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We study parasupersymmetric quantum-mechanical models containing many bosonic and parafer-
mionic variables. The extension to an infinite number of degrees of freedom naturally leads to a simple
two-dimensional field theory.

I. INTRODUCTION

[a,H]=a, [at,H]= —at . (1.2)

(The overdot signifies a time derivative. ) The standard
way of realizing these relations is to assume that the com-
mutator between a and a is a c number:

[a,at]=1 .

Nevertheless, the relations (1.2) are not incompatible with
[a,a "] bring an operator. This is in fact the ease in all
parabosonic quantization schemes; in particular, in the
simplest case one finds that the operators a and a~ obey
the following trilinear parabosonic "commutation rela-
tions":

a a —ata =2a, a(at) —(at) a=2a (1.4)

Generalization to the case of many oscillators or to fer-
mionic variables is straightforward [1]. The basic com-
mutation relations of paraquantization, generalizing (1.2),
are

In the usual approach to quantum mechanics, the time
evolution of the observables is described by the Heisen-
berg equations of motion. Using the usual canonical
commutation relations for the dynamical variables (and
the equivalence principle), one can generally check that
these equations are compatible with the classical equa-
tions of motion. However, it is well known that the
canonical quantization rules, although sufficient, are not
necessary to ensure this consistency. There is in fact an
infinity of quantization procedures for which the quan-
tum equations of motion agree with the classical ones.
These schemes are referred to as paraquantizations [1],
and the dynamical variables satisfying the corresponding
generalized quantum rules are said to be parabosonic or
parafermionic.

In the simplest situation of a single bosonic harmonic
oscillator, with Hamiltonian

H = ,'(a ta +aa t), —

the quantum equations of motion a = —ia, a =ia, imply

[a;, [al~, ak]~]=25Jak,

[a;, [al~, ak ]+]=25;tak+25;kaj,

[a; [aj ak)+]=o

(1.5a)

(1.5b)

(1.5c)

together with the Hermitian-conjugate relations, with
[A,B] =—[A,B]=AB BA —and [A,B]+——I A, B]= AB+BA. The upper signs in (1.5) refer to para-Bose
oscillators and the lower signs to para-Fermi oscillators.

As in the usual case, the Fock space on which the
operators a; and a,. act is built on a vacuum state ~0),

a;~0), i =1,2, . . . (1.6)

by successive applications of the creation operators a,~.

The requirement that the number operator JV; be a Her-
mitian non-negative operator for each mode i implies

a, a,t~o) =p5,, ~0), (1.7)

One can show that, for fixed p, conditions (1.6) and (1.7)
imposed on the vacuum state uniquely determine, up to
unitary equivalences, an irreducible highest-weight repre-
sentation of the paracommutation relations (1.5). In the
usual canonical case, p = 1.

These representations, labeled by p, can be described
by giving a set of algebraic relations between a, and a;
for each order. For p = 1 these relations are the usual bi-
linear commutations and anticommutation relations:

[a;,at]+=5;, [a, , a ]+=0=[at,at]+ . (1.9)

When p =2 the set of paracommutation relations are tri-
linear in a; and a,~: explicitly,

a, a-ak+aka a, =25; ak+25 ka, ,

a;a ak + aka -a, =25-ka, ,

(1.10a)

(1.10b)

with p a non-negative integer, called the order of para-
quantization. One finds that

JV, =—[a, , a, ]+++ .=1

3851 1991 The American Physical Society



3852 ROBERTO FI.OREANINI AND LUC VINET

Q;Q~Qk + QkQ~Q. =0 (1.10c)

plus the ones that are obtained by Hermitian conjugation.
For higher-order p, the paracommutation relations be-
come more and more involved. In the following we shall
only consider paravariables of order p =2.

In systems involving both ordinary bosonic and fer-
mionic degrees of freedom, supersymmetry transforrna-
tions can arise as dynamical symmetries [2]. These trans-
formations mix the bosonic and fermionic variables. The
corresponding generators are constants of motion and
form a Lie superalgebra under the standard bilinear grad-
ed product. A natural generalization consists in systems
involving dynamical variables both of ordinary Bose type
and of para-Fermi type. In such situations we might ex-
pect the presence of symmetry operations transforming
the bosonic variables into the parafermionic ones and
vice versa. These operations generalize the familiar su-
persymmetry transforrnations and have been called
parasupersymmetric [3]. Their generators realize new
algebraic structures, referred to as parasuperalgebras, of
which the ordinary superalgebras are special cases. The
main feature of the parasuperalgebras lies in the fact that
they involve multilinear product rules for the ferrnionic
elements; therefore, they are not Lie algebras.

Many quantum-mechanical systems exhibiting parasu-
persymmetries have been constructed and studied [3—9].
Generalizations along these lines of the superconformal
algebra have also been discussed [10]. However, the
models discussed so far have only involved a single paraf-
ermionic degree of freedom. Here we shall discuss simple
examples of parasupersymmetric systems involving many
para-Fermi and ordinary Bose variables. In Sec. II we
consider models which describe the motion of ordinary
real bosonic and real parafermionic degrees of freedom in
a constant external magnetic field. The extension to Geld
theory is carried out in Sec. III, and in Sec. IV a model
with X complex free bosons and X complex free parafer-
mions is analyzed.

II. REAL VARIABLES

Let us first discuss, to fix the notation, a simple
quantum-mechanical model free of interactions and de-
scribed by N ordinary bosonic degrees of freedom, x, (t), .

and N real parafermionic variables g;(t), i =1,. . . ,N. (t
is the time variable. ) Since we are imposing g; =g;, the
parafermionic commutation relations (1.5) reduce to

[[it; 0, ) Wk]=25,k0 25 k4, . — (2.1)

We shall restrict our attention to parafermions of order
p =2. In this case (2.1) is equivalent to the trilinear rela-
tion

0;4,0k+4kW, itj; =25,4k+25, k4

which can also be rewritten in a more symmetric way:

Wi( I Pj 41 45jk )+ej( I 0k 0 145ki)'
+~k(I~„~,)-45„)=0

Furthermore, bosonic and parafermionic variables are

taken to commute among themselves: [x, , 1tj. ]=0.
The Lagrangian describing this simple system is given

by (henceforth, the sum over repeated indices will be al-
ways understood)

I.=—x, +—[i)'j, , P, ] . (2.4)

0;0 0k+0k0 0;=0 . (2.5)

Note that this implies (8;) =0, which naturally general-
izes the condition (g, ) =0 for the Grassmann numbers

For arbitrary order p, one would have (8;) '=0.
The numbers 0; are assumed to have nontrivial commu-
tation relations with the variables 1';:

[[~; 0, 1 Vk]=25jk~;

[Ã 0, ) ~kl=o=[[it 4&1 ~kl .

(2.6a)

(2.6b)

Let us now consider the following inGnitesimal trans-
formations between the bosonic and parafermionic vari-
ables:

5gx;= [8,$;], 5—pb, = —Ox, . (2.7)

The Lagrangian (2.4) changes by a total time derivative
under these transformations:

5sL =A, (2.8)

The transformations (2.7) are thus symmetries of the ac-
tion. The corresponding conserved Noether charge is
easily computed:

Qs:—x;5sx;+ —[6),5sp, ]—AI

= 2I:0 p;0;)=—2[~,Q), (2.9)

with p; the momenta of x;. Using the standard canonical
bosonic commutation relations [x;,p ]=i5, and the
parafermionic relations (2.6), it is easy to check that Qe
indeed generates (2.7):

5s;=i[Qs x;] 5A; =i[Qs 0;] . (2.10)

The infinitesimal transformations (2.7) close onto an alge-
bra that involves trilinear relations; using the properties
of the para-Grassmann numbers, one finds

(5s 5ti 5s +5ti 5s 5s +5~ 5s 5s )x,

i (5—
1 2 3 2 3 1 3 1 2

x ) (2.11)

The equations of motion are simply x; =0, 1tj; =0, and the
dynamics is trivial. Nevertheless, L, possesses symmetry
transformations that interchange the bosonic and paraf-
ermionic variables. By analogy with the standard super-
symmetric case for which the parameters of the transfor-
mations are Grassmann variables, one is led to take as pa-
rameters of parasupersymmetry transformations para-
Grassmann numbers 0;, which obey the algebra (specific
to order p =2) [1,3]
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and an analogous relation for g, . To better understand
the structure of this algebra, it is useful to pass to the
Hamiltonian formulation, which makes no use of the re-
lations (2.6) between 0; and f; that might seem ad hoc.

The Hamiltonian coming from the Lagrangian (2.4) is
just H= —,'p, The para-Fermi charge corresponding to
the generator Qs is obtained from (2.9): Q=p;g;. Being
conserved, Q commutes with the Hamiltonian:

[H, Q]=0 . (2.12a)

Moreover, using the parafermionic relations (2.2), Q is
also seen to satisfy

Q =2[H, Qj, (2.12b)

L =—x; + [g;,g;]+—A;x; — Fj[g;,QJ ]—, (2.13)

with I'; the constant field strength corresponding to the
vector potential 2, ; in a suitable gauge one can write
2,. = —

—,'I; x . The equations of motion are easily ob-
tained and read

x; F;x, g;=—F;g (2.14)

The Lagrangian (2.13) changes by a total time derivative
under the infinitesimal transformations given in (2.7),
which are thus also symmetries of this extended system:

l 1.5+ =A, A= —[8,$, ] —x;+ A, (2.15)

The corresponding conserved generator is given by

which is essentially the Hamiltonian rewriting of (2.11}.
Algebras with defining relations such as (2.12) have been
called (real) parasuperalgebras of order p =2. Their dis-
tinctive feature is the occurrence of a trilinear product
rule for the fermionic elements. [Parasuperalgebras of
order p would involve a (p+ 1)-linear product. ]

A few nontrivial (i.e., interacting) quantum-mechanical
models with (2.12) as symmetry algebra have been con-
structed. Most of them, however, only involve a single
para-Fermi variable. The system described by the La-
grangian &2.4) contains N parafermionic degrees of free-
dom, but it does not have interactions. In this respect a
simple extension is obtained by introducing an external
constant magnetic field. The Lagrangian is then given by

R =i (F,ok+. F,km+Fk n.; )g;g gk (2.18)

+Qk([Q;, Qj j
—85;jH)=0 . (2.19)

Introducing the Hermitian-conjugate operators
Q= —,'(Q +iQ2) and Q =

—,'(Q, —iQi), (2 19) can be
rewritten as

Q'Q +QQ Q+Q Q'=2[H Q j

Q 'Q+Q QQ +QQ '=
t Q j

Q3 Qf3 —0

[H, Q]=[H, Q ]=0,

(2.20a)

(2.20b)

(2.20c)

(2.20d)

which is the form in which the complex parasupersym-
metry algebra was first presented [3].

Although R is surely nonzero as an operator for % & 2,
this does not exclude the possibility that it could well
vanish in a given parafermionic Pock space. We ex-
plained in the Introduction how the representation of the
paracommutation relations (2.1) is characterized by the
choice of the vacuum state. Since we are dealing with

p =2 parafermions, it is natural to require [compare with
(1.7)]

y, q, lo&=25,, lo& . (2.21)

The fermion Fock space built on lo) is N+1 dimension-
al, and its basis [ lo), li ) j is defined by

yjlo& = i&2jl&—,

is a new symmetry generator: [H', R ]=0. Thus adding
to the free Lagrangian (2 4) a simple interaction term has
produced a symmetry algebra which is more complicated
than (2.12).

Nevertheless, for the particular case N=2, one can
check using the paracommutation relations (2.2) that R is
zero; Eq. (2.17) then reduces to (2.12b). Actually, there
are more symmetries [5]. In particular, in addition to
Q =—Qi, there exists a second conserved parasupersym-
metric charge Qz= c;n;P. , . also obeying (2.12). One
can moreover cheek that Q,Q2+Q, Q2Q, +Q2Qi
=2[Qz, H j and Q2Qi+Q2QiQz+QiQz =2IQi, H j.
These two relations together with (2.12b) can be con-
veniently combined into

Qi( I Qj &Qk j 85jkH)+Qj( [Qk&Qi j 85kiH }

Qe=
2

[f}~;0;1=—
2

[~ Q] (2.16)

where ~; =p,. —A; are the bosonic velocities and
[x;,mj]=i5J, [n;, mj]=iFj

It is again instructive to discuss the algebra of the
parafermionic generators Q=m. ;g; at the Hamiltonian
level. First of all, the charge Q commutes with the Ham-
iltonian H= ,'vr; +(i /4)F; [g;,fj—], so that (2.12a) is
satisfied. The trilinear relation (2.12b), however, is in
general modified. Since [m;, m ] is nonzero,

In this space the g s are represented by (N+1) X(N+1)
matrices, explicitly given by

(2.23)

One can easily check that the parafermionic relations
(2.2} are indeed satisfied by the matrices (2.23). These
matrices have an additional property:

Q =2[H, Q j+—'R (2.17) g;gjgk=o for i' Ak . (2.24)

where This guarantees that the charge R is zero in this represen-
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tation. There is a nice interpretation of (2.23) in terms of
group representations. It is well known that one can con-
struct explicit realizations of the classical Lie algebras
and superalgebras using linears and bilinears in ordinary
Bose and Fermi oscillators. This property extends to
para-Bose and para-Fermi oscillators [1,11]. In particu-
lar, with the X para-Fermi operators P;, one can obtain
realizations of the algebra of SO(%+1). In fact, using
(2.1), one can easily check that

5 y(x)= —I[8,$(x)]j', 5pb(x)= —9g(x) (3.6)

5'(x —y ) appearing in (3.5) can be interpreted as a func-
tional constant U(1) field strength: V(x,y ) =5'(x —y ).
Furthermore, as before, bosonic and parafermionic fields
are taken to commute: [y, P]=0.

It is easy to check that the infinitesimal transforma-
tions

1Jo= ~- 0;
2

(2.25a)

(2.25b)

are symmetries of the Lagrangian (3.2). The correspond-
ing conserved charge Qe=(i/2) jdx[8, $(x)]y(x) gen-
erates (3.6). As in the finite-dimensional case, it is con-
venient to deal with the Hamiltonian

are generators of SO(%+1):

[J,J ]=i (5„J„+5 J„—5„J —5, J„). (2.26)

The matrix realization given in (2.23) precisely corre-
sponds to the fundamental representation of this algebra. Q =2IH, Q]+ —,'R, (3.7)

H = —f dx y (x )+ —f dx dy V(x,y )[g(x ),P(y ) ]2 4

and the parafermionic charge Q= Jdx y(x)iNx). The
generator Q commutes with H and, moreover,

III. FIKI,D THEORY

(The overdot means time differentiation, while the prime
represents diC'erentiation with respect to the space vari-
able x.) The theory is governed by the Lagrangian

I.= ,' f dx dy y—(t,x)sgn(x —y)j'(t,y)

—
—,
' f dx g (t,x)

+—f dx [g(t,x ), (g(t, x ) g'(t, x ))], —(3.2)

from which (3.1) arise as Euler-Lagrange equations. The
extension of the paracommutation relations to field vari-
ables is straightforward; instead of (2.1) and (2.2), one, re-
spectively, has (at fixed time)

[[g(x ), g(y)], P(z)]
=25(y —z )P(x ) —25(x —z )g(y ), (3.3)

g(x )P(y )@(z)+g(z )g(y )P(x )

The simple quantum-mechanical models discussed in
the previous section can be easily extended to continuum
systems describing an infinite number of bosonic and
parafermionic degrees of freedom [12]. We shall confine
our attention to the Geld-theory analogue of the Lagrang-
ian (2.13) in two space-time dimensions. The system in-
volves a bosonic field g(t, x ) and a parafermionic field
g(t, x ), satisfying the self-dual equations of motion:

(3.1)

& =fdx dy g(x )[g'(y )g(y )P(x )+g(y )P(x )g'(y )

+g(x)g'(y)g(y)] . (3.&)

[ [b (p ), b ( k) ],b ( q) ]=25( k +q )b (p ) —25(p +q )b ( k ),

b(p)b(k)b(q)+b(q)b(k)b(p)

(3.9)

=25(p+k )b(q )+25(k+q )b(p ) . (3.10)

The vacuum state for which R =0 satisfies

Clearly, R must also be conserved and, in fact,
[H,R]=0. Note that the Hamiltonian and symmetry
operators Q and R are not well defined since they involve
multiplications of fields at the same point. An infinite
subtraction is sufhcient to well define them. One can
check that the algebra (3.7) remains unaltered when re-
normalized operators are used.

Since in general the charge R is nonzero, the symmetry
algebra of the system is complicated. A choice of the
vacuum state analogous to (2.21) would reduce it to (2.12)
since in the corresponding Pock space R is represented
by the null operator. However, this choice makes the
theory rather trivial, at least for what concerns the paraf-
ermionic spectrum. This is more easily seen by going to
momentum space and writing g(x)= f dk e '" b(k),
with b (k ) =b ( —k ). In terms of the Fourier com-
ponents b ( k ), the relations (3.3) and (3.4) become

=25(x —y)P(z)+25(y —z)P(x) . (3.4) b(p)b(k) ~0& =25(p+k) ~0&, (3.11)

On the other hand, standard quantization of the bosonic
part of the Lagrangian (3.2) produces the commutator
[13]

[X(x ),X(y ) ]= i 5'(x —y ) . (3.5)

The field y(x ) is thus the continuum analog of the vari-
able ~, of the previous section, and the distribution

the analogue of (2.21). However, this implies that the
Hilbert space of the system contains only single-particle
parafermionic states.

It is interesting to note that the Lagrangian (3.2) actu-
ally possesses many more symmetries in addition to the
transformations (3.6). It is in fact invariant under local
conformal transformations, given by [14]
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5fx=(fx)' 5fP=(f4)' ,'—f'—0 (3.12)

where f(t+x ) is an arbitrary function of its argument.
The corresponding generator is given by

Qf =—f dx f(x)y (x)+—Jdx f(x)[P(x),g'(x)] .

Q Q +QQ Q+Q Q =2[H, Q j+2(N 1—)R, (4.6a)

Q(Q ) +Q QQ +(Q ) Q=2[H, Q j+2(N 1—)R

(4.6b)

with R =a; 'P; and 4; the following trilinear in the g's:

(3.13)

Moreover, (3.2) is also invariant under the local version
of the transformations (3.6), when the parameter 0 is
made to depend arbitrarily on the variable 1+x. The
corresponding conserved generator is again given by
Qs = J dx [8(x ), g(x ) ]g(x ). Together, these local
infinitesimal transformations would seem to provide a
parasuperconformal generalization of the superconformal
transformations. A model for a parasupersymmetric ex-
tension of the infinite conformal algebra in two dimen-
sions was provided in Ref. [10]. The algebra that Qf and

Q& realize is, however, more involved.

IV. COMPLEX VARIABLES

[a;,at]=5;, [a;,aj]=[a;,aj ]=0,
while the Fermi operators g; and P;, i =1,. . . ,N, satisfy

(4.1)

k+gkpjp, =25,,$„+25,„g;,
, +/kg, g, =25~„g, ,

0 P, A+4k4, 0; =0
(4.2)

We further assume that the bosonic and parafermionic
variables commute among themselves: [a;,g ]=[a;,P. ]
=0. The Hamiltonian describing the system is simply

H = 'j a,t, a, j + ——,' [gt, g, ] . (4.3)

The parafermionic charges

Q=a 0 Q =at' (4.4)

are conserved: [H, Q ]= [H, Q t]=0. They mix bosonic
and paraferrnionic variables and therefore generate
parasupersymmetry transforrnations. In one dimension
(N= 1 ), Q and Q, together with H, realize the relations
(2.20). In general, for N ) 1, the situation is more compli-
cated. In addition to

Q3 —0 (Qt)3 —0

one also gets

(4.5)

We have so far examined the parasupersymmetries of
simple models involving real bosonic and parafermionic
degrees of freedom. We shall now study, in this respect,
another system which is naturally described in terms of
complex variables. Our quantum-mechanical model in-
volves X ordinary bosonic oscillators and X parafermion-
ic oscillators of order p =2.

The Bose annihilation and creation operators a; and
a;, i =1,. . . ,N, obey the canonical commutation rela-
tions

(4.7)

The operator R commutes with the Hamiltonian, and a
new symmetry generator is thus obtained.

In order to understand better the role of the charge R,
let us set %=2 and construct the explicit representation
of the parafermionic algebra (4.2) in the Fock space built
on the vacuum state 0&, specified by [see (1.6) and (1.7)]

q, Io& =o, y, y, Io& =25„lo& . (4.8)

The fermionic Fock space is ten dimensional, and in addi-
tion to 0 &, the normalized basis states are

'
q,'lo&, I2&= '

y,"lo&,
2 ' '

2

3&= 2(~l)'lo& 14&= 2(~l)'Io& .

5& = q', qtlo&,—I6&= y', q,'o&—, (4.9)

I7&=, —,@,'(@t)'Io&, l8&= —q', (@',)'Io&,

I9 &
= —(qt)'(yt)'Io& .

The operators g; and tP; are now represented by 10X10
matrices, and one can straightforwardly evaluate the
combinations 4;. Using this explicit realization, one then
discovers that +; and 4'; satisfies the parafermionic com-
mutation relations (4.2); in other words, the 'k's form a
second inequivalent realization of (4.2).

One can now determine the algebra satisfied by the
charge R. Since the Ws obey (4.2), the computation goes
as it went for Q, and explicitly one gets

R =0, (R )=0,
R R +RR R+R R =2{H,R j+2(N —1)S, (4.lla)

R(R ) +R RR +(R ) R =2[H, R j+2(N —1)S

(4.11b)

The additional generator S is again of the form S=a; %';,
where 4; are the trilinears in the 4's that are obtained
upon eff'ecting 4;~4'; and g,.~V; in (4.7). Remarkably,
the charge S is something that we already know. In fact,
using the matrix representation, one discovers that

g/ —
Q g/ t —Qt (4.12)

in other words, S —=Q.
Unfortunately, this picture works only for %=2. Con-

sider the operators 4; given in (4.7), with N arbitrary.
On the standard vacuum defined in (4.8), one easily sees
that
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e, io& =0, e,e,'iO& =25,, iO& . (4.13)

(4.14)

2

(N 1)—I [1+(N —2) ]5 k 4;+2(N —2)5,„% I IO & .gk lk

(4.15)

However, one also finds that, typically,

+ Pk~j~', %25

In fact, acting with 0'";O'J%'k+'I'k%'~%'; on ~0&, one gets

(e', e,'e, +e„e,'e', ) ~o &

The right-hand side of this formula is equal to 25 k4;
only when N =2, and the 'Il's do not therefore satisfy (4.2)
in general. It follows that, as X increases, the set of gen-
erators of the invariance parasuperalgebra gets enlarged
by more and more elements.
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