
PHYSICAL REVIEW D VOLUME 44, NUMBER 12 15 DECEMBER 1991

Finite-temperature gauge field propagator in the early Universe
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We consider a model of the early Universe where a Higgs-scalar electrodynamics describes its con-
tents. The finite-temperature gauge Geld propagator is obtained in the real-time formalism during an in-
terval of time when thermal equilibrium is maintained making effective masses large compared to curva-
ture terms.

I. INTRQDUCTIGN

One of the important areas of application of quantum
field theory on curved space-time background [1] is pro-
vided by the problems of the early Universe [2]. Since
the time when the average energy of the particles was less
than the Planck energy by at least an order of magnitude,
the gravitational field can be considered classical, justify-
ing such an approach. But because of the time depen-
dence of the background geometry, it is difficult to in-
corporate the effect of temperature through the so-called
imaginary-time formalism [3], particularly for problems
where time plays an essential role.

The formulation of a real-time finite-temperature sca-
lar field theory on fiat space-time [4] has been extended to
that on a Robertson-Walker space-time by several au-
thors [5], of which the one by Semenoff and Weiss [6] ap-
pears to be more satisfactory in that it does not involve
the continuation of the scale factor to imaginary time.
The technical difficulty in the original formulation associ-
ated with the short-distance singularity of the propagator
can be easily removed [7], leading to a greatly simplified
expression for the latter.

Here we try to extend this formulation to a Higgs-
scalar electrodynamics. The main task is to find the ex-
pression for the gauge-field propagator. It appears more
convenient to start with equations for the mode func-
tions, from which those for the components of the propa-
gator can be obtained. The former are written in the re-
normalizable R

&
gauge [8], assuming the vacuum expec-

tation value of a component of the Higgs field to vary
slowly enough with time. The equations for the trans-
verse components are uncoupled, as in Aat space-time,
while those for the longitudinal and scalar components
are coupled through gravity, in addition to those already
existing on Bat space-time.

In the real-time formulation, one starts describing the
system from a time to when an effective thermal equali-
brium prevails [6,7]. Such a condition is guaranteed if
the collision rates among particles contained in the sys-
tern far exceed the expansion rate of the Universe. The
formalism then continues to describe the system at later
times, even though thermal equilibrium has long ceased
to hold. The expression for the gauge-field propagator
we find here is valid when both the collision rates and

effective masses are large compared with the expansion
rate. In the radiation-dominated era, both are satisfied,
provided the temperature is low enough.

In Sec. II we review scalar electrodynamics in a general
space-time background. The equations for mode func-
tions and for components of the gauge-field propagator
are written in Robertson-Walker metrics in Sec. III. Our
solution for the finite-temperature propagator is de-
scribed in Sec. IV. In the concluding Sec. V, we discuss
how to obtain the propagator at later times.

II. SCALAR ELECTRQDYNAMICS

The action for the complex matter field P(x) interact-
ing with a U(1) gauge field A„(x) in an external gravita-
tional field g„„is [9]

S= Jdxv'( —g) — F„,Ft"+g—t"(D P) (D P)
I

+ tn 'A' ——,(A')'

where

+gauge-fixing terms, (2.1)

(2.2)

2
eA e by, a„yb+ A„A (yi+y2)2

2

a, b =1,2, e)2=+1 . (2.3)

D„/=a„g ieA&/ . —

Here m is chosen positive to correspond to spontaneous
symmetry breaking. In terms of real components
P =(1/~ 2)(P, +i P2) the above action may be written as

r

S=Idx &( —g ) — F,F" + g" a—„y.a,y. —1 1

3730 Q~1991 The American Physical Society



FINITE-TEMPERATURE GAUGE FIELD PROPAGATOR IN THE. . . 3731

Let P& develop a vacuum expectation value P(x). It de-
pends on x in general, because of the explicit x depen-
dence brought about by the metric g„. We shift the Geld

P, (x)=P(x)+P', (x),

S,= x —g —eA"

+e pA„A "p, — pi(Qi+Q2)
so that the new field P& satisfies

(oiy;(x)iO& =0.
Omitting the prime on P& henceforth, we get

S=S,+Sb+S, +Sg,
where

S =f dx&( —g) F—F—""+—e~P7A A~1 12~
0 Pv 2 P

—A "(4~„0z—A~„0)+—(~„0i)'

—m P+—(BP)1 A,pP 2 2 1

2 2 1 2 P, 2

—m Pz
1 A@7

(2 &)

(2 6)

(2.7)

2

+ A„A~(p', +p,') ,
—(p—',+$2)'

(2.9)

We now choose the gauge-fixing term in the R
&

gauge:

S = — fdx&( —g)(V A "+pe/$2)
2g P (2.10)

S =fdx&( —g) — (V A")21

2g

2
+ A "B„(/$2)

Carrying out a partial integration and omitting the
boundary terms [10],

S = fdx&( g) —(ag)a"y, y ——m2

(2.8)

(2.11)

The free or quadratic part of the complete action now be-
comes

SD=S, +Sg

dxV'( —g) — FF&" —(V A&) —+—e P7A A"+2e(B P)A "Pz4~ 2g ~ 2 P

+—(&P) —— —m P+—(&P) —— —m+geP2 1 ~4 2 2 1 2 1 ~4 2 2 2 2

2 P ' 2 2
(2.12)

It will be observed that, unlike the case of Bat space-time
where P is a constant, the choice of the R

&
gauge does

not eliminate, in general, the mixing of A„and Pz fields

in the quadratic part of the action. In the following we
assume that either the system is in the symmetric phase
(restoration of symmetry at high temperature), /=0, or P
varies slowly enough to justify dropping the term in
(2.12). Carrying out another partial integration and
again ignoring the boundary terms [10],we write

So= —fdx&( —g)( —A "D„,A +p,D, p, +$2D2$2),

Dpv=i gq„VgV —R„~— 1 ——V„V„+M g
1

D| g=i(V„V"+M~i 2) .

(2.14)

Anticipating mass generation at finite temperature, we
have introduced effective masses [7,11] M, M|, and Mz
for the gauge and scalar fields. The compensating terms
are included in the interaction. The full set of interaction
terms is now given by

(2.13) Si =S+S, , (2.15)
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where S, denotes the cubic and quartic interaction terms
(2.9} and S consists of linear terms (2.8) and quadratic
mass terms of (2.7) and the compensating ones:

A +3—A +
a

p2
M2 +3

a
A —2—V'. Ao a

a

S=fdxv'( —g)
t

V„V"P+ ——m2, $
I,

+3—A +3 — A +V'. A
Q Q

(3.6)

pip —m —Mi

A,
~ —m +pe pP

—M2

(2.16)

The unknown masses M, M&, and M2 and the classical
field P are determined order by order in perturbation
theory.

2
p2 1 ~

A+5 A+ M2 — 2+4 +2 A 2 3VAO
a a a Q a

a

(V. A)+ A +3 VA =j,
Q Q Q

B'=a'"A' S=Q'"A . (3.7)

the overdot indicating a derivative with respect to time t.
Equations (3.6}may be put in a more transparent form.

First, define new amplitudes (B,B) to remove first-order
time derivatives by extracting appropriate powers of the
scale factor from the old ones:

III. PROPAGATQR EQUATIONS

The propagators are defined formally as the inverse of
the difFerential operators (2.14):

D i.(x)G (x,x') =5„5(x—x')/v' —g,

The source may also be similarly redefined:

JO a 3/2. 0 J a 5/2j (3.&)

Next, it is convenient to work with the spatial three-
dimensional Fourier transforms, for example,

(3.1)
d'kB'(x,t)=f,e'" "B'(k,t) .

(2~)'
(3.9)

D.(x)G, (x,x') =5(x —x')/v' —g, a =1,2 .

With appropriate boundary conditions on the space of
functions, the difFerential operators D„,D&, and D2 are
clearly self-adjoint. So their Green's functions satisfy the
symmetry relations

G„,(x,x') =G,„(x',x ),
(3.2)

Finally, we split 8 into longitudinal and transverse parts

(3.10)

where k and t are unit vectors along and perpendicular to
k, respectively. Equations (3.6) then lead to the three
equations

G, 2(x,x')=G, z(x', x } .

The propagator for a scalar field is given in papers [6,7]
developing the real-time finite-temperature formulation.
In the following we discuss the case of the vector field
only.

Instead of working directly with the equations for the
gauge-field propagator, it is simpler first to consider those
for the field modes:

k 2 -p .a k—B + M + —a B —2I',——BL
a Q Q

1 -"P -p . k —.

1 —— B —OB +i—BL—
Q

k 2 .' k —.B+M+ —PB 2i —B- —
L 2 a a

5lkQ — -p

D,i (x)A ~(x)=ij„(x), (3.3)

where the form of the current j„(x) is not needed for our
purpose. The Green's function may then be obtained
from the relation

1+ 1 —— k — .k — 3ika
a' ' 'a 2a'

(3.1 1)

A "(x)=if dx'&( —g')G" (x,x')j (x') . (3.4) kBT+ M + —P Bz =Jz. ,
Q

In the homogeneous, isotropic, and spatially Hat metric
of standard cosmology [12], where a and p involve the scale factor and its derivatives,

ds =dt a(t)dx— (3.5)

the equations for the vector field A "(x)= I A (x), A(x)]
become

15 a'
0!=

Q2

2 Q

5 a
a

2——
Q

a2

Q
(3.12)
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With the metric (3.5), the relations (3.4) connecting the
amplitudes with the Green's functions become g+ M+ —a g+2 ——h

k2 a k
Q

2 a a

a'(—t')G "(t,t'j)'(t') j,
(3.13)

1 .. k Sak
1 —— g a—g ——h+ 2 h = —i5(t —t'),

2a

~ ~ k kh+ M+ —P h —2——ga a a

1+ 1
k k. 3akh+ —g+ g =0,
a a 2Q

—a'(t'}6"(t,t')j'(t')] . k 2 kh+ M + —a h —2——(u+v)
a a a

Here and in the following we suppress for brevity the k
dependence of the amplitudes and Green's functions.

It now proves very convenient to express the com-
ponents of G""in terms of 0(3) scalars:

6 (t, t')= (t t')
a 3/2(t)a 3/2(t )

k . . 5ak
h ah ——(u—+v) — (u+v) =0,

2a

(3.17)

v'+ M + —P v+2 ——h
k a k-
a 2 a a

h(t, t')6 '(t, t') =ik'
3/2 5/2a (t)a (t')

h(t, t')6' (t, t')=ik'
5/2 3/2a (t )a (t')

(3.14)

k (u+v )+—h+ h =0,k — 3ak-
Q a 2a2

kii+ M2+ —p u =i5(t t') . —
Q

IV. FINITE TEMPERATURE

G "(t,t') = „, „, [5'iu(t, t')+k'kiv(t, t')] .
5/2( t ) 5/2( t

From (3.2) we immediately see that the scalar functions
g, u, and v are unchanged under interchange of its argu-
ment, while h and h are related as I „))-e T, (4.1)

Consider scalar electrodynamics to describe the con-
tents of the early Universe. In a region well within the
causal horizon, collisions establish an efFective thermal
equilibrium if they are frequent enough compared to the
expansion rate of the Universe. The collision rate is
given by [13]

h(t, t')= —h(t', t) .

Extracting the scale factor in (3.14) has the effect of sim-
plifying relations (3.13) when written for B amplitudes:

B'(t)=i f d '[gt(t, t')J (to') —ih(t, t')JL (t')],

B~(t)=i fdt'[ih(t, t')J (t') [u(t, t')+v(t, —t')]JL, ] ~

while the expansion rate is

a vp
exP= a m P

(4.2)

p-NT (4.3)

So the condition that thermal equilibrium is established
through collisions,

p being the energy density and mz the Planck mass. In
the radiation-dominated phase (i.e., T )M, M„M2 ) with
N efFective number of degrees of freedom [14],

Br(t)= i f dt' u (—t, t')J„(t') . (3.16)

gives rise to

(4.4)

It is now easy to obtain equations satis6ed by the scalar
Green's functions. %'e set in turn each of the source
functions J, JL, and Jz equal to a 5 function and the
remaining two equal to zero. Then Eqs. (3.16) relate the
B amplitudes to the scalar Green's functions, turning
Eqs. (3.11) for the former into those for the latter:

e4
T &( mz .

N

Thus, provided the tern
mass by the factor e /

(4.5)

rature is less than the Planek
, thermal equilibrium is main-
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M-eT

and using (4.2) and (4.3), this condition can be expressed
as

r 2

M'e'»
a

(4.7)

For e ( 1, the adiabatic condition

tained in the radiation-dominated, expanding universe.
The important point to note here [15] is that the condi-

tion (4.5) of thermal equilibrium leads naturally to an adi-
abatic condition. Remembering that, at high enough
temperatures [16],

2
Q

(4.8)

is thus very comfortably satisfied during the radiation-
dominated era, allowing positive- and negative-frequency
mode functions to be defined even for large wavelengths.

At a time to during the thermal equilibrium, when the
temperature is To= 1 /po, the thermal state of the system
is described by the density matrix

—poH( to )
e

—poH( to)tre
(4.9)

where H(t) is the Hamiltonian of the system. In the
Feynman path-integral formulation, the expectation
value of the field A„(x), for example, is given by

tre ' ' A„(x,t)= f [dg, ][d$2][dA„]exp i f

deaf

d x(XO+X, ) A„(x,t), (4.10)

where the contour C in the complex time plane (Fig. 1) is
obtained by deforming the Euclidean periodicity interval
of the imaginary-time formulation so as to include the
real-time axis. On the segments C, and C2, ~=t, while
on C3, ~=to —it. Note that on the third segment the
scale factor is fixed at t = to.

As discussed in detail in Ref. [7], the instantaneous
thermalization associated with the density matrix (4.9)
causes additional, nonrenormalizable short-distance
singularities to be present in the propagator. A simple
remedy to this problem suggested there is to thermalize
the system in a fictitious, static geometry prior to to and
then connect it smoothly [a(to) =a(to) =0] to the actual
geometry around the time t =to and show later that this
deformation of the metric has no efFect on the subsequent
dynamics of the system. As a bonus, the mode functions
and their derivatives belonging to the second and third
segments can be chosen to be continuous at the junction
of these segments, allowing us to construct extended
mode functions on the entire contour C [17]. The fields
in the path integral are also assumed to have the same
properties.

Furthermore, the trace in (4.10) requires

cause of the these continuity conditions, the boundary
terms mentioned in Sec. II vanish and the operator D„ is
indeed self-adjoint.

The first of Eqs. (3.1) for the gauge-field Green's func-
tion is now replaced by

D„,(x, r)G' (x, r, r')=5„5 (x)5(r—r'), (4.12)

g+co g — 1 —— g ——h = i5(r r'—), (4—.13)
1 .. k ~

a

T

~ ~ 1 k . kh+co h+ 1 ———g ——h =0,
a a

(4.14)

which again gives rise to Eqs. (3.17) with t replaced by r.
The finite-temperature boundary conditions on 6 fol-
low from those on A„ in (4.11).

We now obtain the gauge-field propagator under the
condition (4.5) that thermal equilibrium holds. It will be
observed that the condition (4.8) is equivalent to ignoring
all gravitational couplings. The set of equations (3.17)
then reduces to those on Qat space-time, with k replaced
by k /a ( t ). These are [co =M ( t ) +k /a ( t ) ],

A„"'(x,a=to) = A„' '(x, r=to —ipo),

A„'"(x,r=to) =iA„' '(x, r=to —ipo),
(4.11)

2 1h+a) h — 1 —— k
h ——(u+0) =0,

Q
(4.15)

and similar conditions on Pi z fields. The superscripts in
(4.11) denote the segments to which the field belongs. Be-

0+CO U
1 k — k

1 ———h+ —(u+U) =0,
a a

(4.16)

C)

u+co u =i5(r—r') . (4.17)

Cg

FIG. 1. Complex time contour.

Here and below the overdot denotes a derivative with
respect to complex time.

To solve this set of equations, we first construct,
following Ref. [7], a set of mode functions extended
over all the three segments of the time contour C
[coo=M (to)+k /a (ro)]:
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t dt'
exp i, , a =1,2,

io CO t'

and

k
(b, —b. ) . (4.30)

W co()fe, 0=3.
We then introduce the basic Green's function

b, (r, r') =f+(r)f (r')[0(r —r')+8 ]

+f+(r')f (r)[0(r' r)+—B],
where

o o 1)
—1

(4.18)

(4.19}

(4.20)

Collecting the solutions, we have

g =b, + (b, —Z}",1

M
1 k

h =h = — (5 —b, }',—
a

(4.31)

We also introduce another set of two extended mode
functions, denoted by f (w), which are identical to (4.18)
except for cu replaced by co=(gM +k /a )', with its
corresponding Green's function b.(r, r'). They satisfy

b(r, r')+co h(r, r') = i 5(r —r'), — (4.21)

and a similar one for A. Here and in the following the =
sign implies equality to leading order under condition
(4.8); i.e., we ignore 0 /a in comparison to co.

By construction, 5 and b, satisfy thermal boundary
conditions [7]. We now show that g, Ii, h, u, and U can be
solved in terms of them without adding any further
homogeneous solutions. Let

g=A+y.
Then Eq. (4.13) gives an equation for y:

(4.22)

y+co y — 1 —— g ——h =0 .1 .. k ~

a
(4.23)

Differentiating (4.14) once and combining it with (4.23),
we get

~ ~

k 2 k—y+h +co —y+h =0 .
Q Q

(4.24)

If we do not add homogeneous solutions, we get

a .
y= ——h .

k
(4.25)

Inserting this relation in (4.14), we get an inhomogeneous
equation for h:

A+co h = —(g —1)—b, .—2 k.
Q

Comparing it with the identity

(5—3, }"+re (5—Z)=(g —1)M 6,

(4.26)

(4.27)

we find that

(4.28)

Q

k
(4.29)

Equations (4.15) and (4.16) may be treated in a similar
way, obtaining

With relations (3.14), this completes our expression for
the real-time thermal gauge-field propagator during
thermal equilibrium in a radiation-dominated early
universe.

V. CONCLUSION

In this work we set up a perturbation expansion for a
U(1) gauge field theory with Higgs scalars in the early
Universe and calculate the finite-temperature free gauge-
field propagator in the real-time formalism. We also
write out all the interaction terms in the action which
may be taken into account by a perturbation expansion.

Our derivation of the gauge-field propagator is valid
from a time when the temperature starts satisfying the
condition (4.5} for thermal equilibrium in the era of radi-
ation domination. Its form reduces effectively to that on
flat space-time. We emphasize that the adiabatic condi-
tion (4.8) used in the derivation is a direct consequence of
thermal equilibrium condition (4.5). There is a physical
inaccuracy inherent in the formulation of our problem in
terms of the approximate notion of thermal equilibrium
of the contents of the universe on a time-dependent
geometry. The higher-order adiabatic terms which one
encounters in solving our equations exactly are of the
same order as this inaccuracy. Clearly, it does not make
sense to "correct" our result by such terms.

In the course of time, the universe may enter a
different era. If thermal equilibrium holds in the new era,
we may construct the gauge-field propagator afresh
without reference to our present construction. But the
possibility of obtaining an adiabatic condition need be ex-
amined. If, on the other hand, thermal equilibrium is lost
in the new era, we may write the general form of the
propagator involving arbitrary constants, which may be
fixed by matching it with the present form in a region
where both forms retain their (approximate) validity.

The immediate use of the propagator we have found
here is to evaluate the components of the energy-
momentum tensor to lowest order in the couplings. The
next simplest task is to evaluate the one-loop diagrams
contributing to the effective masses.
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