaneous contributions to the external self-

energy.

for m, and m one can restore rotational invariance.
Using light-cone perturbation theory (LCPT) rules one

finds [9], for the graph in Fig. 4,

+ dk dk+
I(q+, qi ) =

0 16m.

Tr [(P—g +m )(p', +m )—,
' y+ (

—g+ m ) ]

m +qi A, +ki m +(qi+ki)
k 1 —

q
—k

(1—q+ —k+)k+(1 —q+ ) p
q

A change of variables k+ =(1—q+ )x, ki =ki+xqi, combined with use of

(2.9)

(p —q) =p (1—q+) —(1—q+) —qiz=m2+ (2.10)

A, +ki m +(qi+ki)
1 x

yields

(ki+qix) +xqi(1 —x)
+ -+

x 1 —x x(1—x) (2.1 1)

i dkidxI=
0 (16~')

x(1—x) m

Tr(. .. )

k~

x(1—x) (1—q+)

(2.12)

To write this in a more compact form, we define the q+ and q independent function:

f(m, A, )=fo (16' ) [x(1—x )m —A, (1—x ) —m x —k i ]
~ ~ ~where k~ =k~+q~x. Discarding odd terms in k~, which do not contribute to the integral, we obtain

dki (2 —x)m(1 —q+) —(2—x)m q+
(16m- ) [x(1—x )m —A, (1—x ) —m x —ki](i —

q )

f(m, X)= 2—,f(m, &) .
1 —2q+
1 —q+ 1 —

q

(2.13)

(2.14)

(2.1S)

A similar calculation for the diagram that correspond
to the antifermion self-energy, yields

T

I= 2— 1 f(m, A, ),q+
(2.16)

which contains the same function f(m, A, ). The total
answer, i.e. the sum of I and I, is

I, , = 4— f(m, A, ) .1

q+(1 —q+)
(2.17)

This result has the remarkable feature that it contains the
same q dependence as the term in Eq. (2.3) that violates

rotational invariance. Hence the violation of rotational
invariance at the one-loop level can be cured by an ap-
propriate renormalization of m and m„ i.e., by using
different bare values for m and m, in the light-cone Ham-
iltonian.

III. BREAKDOWN OF COVARIANCE
AT THE TWO-LOOP LEVEL

In this section it is shown that violations of rotational
invariance in the light-cone formulation are not restricted
to the one-loop level. This statement is correct even if
the one-loop subdivergences are treated covariantly.
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& IMI'= ——
S),S)

k2
k)

FIG. 7. Instantaneous self-energy correction in two loops.
Momentum labels are assigned as indicated.

FIG. 5. Two-loop rainbow self-energy contribution to
o ~ff. 5m, 5'~'m denote the one- and two-loop self-energy
mass corrections, respectively. I corresponds to a counterterm
which restores rotational invariance at the one-loop level.

X;„,=g „pnP +g ~ppPo+g„„nnPo+H c.(3.1)

In this two-flavor model only the rainbow self-energy
(Fig. 5) and the ladder vertex correction (Fig. 6) contrib-
ute at order g g „ to the decay Po~pp. All other dia-
grams contribute with other combinations of coupling
constants and must be separately covariant, if covariance
is assumed for all values of the couplings.

The rainbow self-energy contribution is shown di-
agramatically in Fig. 5. The third diagram restores co-
variance at the one-loop level. Diagrams which contain
5m, 5 m are one- and two-loop mass counterterms, re-(2)

spectively.
As in Sec. II, we consider the instantaneous contribu-

tion to the self-energy diagrams in Fig. 7 separately from
the rest. Table I shows the result of the numerical in-
tegration for both sets of momenta in (2.7). As in the
one-loop case, rotational invariance is violated for the in-

Z IMI'=---
sf,sf

In order to constrain the number of diagrams that con-
tribute to the S matrix, we introduce a second fermion
flavor and bosons, which change isospin, into the (2+ 1)-
dimensional Yukawa model. However all couplings at
fermion-boson vertices are assigned difFerently, so that
isospin symmetry is broken. The new interaction I.a-
grangian is

up Q
Iselr

p uup

+ (gf —m )f, (p ) + (p —m )f2 (p 2) . (3.2)

The instantaneous self-energy contribution of Fig. 7 be-
comes

1y+ 1I=Tr (
—k+m )— (/+I ) Cy2p Nl

+ —k+ 2+ —1=4y C =4y C-

(3.3)

stantaneous contribution to the external self-energy dia-
gI ams.

The ladder vertex contributions yield the six time or-
derings shown in Fig. 6. The result of the numerical in-
tegration is given in Table II.

Thus the ladder diagrams appear to be rotationally in-
variant by themselves, and a possible cancellation of the
noncovariant terms in the self-energy diagram cannot
occur. Details of this calculation are given in Appendix
8 [10].

In the remainder of this section we want to demon-
strate that the breakdown of covariance, as in the one-
loop case, can be cured by an appropriate renormaliza-
tion of m, and m. Since the calculation is similar to that
of the one-loop case, we restrict ourselves to an illustra-
tion of this procedure.

We start out with the matrix element in Fig. 8 in two
loops. In Appendix C it is shown that the two-loop self-
energy I„&& contains a noncovariant piece proportional to
Cy+/p+ (see also Ref. [3]), where C is independent of
the incoming fermion momentum [11]. Thus, after on-
shell renorrnalization, one finds

where we have set P =m for the external fermion in Fig.

TABLE I. Self-energy contribution to o ~ff in two loops.
a2 describes the contribution from the instantaneous diagrams
(Fig. 7), which violate rotational invariance. a& is the result of
the numerical integration of the residual self-energy diagrams.

———+ c.c.

FICx. 6. Two-loop ladder vertex correction to cr~ff. Six
time orderings add up to the covariant answer.

Set a&

—1.58+0.01
—1.58+0.01

a2

0.015+0.004
—0. 135+0.002
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TABLE II. Result of the numerical integration of the ladder
vertex correction to cr~ff (Fig. 6). A rotational invariant
answer is obtained for both sets.

One finds, for the f i contribution to the self-energy in
n +1 loops,

Set a&

—2. 13+0.01
—2. 13+0.01

f", ((p —q) )(gf —g+m)
(2m) [(p —q) —m +i@](q —A, +i@)

(4.3)

Since problems are expected for the y+ component only
[3],we compute

I=4@ C 2— 1

1 p

so that the total contribution becomes

(3.4)

7, and used the following y+y+=O, k++p+=1, and
u y+u =2p+.

An analogous calculation for the diagram which corre-
sponds to the antifermion self-energy, yields

+A,—Tr(y Iseir ) = D p
1„+i dq

(2~)D q+

f1((p —q) )

[(p —
q )2 m—+ ie](q A, +i—e)

f i((p q) )

2'7T q p q teal +l 6

(4.4)
I+I=4y C 4—

p+(1 p+)
(3.5}

where

Again we see that Eq. (3.5) has the same form as the piece
that violates rotational invariance in Eq. (2.3), which
means that rotational invariance can be restored by tun-
ing the vertex mass and the kinetic mass differently [12].

IV. SURFACE AND ZERO-MODE CONTRIBUTIONS

+[(p —q}'—m']f2((p —q)') *

where f;"must have a spectral representation

(4.1)

p,"(s )
f;"(q )=J ds (4.2)

with no poles for q ~0. We discuss here only the zero-
mode effects induced by f ", . For f2 the same considera-
tions can be made yielding similar results [13].

&self =

q

/ .. .. li

/
g55N. lÃYJ x I I ~ I kN I ( c ( 5%8

FICx. 8. (n + 1)-loop rainbow self-energy correction.

In the previous sections we have discussed the break-
down of rotational invariance in light-cone quantization
and described a way to cure the problem by adding non-
covariant counterterms. In order to make the discussion
more complete, we will investigate in this section the
question of why rotational invariance is broken if light-
cone quantization is applied naively. The conclusion will
be that naive light-cone quantization omits important
surface and zero-mode contributions.

We start our discussion with the (n +1)-l opoself-
energy diagram in Fig. 8 in d dimensions and covariant
perturbation theory. Since the theory is based on a mani-
festly covariant Lagrangian, one expects for the n-loop
self-energy I,",jf the following structure after mass renor-
malization:

&,",if =(p' g m)f i((p —q)')— —

q =
+ [q —

A, +(qi+A, }]1 (4.5)

dDq qi+A,
(2m. ) q+

p, (s)

[(p —q) —s+ie][(p —q) —m +is]
1X

+EE
(4.6)

If sufficiently regular behavior for p, (s) is assumed, the
integrand falls off like -(1/q ) or faster, which means
that surface terms do not contribute [17—19].

The situation is different for the second integral in Eq.
(4.4) however. Performing the q integration leads to
[20]

was used.
It should be emphasized that even though light-cone

variables have been introduced, only algebraical steps
have been performed so far; i.e., no breakdown of covari-
ance can have occurred at this point. The trouble occurs
when the integration over q is performed, in order to
obtain LCPT.

The first integral in Eq. (4.4) poses problems at the
one-loop level, i.e., f—= 1, when trying to perform the q
integration. This is because the integrand falls off no fas-
ter than 1/q for p+ —q+=0 or q+=0. Whereas the
6rst case should give rise to a contribution of measure 0,
we expect nonvanishing contributions from the surface
term in the second case, since the denominators are mul-
tiplied by a function which diverges for q+ ~0.

What we encounter here is nothing else but the one-
loop problem of the self-energy which has been noticed
by many authors [14—16].

However, in higher loops we expect no trouble arising
from this term. To illustrate this we use the spectral
decomposition of Eq. (4.2) and write the first contribution
to Eq. (4.4) as
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d qfl«p q—)')
5(p+ —q+ )p+ (q —p) +m +i@

(4.7)

This is because for p+Wq+ the contour of the left-hand
side can be chosen such that its contribution vanishes.
The rest follows from

f & ((p —q)')1 fd +yd dD 2 1 .~i p
q+ (p —q) —m +i@

d pfl«p q)')—
(q —p ) m+—i@ (4.8)

The point is that naive light-cone quantization omits the
zero-mode contribution on the right-hand side of Eq.
(4.7) and thereby causes a violation of rotational invari-
ance. This also predicts that the piece that violates rota-
tional invariance is always proportional to I/p+, which
is in perfect agreement with all our experiences at the
one-, two-, and three-loop levels [16]. Since the RHS of
Eq. (4.7) does not depend on the outer boson mass, we see
that using a heavy Pauli-Villars boson regulator instead
of dimensional regularization would have taken care of
the problem [21].

To complete this section we want to list again the
properties of the diagrams in Fig. 8.

(i) It is very likely that noncovariances appear in any
order of perturbation theory.

(ii) The noncovariant piece is always pi and p in-
dependent and of the form c(y+/p ).

(iii) The noncovariant zero-mode contribution is in-
dependent of the outer boson mass, which explains why a
Pauli-Villars regulator plays an extraordinary role among
regulators.

(iv) Dimensional regularization is not sufficient, neither
is the so-called "covariant cutoff [22]."

(v) Even supersymmetric theories suffer from this prob-
lem (see Appendix D).

At this point we should add a remark to claify some
points which we made in a previous paper [3]. In light-
cone perturbation theory, quadratic divergences can
occur to all orders for many theories (such as QED) if
one does not take into account all time orderings. Most
of these quadratically divergent terms violate rotational
invariance as well. Since QED2+, is superrenormalizable
this problem does not occur there for higher orders (i.e.,
the noncovariant counterterms are UV finite for three or
more loops). Nevertheless, even in QEDz+, there is a
logarithmic UV divergence in the two-loop noncovariant
counterterm.

S-matrix elements. To do this we investigated the decay
of a heavy scalar particle at rest and observed a deviation
from a uniform distribution of its decay products. The
analysis shows that the effect is not restricted to one loop.
Following the general arguments of Sec. IV one expects a
violation at any order in perturbation theory.

At the one- and two-loop levels, we explicitly show
that the problem can be cured by tuning the vertex mass
m, differently from the kinetic mass m. This procedure
corresponds to adding noncovariant counterterms, which
preserve only the kinematic light-cone symmetries. That
requires an additional renormalization condition, com-
pared to a manifestly covariant theory.

We suggest the decay of a heavy boson at rest because
violation of covariance is obvious in this case. Once the
additional counterterm is fixed the statement of renor-
malizability requires that all processes can be evaluated
to the same order in perturbation theory [23] without en-
countering any further violations [24]. To complete our
discussion, we investigated the question of why light-cone
quantization goes wrong if it is not applied carefully
enough. We found that nonvanishing surface contribu-
tions accompanied by a zero-mode problem at one loop
and missing zero-mode contributions at higher-loop or-
ders cause a breakdown of the covariant structure of the
theory. At this point it should be mentioned that the
same problems are expected to occur in gauge theories (in
A+ =0 or any other gauge), quantized on the light cone.
As far as practical methods are concerned, such as discre-
tized light-cone quantization (DLCQ) [25] or the Tamm-
Dancoff-procedure [4], additional violations of rotational
invariance are anticipated. This is because one is forced
to work with a finite value of a cutoff which by itself
breaks Lorentz invariance. In this paper, we have dis-
cussed only those violations of rotational in variance
which survive the continuum limit.
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V. SUMMARY AND CONCLUSIONS APPENDIX A

We have shown that naive light-cone quantization
leads to a violation of rotational invariance in physical

Using LCPT theory for the self-energy contribution
I„,f (Fig. 9), one finds
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p-q
P ———

k

FIG. 9. Self-energy diagram in one loop. FIG. 10. One-loop mass correction to the self-energy.

4 + +
, J dk+d"'-'k

16~ (1—q+)k+(1 —q+ —k )

(Al)
Tr[(p'2+ m )(P &

+m )(Pz+ m )( —g+ m ) ]
m +q~ m +qt m +(qt+kt) kt+A, m +qt
1 —q+ q+ (1—q+ —k+) k+ q+

where p~ =0 and p+ =1. Note that an off-shell value for p has been assigned in order to deal with the double pole.
At the end of the calculation, p is taken on shell. If one shifts variables to

k
k~=k~+q~

1

the Dirac trace can be reduced to the simple form Ak~+C, where

2 =2(4m q+ —3m +q+ A,
—2q+A, +q~+A, )/k&+

(A2)

(A3)

and C contains terms of zero and linear order in the integration variable kz of the Dirac trace. This is correct only after
erms are discarded which do not contribute to the integral. The linear terms give a contribution after shifting momen-

ta. Since the expression is rather lengthy we do not display it here. The kz integration can be trivially performed,
yielding

where

y4 I & 8(1—q+ —k+ )

16~3 o (1—q+ )'
1I +qg

1 —q+

r( —1+~) r(~)
m '+ q' (M') '+' (~')'

q

1 —q+
I (1—q+)(1 —q+ —k+) k

m +q&

1 —q+ —k+
m +q~

q
(A5)

CE„,=0.577. . . is Euler's constant. The self-energy coun-
terterm that corresponds to the diagram in Fig. 10 is
evaluated in a similar fashion. As'in the self-energy dia-
gram (see Fig. 9) the instantaneous contribution is includ-
ed by putting

711 +qg
P2 =P (A6)

q

on the energy shell. 5m is given by

6m= y' dk+d" 'k, 1

2m ' k+(1 —k+)
u(gf, +m)u

X (A7)~ 2+k2 g2+k2

k + I +

with p~=O, p+=1 for the initial fermion. Note that it
does not matter whether or not the instantaneous contri-

TABLE III. Total one-loop contribution to o ~ff.
Set

0.048*0.2x10-4
0.285+0.6 x 10-'

I

bution is included, since it is k~ independent and there-
fore gives a vanishing contribution in dimensional regu-
larization.

Performing steps similar to those taken before one
finds

2 1
5m = — Jdk+(1 —ulna ) ——CE„,

where

X[—(A, —m )+m (1—k+)

+k m —2m ], (A8)

2

X = —k+(1—k+) p
1 —k+

A,
2

k+ (A9)

Table III shows the result for the numerical integration.
The result is that rotational invariance is broken at the
one-loop level. Numerically we find that the violating
piece arises from the instantaneous self-energy contribu-
tion.

APPENDIX B

We start out with the two-loop rainbow self-energy di-
agram (Fig. 5). LCPT yields
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The mornenta are given by

m +qgp)= 1 q, A,
q+

p2=p4=
2 2m +qz

q
—k, , k — —k, , —q~

—k
q+

pz

p2=p~=(1 —q+ —k,+, A, .
—k(, —qi —k,i),

p2

and k =(k2 +/2)/k+ k
——(k2 +P2)/k+ P-

=(p, i +A, )/p&+, P =A, . Note that the third diagram
of Fig. 5 which restores covariance at the one-loop level
can be taken into account by setting p3 =(pz /pz+ )p3+

and p3 =(P2 /p2+ )p3+. This rule relates the bad com-
ponent of the self-energy (y+p

&
) to the good component

(y p &
) and covariance is achieved by construction [26].

The one-loop mass correction 5m is given by

(1—k2+ )m +m
2—k +k+(1 —k+ ) m2-L 2 2

1 —k +
A,

2

k2+

The last two terms of Eq. (Bl) correspond to the two-loop
mass correction 5' 'm. Note that they are defined quasi-
local, i.e., the 6' 'm subtraction occurs already at the in-
tegrands before integration. This makes the expression
suitable for numerical integration.

The instantaneous self-energy contribution can be ob-
tained by subtracting a similar expression such as Eq.
(Bl) from I„;„b,„, where p, is set on mass shell. The
two-loop vertex correction is computed in a similar way.

l

even when all subloops have been rendered covariant. C
is independent of the incoming fermion momentum P.
Since by assumption the one-loop self-energy Is,'ff (Fig. 9)
is covariant, one should be able to express I,'„f in the
form (4.1) and (4.2). In this particular example we find

2

p](s)= &(D)fdx(1 —x)[7(x)] ' 'e(1(x)),
8m

APPENDIX C

In this section we show by explicit construction that
the two-loop rainbow self-energy in naive I.CPT contains
a noncovariant piece of the form

C- (Cl)

p2(s)= 0( D)f dx(2 —x)[r(x)] i 'e(r(x))
8m. m s

where r(x)=x(1 —x)s —[m x+1, (1—x)] was intro-
duced. Q(D) is the volume of the D-dimensional unit
sphere. Thus in a covariant formalism the two-loop rain-
bow self-energy becomes

I(2)(2) d Dk p, (s)+ (gf g+ m—)p2(s )

(2m) (k A. +ie)(It ——k —m+ie)[(p —k) —s+ie]
Naive I.CPT replaces I' ' with I&, ', where

ds dk+dD-'k
I(2)—

[2(2 ) '] (
+ —k+) k

[p&(s)+ (g7~ +m )p2(s) ](P, +m )

(p k )2+ m2 k2+g2
+ k+ k+p

(pi —ki) +s
+ k+p

+ k+
D ( 2 + + 2 + P& s + )+ P2 s ]+

[2(2n. ) '] (p —k+) k+ s m

(C3)

1

(pi —ki) +m
+ k+p

k~+A,
k+

1

(pi —ki) +s
+ k+p

ki+A,
k+

and

kq+A,
p&= p k ~p

The problem is thus reduced to finding the noncovariant
piece of the one-loop self-energy. This has been done [3]
and the answer is of the asserted form of Eq. (Cl).

APPENDIX D
m +(pi —ki)

p+ —k+ pl kl The two loop self energy in the -supersym-metric Wess
Zumino mode/. When dimensional regularization is used
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in the Yukawa model, there is no need for a one-loop
noncovariant counterterm if the boson and fermion
masses are equal [27]. This observation could be of cru-
cial importance for the light-cone quantization of super-
symmetric field theories. In fact, in Ref. [28] it has been
proposed to use the (finite [29]) %=4 supersymmetric
Yang-Mills theory as a regularized extension of light-
cone (3+ 1)-dimensional QCD (QCD3+ i).

Compared to normal theories with similar interactions,
supersymmetric theories have a less singular UV behav-
ior. Since part of the problem with the violation of rota-
tional invariance is connected with the loop regulariza-
tion of light-cone singularities, one might hope that su-
persymmetry (SUSY) theories are less troubled by nonco-
variant self-energies. Technically, the improved UV be-
havior arises from cancellations between various dia-
grams related by SUSY transformations. Perhaps some-
thing similar happens with the noncovariant self-energies
in light-cone quantization. As mentioned above this is
indeed the case at the one-loop level if one uses dimen-
sional regularization in the transverse coordinates. In or-
der to find out whether such a behavior persists in higher
loops, we will investigate the two-loop self-energy of a
fermion in the SUSY Wess-Zumino model [30]:

X= —
—,'(B„A ) —

—,'(B„B) ,'igyi'd„—Q—

X"(p~)=cf d k
1

k —m +i6

X' (p")=cf d k
2

1

k —m + l 6'

X '(p")=c f d k
1

k m + l E'

X (p")=cf d k
1

k —m +is

(P —k )f i ((p —k )')

(p —k) —m +i@

2(P —k )f i (k')

(p k) m +EE
(D6)

2(P —k)f, ((p —k )')

(p —k) —m +i@
2(p' —k')f&(k ')

(p k) m +if'

(D7)

—k +
2b (p —k) —m pi J. ™X,X: p —k

p+ —k+ p+ —k+

As we have shown there naive light-cone quantization
(NLCQ) simply neglects the first term thus omitting

where c is some constant.
X and X coIIespond to insertions of X ~ Into the

fermion and boson line, respectively.
Following Sec. IV we substitute in the numerator of

the y+ component:

2 2k —m

—
—,'m 2 —

—,'m B ,'ming——gmA(—A +B )

—
—,'g (A +B ) igg(A —y5B)g—, (D 1)

where g is a Majorana spinor and A and B are, respec-
tively, a scalar and a pseudoscalar field. The (unsubtract-
ed) one-loop self-energies for bosons and fermions in this
model read

—kdkfi P
hX '= —cy k+ (p —k) —m

d k+ 2 2

~rib=2 1+f dDkC f, (k )

p
+ k —m

(D8)

&F=/if i(p'» &a =2p'f i(p'» (D2) 2(k )ar"= —2
'

)
+ dDk+ k —m

where

f, (p )=c d ki dx
p x(1—x)—m —ki+ie

(D3)

where

,fi(p') —fi(m')
f2(p') =m

p m
(DS)

Inserting these one-loop corrections into the one-loop
self-energy yields the nested (rainbow-type) contributions
to the fermion self-energy at O(g ) [32]:

(c is some constant). Performing an on-shell mass sub-
traction one finds [31]

, f2(p')
X~=(P —m)f, (p )+(p —m )

(D4)
2~=2[(p —m )f, (p )+(p —m )f2(p )],

2(k )
bX =2 y+ d k+ k —m

One can easily verify that the b,X terms arising from f2

insertions cancel whereas this does not happen for f, .
Thus NLCQ falls short of the correct result by an
amount c, fi(k')

b, ~NLcq X f d k &0
p k —m

(D9)

In the beginning of this appendix we raised the hope that
SUSY theories are free of the zero-mode problem. Un-
fortunately this turned out to be false as Eq. (D9) shows.
This means that if one wants to use SUSY theories as a
regulator for other theories one still has to preregulate
them in such a way that there are no noncovariant terms
or use some other technique (e.g. , noncovariant counter-
terms) to compensate for b,X. This might limit the prac-
tical use of SUSY regulators in light-cone quantization
considerably.
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