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We study neutron stars with cores consisting of a mixture of constituent-mass quarks and diquarks.
Diquarks are colored, two-quark bound states which have been conjectured to exist in the density range
above deconfinement. %'e compute an approximate equation of state for such a mixture. At relatively
low densities this has the form of a polytrope with adiabatic index I =2. We find that the maximum-
mass star with a quark-diquark core surrounded by a low-density envelope of nucleons has mass
1.79Mo, radius 11.4 km, and central density 1.8 X 10"g/cm .

INTRQDUCTIQN

It is believed that the density of matter in the core of a
neutron star exceeds that of nuclear matter [1],
p„„,=2.8X10' g/cm . Moreover, in most models of
neutron stars a large part of the mass will be in this
high-density core region. Consequently, many properties
of neutron stars depend strongly on the properties of
matter at such high densities.

At densities above p„„„individual nucleons overlap
substantially and one expects that the system should
properly be described in terms of quarks and gluons.
Indeed, at very high density the strong interactions are
screened [2] and the quarks can be described by a weakly
interacting Fermi gas. Most models of neutron stars,
however, use equations of state for interacting nucleons
to describe the high density core. This will be a good
description, if quarks remain spatially localized and
correlated in color-singlet states resembling nucleons.
Estimates have been made of the density at which the
transition between nucleon matter and quark matter
takes place [3]. The transition is found to happen at
many times nuclear density, above what is estimated for
maximum central densities in most models. Thus, it has
been thought that quark matter probably does not play a
role in neutron stars.

Recently it was suggested that there might be an inter-
mediate stage in the transition between ordinary nuclear
matter and quark matter [4] in which nucleons have
disassociated but a majority of quarks remain localized
and correlated in spin-singlet pairs, known as diquarks.
Such pairing seems likely because the attractive spin-spin
energy in this channel [5] is sizable on the scale of quark
energies in the density region above p„„, (a few hundred
MeV). The spin-spin interaction is responsible for the
splitting of about 300 MeV between the spin- —,

' nucleon
and the spin- —,

' h. Two of the quarks in a nucleon are in a
spin-singlet, color-3 combination, with the third quark
carrying the overall spin. From the spin interaction there

is no energetic advantage to having this third quark
grouped with the others. The energy of the system would
be lowered further if it found another unpaired quark and
formed a spin-zero diquark with it. Such a rearrange-
ment is clearly impossible in the confined hadron phase,
but in the deconfined regime at higher density it should
be possible.

It seems plausible that the diquark correlated state de-
scribes part of the density range appropriate to the high
density cores of neutron stars. In this paper we compute
an approximate equation of state for the diquark state
and use this equation of state to build neutron stars. The
equation of state we find is comparable to the stiffer equa-
tions of state for nuclear matter which appear in the
literature. The speed of sound in the quark-diquark mix-
ture is more than an order of magnitude greater than the
speed of sound for a gas of noninteracting nucleons. For
a model neutron star composed of a charge-zero mixture
of diquarks and constituent mass quarks surrounded by
an envelope of low-density neutrons we find that the max-
imum mass stable star has mass 1.8MO, radius 11.4 km,
and central density 1.79 X 10' g/cm . We note that pair-
ing in the diquark channel has been studied previously in
the very high-density regime where QCD perturbation
theory is valid [6]. The binding forces in this regime are
then perturbatively weak, and though pairing is found to
happen through a BCS mechanism, this only involves
quarks near the Fermi surface and the eFect on the equa-
tion of state is small. Our considerations here are for the
regime just above deconfinement where the binding forces
are still expected to be fairly strong. The pairing can
then involve a large fraction of the quarks and
significantly alter the equation of state.

EQUATION GF STATE

Donoghue and Sateesh [4] gave an approximate
method for computing the properties of a gas of interact-
ing diquarks. Diquarks are aniisymmetric in spin and
color and spatially symmetric under interchange of the
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quarks. They must therefore be antisymmetric in Aavor
in order to satisfy the exclusion rule, and so contain one
up quark and one down quark. The interactions of di-
quarks are modeled by an effective field theory for a
color-triplet scalar field P with Lagrangian

L,fr= ,'(B-„p B"p m—„dp p) A—.(p p) (l)

From 5—X splitting the mass of a diquark is estimated
to be m„d-—575 MeV. The coupling constant k was es-
timated from the quark interactions using a variant of the
P-matrix formalism of Jaffe and Low [7]. They found a
value A, =27.8 which we have used in our numerical
work. En the analytic results which we present the A,

dependence is left explicit, so that the A, dependence of
our numerical results can be estimated. Clearly both the
efFective-field-theory approach and the estimation of the

f (k)
2V (I 2+~2 )In (2)

where f (k) is the distribution of diquarks in momentum
space. The pressure defined by P = —BE/B V, is then

diquark self-interaction involve theoretical uncertainties
which are hard to estimate. Our results should then be
taken as a first attempt to estimate the importance of the
presence of diquarks in the cores of neutron stars. Note
that for A, =0 the diquarks would condense into the zero-
momentum state and form a pressureless gas, which is
unphysical for the case at hand.

In this approximation the classical energy of a collec-
tion of diquarks is given by [4]

E = f d'k f(k)(k +m„'„)'

kP= dkf(k) + dk
3V (k2+m2 )I/2 2V2 (k2+I' )' '

r

2

f (k)
3V (k + )'

Pd3k k f (k)
(k+m )/2 (3)

The distribution f (k) is approximated by a Gaussian

—k /2cr
~2)3/2

where N is the total number of diquarks. The width of
the Gaussian o. is taken to be the value minimizes the en-
ergy (2).

For a general value of the overall diquark density,
n =X/V, the integrations for the energy and pressure (2)
and (3), and the minimization with respect to the width of
the distribution must be carried out numerically. In the
limits of high and low density, however, this can be done
analytically. In these two limits the width o. is given by

The numerical results for the diquark equation of state in
the intermediate density range are given by curve (a) in
Fig. 1.

For low densities the diquark energy density is just the
mass density. Since the diquark mass is less than twice
the constituent quark mass (I =360 MeV), at low densi-
ty as many quarks as possible will be in diquark clusters.
As the density is increased, interactions raise the diquark
chemical potential to a point where it is energetically
favorable for some of the quarks to remain unpaired. We
should then consider a mixture of quarks and diquarks.
We will neglect the interactions of the quarks, keeping
only the diquark-diquark interactions, which are neces-

0, 8~0;
0 =

&2m.m„'„

' 1/3

Q~ ao,

where 8'=n/m„d. Then the energy and pressure are

p=m„dn, P = n, 8~0,2

2m„

=aA, ' n P= —' k' n & oo9 3 9 9

where a is a numerical factor, a =1.76. Eliminating the
number density from these expressions we obtain the
equation of state in these two limits:
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FIG. 1. The equations of state are displayed for an isoscalar
mixture of quarks (curve c), a pure diquark gas (curve a), and an
isoscalar soup of diquarks and quarks (curve b).
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sary to avoid a Bose condensate. Starting with fixed
overall densities of up and down quarks, we minimize the
energy of the mixture to find how many of each species of
quark will be paired. For an isoscalar mixture (equal
number of up and down quarks) we find that all quarks
will be paired below p=2. 7X10' g/cm =p„„,. The
fraction of quarks paired drops to —,

' at p=2. 3X10'
g/cm . For a charge-zero mixture coming from pure
neutron matter (the number of down quarks equals twice
the number of up quarks) all the up quarks will be paired
until p =8.5 X 10' g/cm and at ten times nuclear density
the fraction in pairs reaches —', . We see that the fraction
of diquarks remains significant for quite large densities.
The equation of state for the isoscalar mixture is given by
curve b in Fig. 1. For comparison curve c is the equation
of state for an isoscalar mixture of constituent-mass
quarks. The equation of state for the charge-zero mix-
ture is given by curve a in Fig. 2. Curve b in Fig. 2 gives
the equation of state for a charge-zero mixture of quarks.

DIQUARK STARS

dP pm P
dr r2 p

4mPr

This must be supplemented by an equation of state. Then
there is a one-parameter family of solutions,
parametrized by the central density p, . In general rela-
tivity, there is a maximum mass which a static star can
have. Here we 6nd the mass and radius as a function of
p, and, in particular, the maximum mass.

It is instructive to 6rst look at diquark stars in the
Newtonian limit, in which case the energy density is
equal to the mass density and only the first term in the
pressure equation is significant. This is a good approxi-
mation if the pressure is small compared to the energy
density and the gravitational field is weak. For diquarks,
this first requirement implies p«1.8X10' g/cm . The
low-density diquark equation of state has the form of a
polytrope, P =Kp, with I =2 and K =X/2m„d. For
comparison, and ideal Fermi gas at T=O has I"=—,'in the
nonrelativistic limit. For I =2, the Newtonian equations
can be reduced to a set of linear equations and solved ex-
actly. The solution is

sin(m. r/R)
p=pc

The Einstein equation for a spherically symmetric,
static spacetime, with perfect-Quid stress energy, reduces
to the well known Oppenheimer-Volkoff [8] equations,

dm =4mr p,dr
, (8)
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FIG. 2. The equations of state are displayed for a charge-
zero mixture of quarks (curve b) and a charge-zero mixture of
diquarks and quarks.
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M=(2m-~i, )'~' p =5 9 M
m~d Pnuc

rising linearly with the central density. Also,
2GM/R =(A, /27)0. 58(p, /p„„, ) for the diquark stars, so
we expect that general relativity cannot be neglected for
Pc /Pnuc +

Next compare the diquark stars to stars made of non-
relativistic fermions. The equation of state for fermions
in this limit is given by

2/3
1 6mP=—
5 g

—8/3 5/3
7

where p is the total density, and g is the degeneracy fac-
tor. From the known solution to the Newtonian equa-
tions for I =—,'equation of state [9] one finds

R =3.6
8mG

' 1/2
1/6 M 34 0

8+G

3/2
1/2
C

(12)

For a star made of an equal number of protons and neu-
trons (g=4 and m =940 MeV) we then have

fixed value for the radius comes out in the ball park of
the radii of compact stars, rather than say the size of the
universe, because the diquark mass is the same order of
magnitude as the nucleon mass. The total mass of the
star is given by

where the radius R of the star is given by
1/2

R= =34.0 km,
4 m„d

(10)

pc
Rz =14

Pnuc

—1/6

km, M~ =0.29
pc

Pnuc

where mp1=1. 22X10' GeV is the Planck mass. Note
that the radius is independent of the central density. This

Now, fix the number of baryons, and compare a di-
quark star to a star made of nucleons. We see that
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MN= 1.1M„d,

R Qd

RN 27

' 1/2 1/3
N

Mo
1/2 1/6

Pc, N=2.4
27 Pnuc

1/2

=0.046Pe, ud

Pnuc

3/2
27

(14)

The nucleon star is about 10% heavier. For central den-
sities above p„„, the diquark star is considerably larger
and the central density of the diquark star is much lower.
As the coupling A, decreases, the radius and central densi-
ty of the diquark star become closer to the values for the
nucleons. These qualitative features also occur in the
general relativistic solutions.

It is also of interest to compare the diquark star to one
composed of an ideal gas of constituent mass up and
down quarks. The solutions again have the form (12), but
with g=12 and mq=360 MeV. Hence for isoscalar,
Newtonian quark stars,

—1/6

R =34
Pnuc

km, M =4.4 pc

,
Pnuc

o.
(15)

Comparing a quark star to a diquark star with the same
baryon number implies

Mq 1 25M
1/2

=0 61
1/3M

o
1/61/2

Pc, q

27 pnuc
' 3/2

Pc, q

27

1/2
Pc, ud 0.60

PnucPnuc

(16)

For A, =27 the diquark star is less massive than the quark
star by about 20%%uo, is approximately the same size, and
has a lower central density.

Of course, it is incorrect to take the matter to be di-
quarks when the density falls below nuclear; we must
rnatch onto a low-density equation of state for nucleons
at some density. This matching density is arbitrarily
chosen at this point. We do not know the density at
which decon6nement might allow the diquark state to be
realized. We chose to do the matching when the baryon
number in the quark-diquark soup falls to one baryon per
sphere of radius 1 fm, nI, =2.3X10 cm . The corre-
sponding energy density for the charge-zero quark-
diquark soup is p„d =4 4X 10' g/cm and the corre-
sponding pressure is I'„d =3.9X 10 dyn/cm . Pressure is
continuous in the star, so we match onto a low-density
equation of state at this pressure. Hence there will be a
discontinuity in the energy density at the boundary. For
example, if we match onto the equation of state for free

nucleons, the energy density in nucleons at the matching
pressure is quite large, p&=9.4X10' g/cm . Such a
large discontinuity seems unphysical. However, at these
high densities interactions are certainly important, and
we should be matching onto an equation of state for in-
teracting nucleons. After all, if the density in nucleons is
much above nuclear, the picture seems inconsistent. A
variety of equations of state appear in the literature and
we can at least get an idea of the direction of the effect.
Consulting, e.g., a graph of a number of these equations
[10],we see that interacting equations of state have lower
energy densities than free neutrons in the range of the
transition pressure. The energy density of the quark-
diquark mixture is comparable to that of the stiffer equa-
tions of state displayed. For simplicity we chose to
match onto the equation of state for free nucleons. This
seems reasonable in order to get an idea of the effect of
adding a quark-diquark core. It also allows us to vary
the ratio of charge to baryon number of the surrounding
material easily.

Now let us study general relativistic stars, in which
case the densities and pressures may be large and the
gravitational 6elds may be strong. Therefore we use the
numerically determined equation of state for the
diquark-quark soup. Perhaps the most interesting feature
of general relativistic solutions is that there exist max-
imum masses for stable equilibria. It is the masses and
rotation rates of compact stars that can be observed (or
more fairly, one can hope to infer the mass from other
observations). So one way to "tell" if stars are diquarks
or nucleons, is if the mass-radius relation for stable stars
is different for the two equations of state, and a star is ob-
served which can be explained by one but not the other.

The "most physical" model we will look at is a star
having a charge-zero quark-diquark core surrounded by
an envelope of neutrons. It is instructive to compare
these results with a number of other cases in order to il-
lustrate the separate effects of adding quarks in the core
and the envelope of low-density nucleons to the basic di-
quark core.

We integrated (8) numerically using a trapezoidal algo-
rithm. This method gave quite good results for the solu-
tions to the Newtonian equations with polytrope equa-
tions of state, which can be compared to known results.
Solutions to the full Oppenheimer-Volkoff equations
agreed with the Newtonian solutions in the appropriate
limits.

Our results are summarized in Table I. M„„and
R„„are, respectively, the mass and radius of the region
above the matching pressure. With the exception of the
second line, these results are for the maximum-mass
stars. First consider the simplest case, when the whole
star is diquarks. The maximum mass of a stable diquark
star is 2 56Mo, which occurs at a central density

p, = 1.4X 10' g/cm and has a radius of 12.8 km. As an-
ticipated from the Newtonian results, the diquark stars
are larger, and hence less dense, than stars made of
noninteracting nucleons. We also see that the maximum
mass for a stable diquark star is at the high end of neu-
tron star masses and occurs at a fairly low central densi-
ty. This is a general feature of neutron star models with
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TABLE I. Some results for stars calculated using dift'erent equations of state which are discussed in the paper.

Model

Diquarks
Diquarks
Diquarks + nucleons
Diquarks + nucleons
Isoscalar soup
Isoscalar soup
Charge-0 soup
Charge-0 soup + neutrons

p, (g/cm')

1.4x 10"
1.7 x10"
1.4 X 10'
1.7 X 10'
5.2 X 10'
5.2x1O"
1.1x1O"
1.8 X 10"

2.56
2.55
2.35
2.38
2.74
1.91
2.09
1.79

Radius (km)

12.8
12.5
11.8
11.5
22.7
22.4
16.5
11.4

(mo)

1.6
1.7
1.6
1.7

-0

1.00
1.2

R„„(km)
10.3
10.2
10.3
10.2

-0

9.1

9.2

stiff equations of state for the core material.
The next case is a star made of the isoscalar diquark-

quark soup, but no crust. Compared to the pure diquark
star, the maximum mass is somewhat larger in this case
and occurs at a much lower central density. Hence the
soup interpolates between pure diquarks and pure (mas-
sive) quarks, which is also listed for comparison. Of
course, the equation of state for the mixture interpolates,
and we can understand the stability properties of the mix-
ture as follows. The star is stable to radial perturbations
if the adiabatic index I,=8 1np /8 lnp satisfies [1]
f dv p (I, ', kIEI /M—)—~ 0 where E is the Newtonian
gravitational self-energy and k is a constant (which de-
pends on the equation of state) of order unity. If the star
is the sum of two species the condition for stability be-
comes

U pg I.——', +p$ Ib —
3

—p—k[EI (17)

This assumes pb —-cp and p, =(1—c)p, where c is a con-
stant. If this is not a good approximation then I; is re-
placed by I",(p/p, . )Bp;/Bp in (17). Therefore the stability
properties of the mixture interpolates. Suppose I,—+—', at
a lower density than I b. Then "b" stabilizes the star,
and there are stable equilibria at higher densities than if
only "a" were present. On the other hand, the presence

of "a" means that the net force for collapse is stronger
than if only "b" were present, tending to destabilize the
mixture.

Next consider the effect of replacing the low-density re-
gion of the star with an envelope of nucleons. We would
like to understand why the maximum mass decreases. To
isolate this effect, compare a star made just out of di-
quarks, to one with a diquark core and a nucleon en-
velope. The gravitational self-energy term which appears
in condition (17) has three contributions, the self-energy
of the core, the self-energy of the shell, and an interaction
piece. Look at the case for p, =1.4X10' g/cm; this is
the highest central density possible for a stable diquark
star. For a fixed diquark core, the nucleon envelope is
considerably thinner than the diquark envelope. If the
same mass were packed into the two envelopes, the self-
energy of the nucleons would be much higher, which des-
tabilizes the star. The actual nucleon envelope has a
smaller mass, which helps stability, and so the star with
nucleons is less massive. Now increase the central densi-
ty to p, =l.7X10' g/cm, the value at the maximum
mass for a stable diquark plus nucleon star. This central
density is higher than that for a stable diquark star, and
the self-energy of the diquark core is quite high. The to-
tal self-energy is kept sufticiently low but putting even
less mass in the envelope. One can check these remarks
by computing ~EI /M, with
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FICz. 3. The mass vs central density relations are plotted for
stars made of a charge-zero mixture of diquarks and quarks
with (curve a) and without (curve b) a low-density neutron en-
velope.

FIG. 4. The mass vs radius relations are plotted for stars
made of a charge-zero mixture of diquarks and quarks with
(curve a) and without (curve b) a low-density neutron envelope.
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I,
core

M,M,
E = ——6-

1Ilt
C

R,1+—--
RT

M, R,
E =-—6 1+3env 8 R

C T

One then sees that E/M is approximately the same for
the three cases just discussed; the core contribution in-
creases and the contribution from the successively less
massive envelopes decreases.

Finally we come to our "most physical" case of a
charge-zero quark-diquark soup surrounded by an en-
velope of neutrons. The maximum mass in this case is
1.79Mo at central density 1.8X10' g/cm with radius
11.4 km. Here again we see that adding the envelope
lowers the maximum mass, but raises the maximum cen-
tral density. Figures 3 and 4 give plots of the mass versus
central density and mass versus radius relations for the
charge-zero soup with (curve a) and without (curve b) the
neutron envelope.

CONCLUSIONS

We have studied the thermodynamics of a mixture of
interacting diquarks and a Fermi sea of noninteracting,
constituent mass, up and down quarks, which may be a
useful model of matter at densities above nuclear. At low
densities, the mixture is dominated by diquarks, which
have a stiIIF polytrope equation of state, with adiabatic in-
dex two. At high densities, the equation of state of the
diquarks approaches that for a Fermi gas of relativistic
particles. (However, these densities are probably too
high to be of interest for the cores of neutron stars. ) The
global properties of neutron stars having a diquark-quark
core, surrounded by an envelope of nucleons, are similar
to those of stars constructed from sti6' equations of state
for interacting nucleons. It would be of interest to see
what efFect the inclusion of diquarks has on modeling su-
pernovae bounces. It would also be interesting to include
strange quarks within this scheme.
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