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If the inflationary epoch lasted only —10 e-foldings longer than required to solve the horizon problem,
observable "remnants" of the preinQationary Universe may exist. They include dipole and quadrupole
anisotropies of the cosmic microwave background radiation (CMBR). These "remnants" arise due to
prein6ationary fluctuations in scalar fields such as the inAaton, the axion, and the ilion, or due to
preinQationary density perturbations. The dipole anisotropy can lead to the illusion of a "tilted
universe": Viewed from the rest frame of the CMBR galaxies throughout the entire observable Universe
would have a uniform streaming velocity. A dipole CMBR anisotropy could provide a very unconven-
tional explanation for the large peculiar velocities measured for galaxies in our -50h Mpc neighbor-
hood. Among things very unlikely to be a "remnant" of inAation is a value of Q today that is
significantly difFerent from unity.

I. INTRODUCTIGN

InAation is very appealing because it makes the current
state of the Universe relatively insensitive to its initial
state and provides a "blueprint" (baryon asymmetry, den-
sity perturbations, total matter content) for the subse-
quent evolution of the Universe [1]. Inflation accom-
plishes the former by "inAating" a small, smooth patch of
the preinAationary Universe to a size that encompasses
all that we see today. To make this point more concrete,
consider the current size of a preinAationary Hubble-
sized patch:
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where Hi="(/ gsrM /3m p& is the Hubble constant dur-
ing inflation, Ho =(10 h ' cm) ' is the present value of
the Hubble parameter, the Planck mass mp& =1.22X 10'
GeV, TRH is the temperature to which the Universe is
reheated after inAation, and M is the vacuum energy
that "drives" inflation. (In slow-rollover inflation the
inAationary era is usually followed by a matter-
dominated epoch, where the energy density is dominated
by the coherent oscillations of the inAaton 6eld, and then
by the usual radiation-dominated epoch; thus TRH &M .
In inAationary models where reheating takes place
through bubble nucleation and collisions, e.g. , extended
inAation, there is no matter-dominated era just after
inflation and TRH =M.)

The value of the cosmic-scale factor R (t) is R„„,at
the beginning of inAation, R,„d at the end of inAation,
and Ro=1 today, and N—=ln(R, „d/R„„,) is the number
of e-foldings of the scale factor during inAation. If X
exceeds

N;„=53+2 ln(M/10' GeV)/3

+ln(TRH/10' GeV)/3,

—1
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where Q = 8m Gp„t/3H, and p„, includes all forms of en-
ergy density. The radius of curvature of the Universe to-
day is equal to that at the beginning of inAation times
R o /R „„,. Using this, the relationship between R,„,„and
Q, and Eq. (la), we can relate Qo to Q„„,:
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The essence of Eq. (lb) is clear: Unless the size of the
smooth, preinAationary region is much larger than Hl
the amount of inAation required to solve the Aatness

then today the preinAationary patch is large enough to
encompass the current Hubble volume, thereby solving
the so-called "horizon problem [1]." (Note, we have tak-
en the smooth, preinAationary patch to be Hubble sized
because this is the largest size region that could have be-
come smooth due to causal physical processes; for more
discussion see the Appendix. )

A similar amount of growth in the cosmic-scale factor
is required to solve the "Aatness" problem: namely, the
fact that the value of Q today (:—Qo) is still of order uni-
ty, or equivalently, that the curvature radius is compara-
ble to the Hubble radius. The curvature radius of a
Friedmann-Robertson-Walker (FRW) model can be relat-
ed to either the three-curvature k or the ratio of the total
energy density to the critical density (:—Q):
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problem is comparable to or less than that required to
solve the horizon problem. (See the Appendix for details
concerning the kinematics of the transition to the
inflationary epoch. )

Provided that the amount of inflation exceeds that re-
quired to solve the horizon/flatness problems, i.e.,
X &N;„, a scale that had a preinflationary size larger
than HI will today still be outside the horizon. [When
we refer to a scale crossing inside (or outside) the hor-
izon, we mean more precisely that its physical size be-
comes less than (or greater than) the Hubble radius H
In the standard cosmology, the distance to the particle
horizon, d~ =R (t)fodt'/R (t'), is up to factors of order
unity equal to the Hubble radius. Of course, this is not
true in inflationary universes, and in fact d& is much
greater than H '.] In particular, if the scale was of
physical size l:—eel at the beginning of inAation then
its size today is L—:Rol/R„„, =e "Ho ', where
P =p +X—N;„. The content of the kinematic relation-
ship P =p +X—N;„ is perhaps more clearly expressed
in words: A scale that was a factor of e~ larger than the
Hubble radius at the beginning of inflation is today a fac-
tor of e larger than the current Hubble radius, where
the difference between P and p is simply the logarithm of
the size of our inAationary patch divided by the current
Hubble radius. If the duration of inAation exceeds the
minimum amount required to solve the horizon and/or
fatness problems by a large amount, that is
X&&X;„-50,then all superhorizon-sized scales at the
beginning of inflation are "exponentially superhorizon
sized" today. On the other hand, if the duration of
in+ation does not exceed the minimum by a large amount,
then scales that were superhorizon sized, at the onset of
in+ation are not exponentially far outside the horizon to
day. It is this possibility that interests us here.

Scales that were superhorizon sized at the onset of
inflation are the ones that we will be concerned with in
this paper. These scales cannot be affected by events dur-
ing inAation or the postinflationary epoch, and thus con-
tain information about the preinflationary Universe. We
will show that provided N &N;„+O(10), fluctuations
on such scales can lead to observable consequences:
quadrupole and dipole anisotropies of the cosmic mi-
crowave background radiation (CMBR). The dipole an-
isotropy can create the illusion that the Universe is tilted:
If an intrinsic dipole anisotropy exists, the rest frame
defined by the CMBR does not coincide with the cosmic
rest frame, and viewed from the CMBR rest frame all the
matter in the Universe will be seen to be moving with a
uniform velocity. Such an effect could be the explanation
for the large peculiar motions (relative to the CMBR)
measured for almost 1000 galaxies in our 50h ' Mpc
neighborhood. Consideration of preinAationary inhomo-
geneity on superhorizon-sized scales also provides the
basis for a strong argument that the value of 0 must be
very close to unity in an inAationary Universe.

Before we begin, it is only fair to warn the reader that
in many, if not most, models of inflation N »N;„—50,
in which case the issues discussed here are moot. Howev-
er, there are models of inflation in which X can be -50

[2]; moreover, the question of whether or not the
Universe even inflated, let alone the details of inflation,
has yet to be answered. Thus, we feel justified in consid-
ering the possibility that the amount of inflation is not
too different from that required to solve the horizon and
fatness problems.

II. PRELIMINARIES: SCALAR-FIELD FLUCTUATIONS

The behavior of curvature Auctuations that are su-
perhorizon sized at the onset of inAation is well known:
Ordinary (scalar) density perturbations enter the horizon
in the postinflationary epoch with the same amplitude
that they would have in the absence of inflation, albeit at
a time well after the present epoch [3]; the same holds
true for anisotropic curvature perturbations (that is,
growing modes of anisotropy) [4]. Inflation does not
solve the woes of an anisotropic or inhomogeneous
universe permanently; it merely postpones the epoch that
we become aware of the inhomogeneity and anisotropy.

Inhomogeneities can also arise due to fluctuations in
various scalar fields including the scalar field responsible
for inflation, often referred to as the inj$aton, the (com-
plex) scalar field responsible for Peccei-Quinn symmetry
breaking (whose phase is the axion field), and the "ilion"
field, the field responsible for producing the baryon asym-
metry in an unconventional and interesting model of
baryogenesis [5]. We will use P to denote the scalar field
whose Auctuations we are considering at the time.

On length scales greater than the preinflationary Hub-
ble radius there is no reason to expect P to be homogene-
ous. As a simple ansatz for the spatial configuration of P
at the start of inflation, we take the mean value of P to be
Po and consider one superhorizon-sized fluctuation mode:

(2)

Here 5/1, is the amplitude of the superhorizon-sized fluc-
tuation, I =R„„,/~k~ =eel ' is the physical size of the
Auctuation at the start of inflation, which is greater than
HI ', and r are comoving coordinates. Since we have
normalized the cosmic-scale factor so that its value today
is unity, the current length scale of this Auctuation,
L—= ~k~ ', is related to the present horizon scale by
L =e Ho ' where as before P =p +N —X;„.Provided
that the scalar field P is minimally coupled (vanishing
coupling to the scalar curvature %) and any potential
term for P is unimportant ( V" «HI ), both are true for
the examples of interest, the evolution of the scalar-field
Auctuation while the scale L is outside the horizon
(k/RH «1) is extremely simple: 5/k =const [6].

While we have chosen a particularly simple and
specific form for the preinflationary Auctuation, any
superhorizon-sized, preinflationary fluctuation in P can
be expanded in a Fourier integral involving only
modes that are superhorizon sized; by writing
5$=5ke '"'/(2ir) we have made it convenient to do so.
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III. CURVATURE PKRTURBATIONS

Inhaton fluctuations

To begin, consider the case where the scalar field P is
the field responsible for inAation. For example, in the
chaotic inflation model [7] the inflation is a very weakly
coupled scalar field with scalar potential V(P )=A,P
(A. —10 ' ). The number of e-foldings of inflation is
X =m(Po/mp&) —1/2, and for $0-4mp~, X-50. As is
well appreciated Auctuations in the inAaton field eventu-
ally lead to curvature fluctuations [8]. On length scales
that are subhorizon sized at the onset of inAation Auctua-
tions in P arise as de Sitter (zero-point) quantum fluctua-
tions, and their amplitude as they cross outside the hor-
izon is bP=k ~5/I, ~/+2m=HI/. 2~ Th.ese quantum
Auctuations lead to curvature Auctuations that cross back
inside the horizon in the postinAationary Universe
with amplitude (bp/p)», :—k ~51, ~/+2m = 10 (1,/
10 ' )', where 5p(r)/p= j5&e ' 'd k/(2m. ) . The
value (hp/p)h„-—10 is both consistent with the isotro-

py of the CMBR and suitable for structure formation [9].
The amplitudes of Auctuations that are superhorizon

sizes at the beginning of inflation have nothing to do with
de Sitter quantum Auctuations; rather, they reAect the in-
itial configuration of the P field, and thereby the
preinAationary state of the Universe. We can estimate
the horizon-crossing amplitude of the density perturba-
tion produced by such a Auctuation on the scale L by a
simple scaling argument: Since (5p/p)», ~ b,P,

5p 5/i, /(2~)'
10 —30

p h ~ H/2' 40

where subscript "hor, I." refers to the epoch when the
scale L crosses back inside the horizon and the final ex-
pression is specific to the chaotic inAation model. Provid-
ed the Universe remains matter dominated until that
epoch, Th«1-2. 7 K (Ho '/L)' »d t„«I —10' yr
(L/Ho '

) . [If the initial fluctuation in P is of order uni-

ty, that is 5Pq/(2m') -Po, the resulting curvature pertur-
bations enter the horizon with amplitudes greater than
unity and cannot be treated as small perturbations. )

tion r, =(1—+RE)x (x=2HO 'n) —and 5p(r)/p
=(2m ) 5&(t)exp( —ik r.)~, 0 is evaluated at our position
(by integrating over wave number k this expression can
be generalized to any density field).

The quantity 5p/p is not gauge invariant and here is to
be computed in synchronous gauge. During the matter-
dorninated epoch 5p/po-R (t). Since R H ~R ', the
quantity (R H /k )(5p/p) is time independent More-
over, if we define the horizon-crossing epoch (RL -H ')
to be precisely when k/HR =1, this time-independent
quantity is just equal to the value of (5p/p) at horizon
crossing, (5p/p)h„, a fact which will prove useful since
(5p/p)h„ is the quantity most easily specified in inflation
models. (For reference, for the modes whose amplitude
is determined by de Sitter quantum Auctuations,
(bp/p)h„- k5—I, ~», /+2vr =2HI //=const [12].)

Before going on, we wish to remind the reader of three
assumptions underlying the analysis of Sachs and Wolfe
[11]: (i) flat universe; (ii) matter domination at the epoch
of decoupling and after; and (iii) pure curvature-mode
perturbations. Given that our interest is inAationary
cosmology, assumption (i) is quite appropriate. Since we
may wish to consider a universe that at present is not
matter dominated, we may wish to relax assumption (ii).
And of course, we do plan to discuss isocurvature pertur-
bations, so we will certainly relax assumption (iii).

The two terms in Eq. (3) that contribute to the CMBR
anisotropy have simple physical interpretations: (1) Ow-
ing to the gradient operator, the first term leads to a di-
pole anisotropy about the direction k; this dipole anisot-
ropy arises due to the relative peculiar motion between
the observer and the last-scattering surface. Peculiar ve-
locities come about because of the inhomogeneous distri-
bution of matter, and in the linear regime the Fourier ex-
pansion of the peculiar-velocity field is related to that of
the density field, 5vz= ik(RH/k—)5& Thus we .see that
the first term corresponds to a Doppler shift caused by
the velocity of the observer relative to the last-scattering
surface. (2) From a Newtonian perspective, the second
term in the Sachs-Wolfe formula corresponds to the
gravitational-potential difference between the last-
scattering surface and the observer [13].

CMBR anisotropy: The Sachs-Wolfe e8'ect

Superhorizon-sized Auctuations, like their subhorizon-
sized counterparts, can affect the isotropy of the CMBR
[10]. To calculate the amplitude of the temperature an-
isotropies that arise we use the formalism developed by
Sachs and Wolfe [11]. The relative deviation of the
CMBR temperature seen in the direction n by an ob-
server today at position r =0 is

5T(r=O;n) 1 — R H 5p

RRH 5p
2 p

(3)

where R denotes the reception event at our spatial posi-
tion (r=O), E denotes the emission event (last scattering),
scale factor Rz-(I+zd„) '=10 and spatial posi-

Subhorizon-sized modes

While here we are not interested in subhorizon-sized
modes, as a warm up let us review quickly the CMBR an-
isotropies that arise due to these modes. Since the dipole
anisotropy cannot be distinguished from the effect of our
own peculiar motion, some of which arises due to large-
scale modes that are still in the linear regime and most of
which arises due to small-scale modes that are already
nonlinear, it is useful to separate out the dipole anisotro-
py when discussing subhorizon-sized modes. Considering
only the second term in Eq. (3) it follows that the relative
temperature Auctuation seen in the direction n by an ob-
server at position r is

5T(r;n) 1 1 R H
5 Q, 'Q, d3k

T 2 (2~)
(4)



3740 MICHAEL S. TURNER

where here we have expanded the density field in a
Fourier integral, 5p(r, t)lp= f d k 5k(t)e ' '/(2n. ) .
Note that the time-independent quantity R H 5k(t)lk
is equal to its value at horizon crossing, so that the con-
tributions of the various subhorizon-sized modes to the
CMBR temperature fluctuation are of order (bp/p)h„.
For a realistic model of infiation (b,p/p)h„-10, and so
temperature Auctuations of a similar amplitude are pre-
dicted.

If we expand 5T/T in spherical harmonics,

5T(17I1)g()y(~)
T

and calculate the ensemble average of ~ai ~

over all ob-
servation positions r we obtain the standard result

4. 4
~') =f, ~5„~'j,(kx)'dk, (5)

2~k

where x =~x~=2Ho ', k =~k~, and j& is the sPherical
Bessel function of order I. This expression is valid for
I ~ 2, and the F& are the usual spherical harmonics, nor-
malized such that f I'I I'„'~d0=5~~5 ~

Suyerhorizon-sized modes

Now let us move on to the effects of the preinflationary
superhorizon-sized modes. The present wavelengths of
these modes are larger than the Hubb1e radius,
I. =ePHo ' &&Ho ', or put another way k/HoRo
=kHO ' =e «1. Because of this, the density pertur-
bation seen within our present horizon takes the appear-
ance of a linear density gradient in the direction k. One
might expect this density gradient to lead to a peculiar
velocity for all the rnatter within our horizon volume:
The Universe is "tilted" {in a gravitational sense), so
everything should slide from one side to the other.

5v ~ k=k
c Ho

5p

hor, L

Since this peculiar velocity is uniform across our Hubble
volume the question arises as to how one might infer its
existence, or if indeed it has physical meaning. Since the
CMBR is used to define the loca1 frame of rest, a dipole
temperature anisotropy, of amplitude given by Eq. (6),
would be the physical manifestation. (In the previous
case, where we were dealing with subhorizon-scale pecu-
liar velocities, peculiar motions can be measured relative
to other, nearby galaxies. ) By use of the Sachs-Wolfe re-
sult, Eq. (3), we can compute 5T/T and look for a dipole
(l =1) term. For superhorizon-sized modes k.x is small,
and we expand the exp( i k—x) f.actor in (5plp):

Quadrupole anisotropy:
The Grishchuk-Zel'dovich e8'ect

The lowest-order, nonvanishing temperature anisotro-
py is O((k x) }and quadrupole in form:

5T(r;n) —(k.n) k

(21r) H R H
L

exp( i—k x) 1=—ik x—(k.x) /2!+

In evaluating Eq. (3) the lowest-order term cancels (as ex-
pected); however, the order kx term in the expansion of
the second term cancels exactly the gradient term (first
term). The dipole anisotropy associated unth the tilting of
the Universe is not observable because it is canceled by a
corresponding dipole anisotropy from the potential term (at
order kx). Said another way, in spite of the existence of
the density gradient associated with the superhorizon-
sized curvature perturbation, the spatial hypersurfaces
defined by the isotropy of the CMBR coincide with those
defined by the isotropy of the expansion.

+O(k'/H, ') . (7a)

A "tilted universe"7

Such a "tilting of the Universe" could provide an in-
teresting and unconventional explanation for the
pecu1iar-velocity field in our neighborhood: The
peculiar-velocity measurements for the local volume
(50h ' Mpc) made by the authors of Ref. [14] are con-
sistent with a uniform bulk fiow, relative to the CMBR,
of about 700 kms ' toward Hydra-Centaurus with a
smaller, incoherent "noise" component, of about 200
km s ' [15,16]. In the tilted universe interpretation the
uniform How would arise because of the linear density
gradient associated with the superhorizon-sized mode,
while the lesser noise component would be due to sma11-

scale density inhomogeneities. (Of course, these observa-
tions are also consistent with more conventional explana-
tions such as the existence of a "great attractor [17]," or
even just the gravitational effects of the inhomogeneous
distribution of galaxies within our 1ocal neighborhood
[18].)

The peculiar velocity that arises due to the "tilting of
the Universe" corresponds to the first term in Eq. (3):

Expanding 5T/Tin spherical harmonics, we find

—1 k k5k
a2 (r)=2m

15 2 H2 R 2H2, ™F2 (k);

k' k'5k
aoo(r) = I'oo(k);

6m Ho iR H

(7b)

(7c)

where we have used the addition theorem for spherical
harmonics to express (k n) in terms of F2 and I'oo.
Recall that k 5k(t)/R H is independent of time and is
equal to the (5k}h„. This means that the lowest-order
temperature anisotropy is 0 (k /Ho )-O((Ho '/I ) )
times the horizon-crossing amplitude of the density per-
turbation. By way of contrast, the temperature anisotro-
py that arises due to a subhorizon-sized mode is of the or-
der of the horizon-crossing amplitude, cf. Eq. (4).
Superhorizon-sized curvature modes can indeed affect the
isotropy of the CMBR, but their e8'ect is suppressed by a
factor of O((k/Ho) ). This was first pointed out by
Grishchuk and Zel'dovich [10].
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& 3 X10-' I
H-'

0
(9a)

and allows us to infer that the Universe is homogeneous
(5p/p 5 1) out to scales as large as 200 times the present
Hubble scale.

In8ation and Go+1

The sensitivity of the CMBR to superhorizon-sized
scales provides the basis of a strong argument that
inflation cannot accominodate Qo&1, and thus that
QO=1. 0 is a very robust inflationary prediction [20].
Achieving Qo+1 today requires N &N;„, cf. Eqs. (1) and
the Appendix. This fact implies that scales that were just
outside the Hubble radius at the onset of inflation are to-
day just larger than the Hubble radius (P Sp); as a result,
if Qo+1, the CMBR is very sensitive to the
preinQationary state of the Universe. Perturbations on
scales that were superhorizon-sized at the beginning of
infiation have "every right" to be of significant size.
However, if we require Qo&1 we can conclude that such
perturbations must have been quite small,
(bp/p)53X10 e; (bp/p)~3X10 on the present-
horizon scale and (bp/p) ~1 on the scale L-200H '.0
Since N SN;„, the scale L -200HO ' was at least a fac-
tor of 200 larger than the horizon at the onset of
in6ation. Thus in order to have Ao comparable to, but not
equal to, one, two conditions must be satisfied: (1) the
amount of inflation, quantifie by N, must be precisely
equal to a number that is slightly less than N;„; and (2)
the inflationar patch in which we happen to find ourselues

The lowest-order, nonvanishing temperature anisotro-
py has both a monopole component and a quadrupole
component. The origin of the monopole component is
simple to understand: Because the density wave is su-
perhorizon sized, unless our Hubble volume happens by
chance to be located near the node of the density wave,
there will be a net overdensity or underdensity "locally. "

Taking the ensemble average over all observation posi-
tions r,

k
(Sa)

f
where we have integrated over d k and assumed that
~5k ~

is independent of Ir to simplify these expressions.
Since we do not have the means of carrying out the en-

semble average, the monopole term cannot be dis-
tinguished from a small shift in the CMBR temperature
in our Hubble volume, relative to its value averaged over
a larger volume. On the other hand, the quadrupole an-
isotropy is observable, and current limits to the quadru-
pole anisotropy can be used to constrain the amplitude of
superhorizon-sized fluctuations. The current upper limit
to the quadrupole anisotropy [19], ~a2 ~

53X10, con-
strains the horizon-crossing amplitude of superhorizon-
sized modes,

must haue been Very smooth on scales much larger than
the Hubble radius ( ~200HI ) at the onset of inflation
While meeting these conditions is not logically impossi-
ble, it seems very contrary to the spirit of inflation. Fi-
nally, we note that our argument is kinematic in nature,
and thus does not depend upon the details of inflation.

Probing the prein8ationary Universe

We can also use isotropy of the CMBR to constrain the
amplitudes of preinAationary Auctuations in the inflation
6eld:

5/k/(2m } S3
2m'

2 ( 1() 7e2Py-
H 0

(9b}

where the final expression applies to the chaotic inflation
model. Recall that I' is related to the number of e-
foldings of inAation above that required to solve the hor-
izon problem and the size of preinAationary Auctuation:
I' =p+X —X;„, where I =eel '. It then follows
that preinQationary modes characterized by p & 8

(N N—;„) mus—t have had amplitudes that were less
than order unity.

Because of the cancellation that takes places between
the gradient term in Eq. (3) and the potential term in Eq.
(3) for superhorizon-sized curvature fluctuations, the
"tilting of the Universe" is not observable. However, this
cancellation depends crucially on the relationship be-
tween the first and second terms in Eq. (3), which in turn
depends upon the three aforementioned assumptions
made by Sachs and Wolfe [ll]. In the next section we
show that this cancellation does not occur for isocurva-
ture

fluctuations.

In this case the "tilting of the
Universe" is an observable effect.

Before we go on to consider isocurvature perturba-
tions, let us mention a scenario where the tilting of the
Universe is observable even for curvature perturbations.
If the energy density of the Universe is today dominated
by a component other than nonrelativistic matter, e.g., a
cosmological constant or relativistic particles produced
by the recent decay of a massive relic, then 5k(t) has not
simply increased as R (t) since decoupling and the cancel-
lation that renders the tilting of the Universe unobserv-
able does not take place. A dipole anisotropy will result,
even for curvature perturbations. Its amplitude will be
proportional to (1—QNR), where QNR is the fractional
contribution of nonrelativistic particles to the critical
density today.

Having the bulk of the present energy density in rela-
tivistic particles or a cosmological constant has been ad-
vocated by some to reconcile the Aat Universe predicted
by inflation with dynamical determinations of Qo that in-
dicate Qo-0. 1 —0.3 [21]. The energy density contribut-
ed by a "smooth" component of mass density would not
show up in dynamical determinations of Qo, and thus in
these scenarios QNR —0. 1 —0.3 and Qz (or
Qz)-0. 7—0.9. For a relic cosmological constant, linear
density perturbations cease growing at a redshift of about
1+zz —(QNa —1) ~, while for relativistic particles they
cease growing at the decay epoch, zD -2—5.
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IV. ISOCURVATURE FI.UCTUATIC)NS

Isocurvature axion perturbations

Isocurvature perturbations arise in inAatonary models
due to Auctuations in fields other than the inAaton, fields
whose contribution to the energy density is subdominant.
Unlike Auctuations in the inAaton field, Auctuations in
these fields do not lead to significant perturbations in the
energy density. A very simple and relevant example is
provided by axions. We will begin by reviewing the
cosmological production of axions and the origin of iso-
curvature axion perturbations. In the discussion that fol-
lows P will refer to the axion (angular) degree of freedom.
The field that breaks Peccei-Quinn (PQ) symmetry is a
complex scalar field o. that acquires a nonzero vacuum
expectation value: (cr ) =f,exp(ig)/i/2; the axion field

P corresponds to the phase degree of freedom; see Refs.
[22].

The primary cosmological production mechanism for
axions is the misalignment of the axion field with the
minimum of its potential [22]. The potential for the ax-
ion field, which arises due to instanton effects, is "Aat"
(i.e., vanishes) at high temperatures because instanton
effects are suppressed for temperatures T &&1 GeV. At
the epoch of Peccei-Quinn symmetry breaking
(T-f, —10' CxeV), when the initial value of the axion
field is set, dynamics do not dictate the value of P, and so

takes on a random value which, in general, is
misaligned with the minimum of the potential. When the
potential does develop, the axion field "discovers" that it
is misaligned with the minimum of its potential and be-
gins to oscillate about the minimum. These oscillations
correspond to nonrelativistic axions, with a number den-
sity proportional to the square of the initial misalignment
angle.

Because the number density of axions is ultimately pro-
portional to the misalignment angle squared, Auctuations
in the initial misalignment of the axion field lead to Auc-
tuations in the local axion-number density:

5n,

na
(10)

where $0 denotes the average value of the misalignment
angle within our inAationary patch. Since the energy
density contained in the axion field during inAation is
negligible these Auctuations do not lead to significant cur-
vature ("true energy-density") fluctuations; thus they are
referred to as "isocurvature" Auctuations.

While isocurvature Auctuations are superhorizon sized
they are characterized by 5p=O (in synchronous gauge).
The reason is simple: Causality precludes transporting
energy on scales larger than the horizon. Isocurvature
perturbations correspond to spatial variations in the
equation of state; in the present example, the fraction of
the total energy density in axions varies from place to
place. When an isocurvature perturbation becomes
subhorizon sized, the initial perturbation in the equation
of state develops into a density perturbation of similar
size.

"Compensating" perturbations in the energy density of

radiation must develop in order to maintain 5p=O in the
face 5p, AO. (For simplicity we will assume a two-
component universe, axions and radiation, and neglect
the minor role played by baryons. ) At early times when

p, «pii these fluctuations are very small (explaining why
isocurvature perturbations used to be referred to as "iso-
thermal" perturbations). As the Universe evolves, the ra-
tio of axion-energy density to radiation-energy density in-
creases, p, /p~ ~ R, and the "compensating" Auctuations
in the radiation-energy density become significant. The
compensating Auctuations in the radiation lead to Auc-
tuations in the radiation temperature beyond those that
develop due to the metric perturbation which arise [and
are described by Eq. (3)].

Once the Universe becomes axion dominated, isocurva-
ture axion Auctuations lead to compensating temperature
Auctuations of amplitude:

5r(k) = —
—,'5~(k),

for scales that are superhorizon sized (k/HR « 1). Here
5r(k) = (5T/—T)k and 5„(k)—:(5n, /n, )k =25/k/$0.
Equation (11) quantifies the crucial difference between
isocurvature and curvature perturbations: For isocurva-
ture Auctuations there is an extra perturbation to CMBR
temperature. We refer the reader interested in a com-
plete treatment of isocurvature perturbations to Efs-
tathiou and Bond [23].

Our discussion of Auctuations in the axion misalign-
ment angle parallels that of the inAaton field, beginning
with a brief review of scales that were subhorizon sized at
the start of inAation, and then going on to the scales of
interest, those that were superhorizon sized. On the
subhorizon-sized scales the axion-field Auctuations are
those associated with de Sitter space quantum (zero-
point) fluctuations, and b,glgo -Hl/erg'„where —f, is
the scale of Peccei-Quinn symmetry breaking. When
these perturbations cross the horizon in the postinAation,
matter-dominated epoch they lead to density perturba-
tions of amplitude ( b p/p)h„-—k

~
5„(k)

~
/+2'

-HI/Pg, that are independent of scale (like their cur-
vature perturbation counterparts). Isocurvature axion
Auctuations on scales that were smaller than Hl ' at the
onset of inflaton are treated in detail in Refs. [23] and
[24].

Our interest is in isocurvature perturbations on scales
that were larger than Hl ' at the onset of inAation; Auc-
tuations in the axion field on these scales are unaffected
by inAation and reAect the initial configuration of the ax-
ion field. We describe the superhorizon-sized Auctuation
in the axion misalignment as we did in the inAaton case,
considering one superhorizon-sized Auctuation about the
mean; cf. Eq. (2). The temperature anisotropy seen by
observers today arises due to two effects. (1) The metric
Auctuations associated with the density perturbation that
develops from the initial isocurvature perturbation. The
resulting temperature Auctuation due to this effect is de-
scribed by Eq. (3). As we saw in the previous section the
dipole component vanishes. The lowest-order effect is
quadrupole and proportional to (k/Ho)25&. (2) The in-
trinsic Auctuations in the radiation field that arise to
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compensate the axion-energy density fluctuation; cf. Eq.
(11).

Compensating temperature fluctuations
lead to a tilted universe

The important new twist is the additional temperature
fluctuation associated with the compensating perturba-
tions in the radiation: 5T(k)= —5~(k)/3. They lead to
a dipole anisotropy in the CMBR temperature that is uni-
form across our present Hubble volume and is of
O(k/Ho):

5t(0;n) —2(k.n) k 50k /(2m )

T 3 Ho Po
(12a)

(12b)

Stated another way, when viewed from the CMBR rest
frame, the Universe appears to be "tilted. " The existence
of an isocurvature fluctuation breaks the connection be-
tween the peculiar-motion term and potential term that
led to the cancellation of the dipole term for curvature
Auctuations. Because of the compensating temperature
fluctuations that develop, the rest frames defined by the
isotropy of the expansion and the isotropy of the CMBR
do not coincide. (It is simple to show that the peculiar
velocity that arises due to the linear gradient in local ax-
ion number is subdominant. )

A superhorizon-sized isocurvature axion perturbation
could tilt the Universe enough to explain the uniform
bulk motion of about 700 km s ' -2 X 10 c that galax-
ies in our local neighborhood have with respect to the
CMBR provided

(13)

If we suppose that the fluctuation in the misalignment an-
gle Po is of order unity, then N —X;„must be less than
6—p to satisfy this requirement. On the other hand, if
the average value of the initial misalignment angle Po
happened to be small in our inflationary patch, as it could
well be [25], the left-hand side of Eq. (13) could be large,
perhaps as large as 10 . In this case P =p+X —1V

would be large, and N —X;„could be as large as 1S—p.
Thus it is possible that a superhorizon-sized isocurvature
axion Auctuation could have observable consequences
even if inflation lasted —IO e-foldings longer than the
minimum needed to solve the horizon and fatness prob-
lems. It should also be clear that the tilted Universe
scenario requires that the superhorizon-sized mode be su-
perhorizon sized at the beginning of inflation also: If it
were not, then its amplitude would be the same as those
modes that are subhorizon sized today, and are con-

This dipole anisotropy is intrinsic to the CMBR, and any
observer within our Hubble volume in the rest frame of
the expansion will conclude that he is moving with
respect to the CMBR rest frame in the —k direction with
a speed of order

strained by the isotropy of the CMBR to have amplitudes
of —10 or smaller.

As in the case of curvature fluctuations a quadrupole
anisotropy of O(k /Ho) also arises. The quadrupole an-
isotropy will be smaller than the dipole anisotropy by a
factor of O (k /Ho ). Thus, the quadrupole anisotropy as-
sociated with the tilting of the Universe needed to explain
the local bulk motion is O(2X10 e ), which would be
consistent with the current limits to the quadrupole an-
isotropy provided that P ~ 5.

Isocurvature baryon-number fluctuations

If the baryon asymmetry of the Universe is produced
in such a way that its value is proportional to the value of
some scalar field, then isocurvature baryon-number Auc-
tuations can arise in a similar way as isocurvature axion
perturbations do [26]. Such occurs in an unconventional
model of baryogenesis in which the baryon asymmetry is
proportional to the "ilion" field [5], and the analysis
above can be applied directly. In this case P is the ilion
field and the local baryon asymmetry that evolves is pro-
portional to the initial value of P. When baryons and an-
tibaryons annihilate, the local baryon-number density
will be proportional to the local baryon asymmetry, and
hence the initial value of the ilion field; thus,

4o
'

and the discussion above for isocurvature axion Auctua-
tions carries over.

Testing for a "tilted universe"

How can we test for a "tilted universe?" If the ex-
planation for the bulk of the dipole anisotropy of the
CMBR is due to an intrinsic CMBR dipole, rather than a
kinematic dipole, then we are indeed in the cosmic rest
frame (as defined by the expansion). (Of course, we do
expect that a portion of the local peculiar motions are
due to the inhomogeneous distribution of matter nearby;
for the moment we will assume that this portion is small
and will neglect it. ) We can infer that the CMBR dipole
is intrinsic by measuring the anisotropy of another back-
ground radiation whose origin traces to objects at
suKciently high redshift that their distribution is isotro-
pic and homogeneous in the cosmic rest frame. As an ex-
ample consider the cosmic x-ray background, whose ori-
gin is believed to be discrete sources at high redshift
[quasi-stellar objects (QSO's), active galactic nuclei
(AGN's), hot gas, starburst galaxies, massive x-ray
binaries, and the like]; if the Universe is tilted, the x-ray
background should be isotropic in our local rest frame,
rather than in the frame defined by the CMBR. It is pos-
sible that ROSAT (Roentgensatellit) will have sufiicient
sensitivity to determine the anisotropy of the x-ray back-
ground radiation and will settle this issue in the near fu-
ture.

If the dipole anisotropy of the CMBR is kinematic,
which is the conventional explanation, it arises because
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= To[1+v cos8+ v ( —0.5+cos 8)+ ]; (14}

where v is the observer's velocity and cos =a v. It is sim-
ple to see that a kinematic quadrupole of O (u ), which is
aligned with the dipole, must arise; in terms of spherical
harmonics (oriented about v), T(n)/To is specified by

' 1/2v'~, 4~
aoo= u, a 0= u,

4
a 20

2

If the CMBR dipole anisotropy is intrinsic, there will
also be a quadrupole anisotropy, which is O(Ho '/L)
smaller than the dipole anisotropy; however, its relation-
ship to the dipole cannot be specified beyond this.
%'hether or not experiments can both achieve sufhcient
sensitivity and separate a kinematic quadrupole from oth-
er contributions remains to be seen. Conversely, if the
universe is tilted and Ho '/L is greater than v —10
one might be able to "detect" the existence of a quadru-
pole anisotropy associated with the tilting of the universe.
For example, if the quadrupole anisotropy is found to be
larger than is expected on the basis of the CMBR aniso-
tropies detected on smaller angular scales, one could infer
the presence of a superhorizon-sized fluctuation. Of
course we must remind the reader that no CMBR anisot-
ropy beyond that of the dipole has yet been detected.

Next, if the bulk of our apparent peculiar velocity is
due to an intrinsic dipole, and not motion with respect to
the cosmic rest frame, then there is no reason for the ve-
locity vector computed from the local distribution of
matter,

Ho 5p(r', t)(r r')d r'—
vp(r, t)=-

4m. ir —r'i 3p
(16)

to be aligned with the direction of the CMBR dipole.
Present work indicates that the two vectors differ by an
angle of -10 [18]. Qther tests of a tilted universe are
discussed in Ref. [16].

Finally, we can use the measured peculiar motion in
our neighborhood to limit superhorizon-sized isocurva-
ture fluctuations, be they associated with axions, baryons,
or whatever.

V. CQNCLUDING REMARKS

If inflation lasted only —10 e-foldings longer than re-
quired to solve the horizon and flatness problems,
preinflationary fluctuations on superhorizon scales can
have observable consequences today. Curvature pertur-
bations on these scales, whose origin might trace to fluc-
tuations in the inflation field or simply reflect the
primeval inhomogeneity in the Universe, lead to a quad-
rupole anisotropy of O((k/Ho) ) times their horizon-

the observer is moving with respect to the cosmic rest
frame and therefore measures a direction-dependent tem-
perature:

2

T(n) = To
(1—v.n)

crossing amplitude. This quadrupole anisotropy arises in
addition to the usual CMBR anisotropies predicted by
inflation, and its existence could be inferred if the mea-
sured quadrupole anisotropy were larger than that ex-
pected on the basis of anisotropies found on smaller
scales. As previously emphasized [20], the sensitivity of
the CMBR to superhorizon-sized fluctuations provides a
very compelling argument against Qo+1 in an
inflationary Universe.

Isocurvature Auctuations in axions or baryons (or other
particles) can lead to both a quadrupole anisotropy of
0 (k /Ho ) and a dipole anisotropy that is intrinsic to the
CMBR and is of O (k/Ho). If the bulk of the CMBR di-
pole is intrinsic, rather than kinematic, then viewed from
the rest frame defined by the isotropy of the CMBR the
Universe appears to be tilted; i.e., all the matter in the
Universe will be found to be streaming at about 700
km s ' in the direction of the CMBR dipole (in our
neighborhood, toward Hydra-Centaurus). This could ex-
plain the major part of the peculiar-velocity field ob-
served in our local neighborhood [14], which we might
add is difficult to explain otherwise [15]. This unconven-
tional hypothesis could be tested by measuring the isotro-
py of other background radiations and the alignment of
the CMBR dipole with the acceleration vector that arises
due to the inhomogeneous distribution of matter. If the
"tilting of the Universe" is indeed the explanation for the
bulk of the local peculiar-velocity field, the peculiar ve-
locities in our local neighborhood associated with the in-
homogeneous distribution of matter are significantly
smaller than is presently believed (more like 200 km s '),
a fact with many consequences. For one thing, models of
structure formation (including cold dark matter), which
are currently in trouble because they cannot account for
the large peculiar velocities that have been measured,
would be in much better shape as they would only have
to explain the much smaller "noise" component in the
peculiar-velocity field. For another, determinations of Qo
based upon the local distribution of matter and the mea-
sured peculiar-velocity field [18] and which yield values
close to the inflationary prediction of 1 would have to be
reevaluated.

Rote added in proof. This work was originally present-
ed at the %workshop on Particle Astrophysics: Forefront
Experimental Issues, Berkeley, California, 1988 (unpub-
lished). An essay version of this paper will appear in
Gen. Relativ. Gravit. (to be published). Discussions of a
"tilt" between the rest frame defined by the matter flow
and that defined by the surfaces of homogeneity extend
back to the work of K. Crodel, Proc. Intl. Math. Congress
(Cambridge, MA) 1, 175 (1952); other discussions of tilt
include A. R. King and G. F. R. Ellis, Commun. Math
Phys. 31, 209 (1973}and G. F. R. Ellis and J. E. Baldwin,
Mon. Not. R. Astr. Soc. 206, 377 (1984).
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APPENDIX: KINEMATICS QF INFLATIQNARY
FRW MODELS

A simple model

Here we briefly review the kinematics of the transition
to inflationary expansion in an FR% model with arbi-
trary curvature, and energy density comprised of thermal
radiation, pit =g, n. T /30, and vacuum energy,
p„„=M . The quantity g, (expected to be greater than
100 at the temperature of interest) counts the number of
ultrarelativistic degrees of freedom, and the entropy den-
sity associated with the radiation is s =2m g, T /45.

With a nonstandard, but useful, choice for the normali-
zation of the cosmic-scale factor, the Friedmann equation
can be written as

R a 1—=H =Hr +1+
R2 R4 R2

where the plus sign applies to a positively curved model
and the minus sign to a negatively curved model,

Hr = "1/8n M —/3m pi is the Hubble parameter during
inflation, and the curvature radius of the Universe is

R,„,„—:R (t)H~ ' .

Note, the value of cosmic-scale factor is not one today; it
achieves a value of order unity when the Universe begins
to inflate. (More precisely, the Universe begins to inflate
when the scale factor is of order max [ 1,a ' ].)

The first term on the right-hand side of Eq. (Al) corre-
sponds to the energy density in radiation, the second to
the vacuum energy density, and the third to the curva-
ture. The quantity a is a dimensionless parameter with
important physical significance:

1/3 4
5 M S4/3a= curv

g Vl p)

Scurv =
34&R gurv

3

It is related to the entropy contained within a sphere
whose radius is equal to the curvature radius (=S,„„„)
and the size of the vacuum energy relative to the Planck
energy. When the expansion is adiabatic, S,„„is con-
served; its value today is known to be greater than 10
which provides another way of characterizing the flatness
problem: Avoiding recollapse or free expansion (R ~ t)
until the present epoch would, in the absence of inflation,
require that S,„„~10 . The reheating event at the end
of inflation grossly violates adiabaticity; thus, in an
inflationary Universe the present value of S,urv is not in-
dicative of its initial value. We assume that prior to (and
during) inflation the expansion is adiabatic, and that
g, =const. (Adiabaticity implies that R g„T =const, or

~ g
—1/3R —4

)

In general a characterizes the relative importance of

radiation compared to the curvature term. Its value
determines whether or not a positively curved FRW
model recollapses before it can inflate: If a (0.25 it
recollapses before it can begin to inflate; if a &0.25 it
does not. As a —~0.25, the model approaches an
Einstein-Lemaitre model and has a long static phase dur-
ing which R =0.5. (With a =0.25, H =R =0 for
R =0.5.) Since a ~S,/, „, positively curved models with
a &0.25, correspond to low-entropy models in which
there is not enough radiation to prevent recollapse before
inflation begins. To be specific, if we take M =10' GeV,
then a —10 ' S,„„,and the requirement that a & 1 im-
plies that S,„„+10' . All negatively curved models ulti-
mately inflate.

Scale factor

1
to =— -arcsinh

2Hr
0.5

+a —0.25

For a »0.25, at early times, t ~Hr '/2, the Universe is
radiation dominated and the scale factor evolves as
R (t)=a' +2Hit; at late times, t ~Hi '/2, the
Universe inflates and the scale factor evolves as
R (t)=a' exp(H~t). If a is very close to 0.25, at early
times, t ~ Hr '/2, the scale factor evolves as

R (t) =QH~t; at intermediate times, In(a —0.5)~H~ '/
2 + t ~ Hr '/2, the scale factor remains roughly constant,
R (i) = I/&2; and at late times, r ~ Hz '~ln(a —0.25) ~/2,
the scale factor grows exponentially, R (r)
=&(a —0.25 )exp(H~ t ).

For negatively curved models and a & 0.25,

R (t) =
[
—0.5+&a —0.25 sinh[2H~(t +to))]'/

(A3)

1 . 05
to =: arcsinh

2Hr &a —0.25

The cosmic-scale factor has the same behavior as in the
positively curved models.

For negatively curved models a can be less than 0.25;
in this case

R (t) = [
—0.5+&0.25 —a cosh[2'(t +to)]}'

(A4)

1 0.5to—: arccosh
2Hr v 0.25 —a

At early times, t &a Hz, the universe is radiation
dominated and R =a' +2Hzt; at intermediate times,
Hz '/2~ r ~ V aHJ '/2, the universe is curvature dom-
inated and R =Hrt; and at late times, t Hr '/2, it is
vacuum dominated and R =0.5 exp(Hit).

The behavior of the cosmic-scale factor is shown in
Fig. 1 for models with a = 100, a =0.250001 (k & 0), and
a =0.0001.

The evolution of the scale factor is straightforward to
obtain. For the positively curved models,

R (r) = [0.5+&a —0.25 sinh[2Hr(t to)—] J
'/

(A2)
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Omega

The evolution of 0 in all models that inAate is qualita-
tively the same: As R~Oor R —+~, 0,~1, and 0,

4
0-= (A5)a+R +R

achieves its extremum for R =a' (a minimum for k (0

and a maximum for k & 0):

1
Q extremum (A6)

The value of 0 at the onset of inflation, i.e., when the
cosmic-scale factor begins to grow exponentially, is given
by

1000
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lg

O
O 10

M
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.0001

I l I I I IIII
.001
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.01 .1, 1
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1+&1/2a, a»0. 25,
0„„,= '2, a =0.25, k )0,

0.25, a «0.25, k &0 .

In all cases, the deviation of 0,„„,from unity when
inflation begins is at most of order a few. The evolution
of A(t) is shown in Fig. 2.

Particle horizons

In discussing the amount of inflation required to solve
the horizon and fatness problems we assumed that the
smooth, inAationary patch that we find ourselves in today
had an initial size of Hl . For a model that is radiation
dominated at the onset of inflation the distance to the
horizon at the beginning of inAation,

1000—

-(b)
100 =

I I I I I IIII I I I I I IIII I I l I I IIII I I I

dH(t =t„„t=H, '/2)=R(t) IoR t'

is comparable to Hl '. However, if the curvature term is
important when the Universe begins to inAate, the dis-
tance to the horizon at the beginning of inAation can be
somewhat greater than HI '.
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FIG. 1. Evolution of the cosmic-scale factor R(t): (a) for
a =100 and k &0 (a =100 and k &0 is indistinguishable); (b)
for a =0.250001 and k & 0; and (c) for a =0.0001 and k (0.
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FIG. 2. Evolution of Q as a function of time for the same
three models as in Fig. 1. Top curve corresponds to
a =0.250001, middle curve to a =100, and bottom curve to
a =0.0001.
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The distance to the particle horizon can be written as

H
—i

dH t)= R(t)
2 "0 (0.5+b sinhu)'

R (t) F(a, r) (k &0),1/4

—1

dH(t) = R (t)H "o (
—Q. S+b sinhu)'

(A7a)

(I+2&a )'
1/4

(R /a I/4)2
COSA =

I+(R/a' )

and F(a, r) is the elliptic integral of the first kind:

dF(a, r)=—
(1—r sin P)'/

e for a«1,
C

ln(4/'1/1 r) fo—r a=m/2, r= 1 .

For k &Oand a &0.2S,
—1

dH(t)= R (t)
2 "o (

—0.5+b coshu)'/

(k &0; a &0.25), (A7b)

where uo =arcsinh(1/2b), b = t/a —0.2S,

Only when the curvature term plays an important role
(k & 0 and a =0.25) and (k & 0 and a « 1), does the size
of the particle horizon at the beginning of inAation difFer
significantly from Hr, ' it can be logarithmically larger
thanHr ':

)
~ln(a —0.25)~, k &0 a=0.25,=H-')
llnal k & 0 «& I k & Q,

where in the first case t„„,= ~ln(a —0.25) ~Ht '/2 and in
the second case t„„,=HI '/2. In these extreme cases it
is kinematically possible for a patch that is larger in size
than Hr ' to have "smoothed itself" by the beginning of
inflation; whether or not there are dynamical processes
that can accomplish this is another matter (for k & 0 the
smoothing must occur over many e-foldings of the scale
factor).

In order to have QXI today as well as consistency
with the isotropy of the CMBR our inAationary patch
must have been -200 times larger than Hr ' at the be-
ginning of inflation. If we are to take advantage of the
fact that dH can be larger than HI ' at the beginning of
inflation to allow for its possible microphysical origin,
rather than simply postulating that such a smooth patch
existed, we must have

R (t) F(a, r);b+0. 5

where uo =arccosh(1/2b), b =F0.25 —a,
' 1/2

(A7c) or

(a —0.25) & exp( —200) (k & 0)

a &exp( —200) (k &0),

2b
b+O. S

sina =
1/2

R
R +O. S —b

in addition to the usual requirement that the amount of
inflation is just right to give 0&1 today. For k &0 and
M = 10' GeV, the requirement that a ~ e implies
that S,„,„510,which corresponds to a very low-
entropy Universe.
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