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We consider the formation of point and line topological defects (monopoles and strings) from a gen-
eral point of view by allowing the probability of formation of a defect to vary. To investigate the statisti-
cal properties of the defects at formation we give qualitative arguments that are independent of any par-
ticular model in which such defects occur. These arguments are substantiated by numerical results in
the case of strings and for monopoles in two dimensions. We find that the network of strings at forma-
tion undergoes a transition at a certain critical density below which there are no infinite strings and the
closed-string (loop) distribution is exponentially suppressed at large lengths. The results are contrasted
with the results of statistical arguments applied to a box of strings in dynamical equilibrium. We argue
that if point defects were to form with smaller probability, the distance between monopoles and an-
timonopoles would decrease while the monopole-to-monopole distance would increase. We find that
monopoles are always paired with antimonopoles but the pairing becomes clean only when the number
density of defects is small. A similar reasoning would also apply to other defects.

I. INTRODUCTION

After a phase transition, it is possible that the system
that has undergone the phase transition is left with de-
fects. These defects are regions that are unable to make
the transition into the new phase. Line defects and
points defects have been observed in the laboratory in
nematic liquid crystals [1]. They are also studied theoret-
ically in the context of field theories in the early Universe
under the name of cosmic strings [2] and magnetic mono-
poles. Clearly, the formation of defects can occur in a
very wide variety of circumstances. For this reason, in
this paper, we will look at the statistical properties of the
defects at formation from a general point of view,
without any specific model of formation in mind.

A central idea in the present paper is the “probability
of defect formation.” By this phrase we mean the likeli-
hood of having a defect in a certain isolated region of
space. The probability could depend on combinatorics,
external magnetic fields, existing anisotropies, and other
factors. In the case of U(1) strings, for example, the orig-
inal simulation [3] gave a probability of Z for a string to
pass through an isolated plaquette in the cubic lattice.
This number is just due to certain combinatorial factors
and depends on the algorithm and the structure of the
lattice used in the simulation.

The formation of U(1) strings has been studied by
several workers by performing simulations on cubic and
tetrahedral lattices. There has also been some effort to
analytically understand the statistical properties of the
network of strings at formation [4]. All the different
studies found that the network of strings could be divided
into two distinct classes—the closed strings (loops) and
the infinite strings. However, the fraction of string in
infinite strings varied from roughly 66% to 80% and it is
apparent that the amount of infinite string depends on
the algorithm used in the simulation. In this paper, when
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we look at the formation of strings from a general
viewpoint, we will be able to see how the infinite-string
density can vary depending on the probability of string
formation in the algorithm used in the simulation. The
simulation described in detail in Sec. IV, studies the for-
mation of Z, strings for which the long-string density has
been estimated at about 94% [5,6].

Strings and monopoles in particle physics can arise
from very complicated phase transitions in which a very
large symmetry group is broken down to some other
smaller symmetry group. Although it is a very difficult
task to actually find the probability of defect formation in
a given model, it seems reasonable to expect that this
probability will be different for different symmetry-
breaking patterns. Hence, the fraction of infinite strings
and the distribution of loops formed during a phase tran-
sition will depend on the actual symmetry breaking.

From another angle, the presence of infinite strings in a
network of strings can be viewed as a percolation process.
The percolation of domains in a system where there are
only two states has been well studied by mathematicians
and physicists [7]. It has been found that if one of the
two states is laid down on a cubic lattice with a probabili-
ty p, then the percolation probability is 0.37. That is, if
p >0.37, then infinite clusters of the state will be found.
On the other had, if p <0.37, then the state will only
occur in small isolated clusters. If we think of the bound-
ary of the two states as a wall, this says that there are
infinite domain walls only if p > 0.37 for both the states.
For subpercolation probabilities, the domain walls occur
as isolated, closed walls. Is there a corresponding effect
for strings? What is the critical probability at which
strings will percolate? We can also ask about the effect of
varying the formation probability of monopoles. There is
no percolation here since there are no “infinite” mono-
poles, but the question is still meaningful.

Defects have been observed and studied in the labora-
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tory in various condensed-matter systems. In such a con-
trolled environment, it may be possible to vary the condi-
tions of the experiment so as to vary the probability of
defect formation. For example, if the probability is sensi-
tive to the presence of magnetic fields, a suitable field
may be applied externally. (This amounts to having an
explicitly broken symmetry and to controlling the
strength of the term in the Lagrangian that violates the
symmetry.) If this can be done, the results of this paper
may even be tested in the laboratory.

The study in this paper also makes connection with the
work of Mitchell and Turok [8] on the statistical mechan-
ics of a network of strings that is in dynamical equilibri-
um. They find that, as the density of strings is lowered,
the network of strings goes through a phase transition.
At high densities, most of the string density is in infinite
strings. At densities below some critical density, the
infinite strings go away and only a distribution of loops
remains. This qualitative description will also be seen in
our work which deals with the statistical properties of the
network at formation and not with a network in dynami-
cal equilibrium. However, the detailed statistical features
are different. For example, the loop size distribution ob-
tained by us in the low-density regime does not agree
with that predicted for a string network in equilibrium in
Ref. [8]. This indicates that the statistical results of a
network in equilibrium do not apply to the network at
formation.

We shall begin by first finding the probability of string
formation in Sec. II in certain hypothetical models. This
calculation will indicate the kind of calculation that
needs to be done in realistic particle-physics theories to
estimate the probability of string formation. Section II
will also orient the reader with the general strategy of al-
gorithms used for simulating defect formation. In Sec.
III we give qualitative arguments describing the effect of
a change in the probability of string and monopole for-
mation. These arguments can easily be extended to other
defects. In Sec. IV we describe our numerical results for
the simulation of strings and in Sec. V we give the results
for the formation of monopoles in two dimensions. We
conclude in Sec. VI.

II. PROBABILITY OF STRING FORMATION

Here we will estimate the probability of string forma-
tion in the context of particle-physics models in which a
Higgs field (the order parameter) acquires a vacuum ex-
pectation value (VEV) at the phase transition. Strings are
formed if the vacuum manifold of the theory is not sim-
ply connected. The vacuum manifold M is the coset
space G /H where G is the symmetry group before and H
the symmetry group after the phase transition. A proper-
ty of the manifold M is that it is a homogeneous space—
it does not contain any preferred points. For example, in
the simplest case of U(1) strings, G=U(1), H=1, and
M=S1!. That is, the vacuum manifold is a circle and is
not simply connected.

To find the probability of string formation in some
tractable case, we will consider the symmetry breaking
O(n +1)—0O(n)XZ,. This means that M is S"/Z,,

TANMAY VACHASPATI 44

where S” is an n-dimensional sphere and the Z, tells us
that antipodal points on the sphere must be identified.
When the Higgs field acquires a VEV, each point in space
is assigned a point on M, that is, a pair of points (a point
and its antipode) on S”. Now when a closed circuit is
traversed in physical space, a closed curve in M must also
be traversed if the mapping is to be single valued. How-
ever, there are two ways in which we can get a closed
curve in M. To see this, imagine that we start at point 4
in physical space at which the VEV corresponds to the
north and south poles of S”. When we transverse the
closed circuit in physical space and return to point A4, we
could either have started from the north pole of S” and
returned to the north pole, or else have returned to the
south pole. The path running from the north to the
south pole is incontractable. If this path is traversed,
then there is a string passing through the closed circuit in
physical space. Hence to find the probability of a string
passing through a closed circuit in physical space, we
need to find the ratio of paths on S” that start at the
north pole and end up at the south pole to the number of
paths that start at the north pole and end up at the north
pole. This has to be done under an additional constraint
which comes from realizing that, at the phase transition,
the VEV of the Higgs field is uncorrelated beyond some
distance £. Therefore the pairs of points on S” assigned
to two points in physical space that are separated by dis-
tances larger than £ will be completely uncorrelated.
Furthermore, and this is only an assumption, if we know
the points on M at two points A4 and B in physical space
that are separated by a distance of about &, then the path
traced out on M as we go from A4 to B is the shortest
path. This is usually justified by saying that the shortest
path gives the configuration of minimum gradient energy.

A concrete way to visualize what is happening is to
think in terms of a simulation. Suppose we take a tri-
angular plaquette with vertices 4, B, and C in some
bigger lattice and wish to determine if there is a string
passing through the plaquette in the model where M is
S"/Z,. If we assume that the distances between each
pair of vertices is larger than &, the VEV of the Higgs
field will take on completely uncorrelated values at the
vertices. In the simulation this means that we should
randomly assign pairs of points on S” to each of the ver-
tices. Without loss of generality we can take the pair to
be the north (N) and south (S) pole at the vertex A.
Next, let the points at B be any other antipodal pair of
points P and P’ on S" (Fig. 1). Assume that P is in the
northern hemisphere. Then if we start from the north
pole at A, the path traversed in going along the side AB
of the triangular plaquette is the arc of the great circle
from N to P. Next let the points at the vertex C be Q and
Q’. So we now need to connect P to Q or Q’, depending
on which is closer. Suppose Q is closer. Then P is con-
nected to Q and the shortest path from P to Q is
traversed when we go from B to C. Finally, in going
from C to A on the triangle, we will either connect Q to
N or Q to S, depending on which is closer. If Q gets con-
nected to S, a string passes through the plaquette,
whereas if Q gets connected to N, there is no string.

A little reflection shows that for Q to get connected to
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FIG. 1. The triangular plaquette in physical space and the
manifold $?/Z,. The vertices 4, B, C, have been assigned the
points (N,S), (P,P’) and (Q,Q’) on § 2, respectively. (Q' is the an-
tipode of Q and has not been shown in the figure.) If Q lies in
the shaded region on S?, then there must be a string passing
through the plaquette.

P and also to S, it must lie in the intersection of two hem-
ispheres: the first hemisphere is the one with P as the pole
and the second hemisphere is the one that has S as the
pole. Hence the probability for a string to form is given
by the ratio of the volume in the intersection of the two
hemispheres to the volume of the sphere (see Fig. 1).
This ratio is 6 /7, where 0 is the angular distance between
N and P. This gives the probability that a string will
form when the points P and P’ are assigned to the vertex
B. To get the probability that a string will pass through
the plaquette 4BC, we need to integrate over all posi-
tions of P. Then the result is
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The integrations can be done but are not needed. It is il-
1

lustrative, however, to see that for n =1 the result is +
for n=2 it is L and for n — oo it is 1. The probability of
string formation grows with increasing n, and ranges
from 1 to 1. It is amusing to note that, at least in these
models, the simplest manifold (n =1) gives the smallest
probability of string formation.

The result of Eq. (1) is not difficult to understand. As
the dimension of the sphere increases, more and more

volume is packed near the equator. Therefore it becomes
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increasingly likely for both P and Q to be situated at the
equator. Then, in the final step of going from the vertex
C to the vertex A, the choice of connecting Q to N or to
S must be made randomly. This means that the probabil-
ity of getting a string tends to half as the dimension of the
sphere tends to infinity.

It is not clear if there are particle physics models where
the probability of string formation lies outside the range
(0.25, 0.50). Perhaps it is possible to use the homogeneity
of the manifold M to give some proof that this result is
always true.

To find the probability of monopole formation is even
more complicated and we shall not attempt it here.
However, we would like to mention the case of mono-
poles when M is S2/Z,. In this case, the probability of
monopoles is greatly suppressed [9] because even though
opposite points on the S? are identified, the mapping
from a sphere in physical space onto the manifold has to
wrap around the whole S? for the Higgs field to be single
valued everywhere. So, effectively, getting a monopole in
this case is like getting a charge-two monopole when M is
simply S2. But there are other complications in this
model as it also contains strings that carry magnetic
charge. In other words, a loop of string may shrink and
form a monopole.

III. QUALITATIVE ARGUMENTS

In this section we will give some qualitative arguments
about what to expect as the formation probability of
strings and monopoles varies.

First, consider the statistical mechanics of a box of
strings in dynamical equilibrium [8]. The density of
strings in this box is treated as a free parameter [10]. As
we decrease the density of strings, it is expected that only
the infinite-string density will decrease and the loop den-
sity will remain constant. At high densities, the size dis-
tribution of loops is

dl

dn(l)=«a 15/2 ’

(2)
where dn(l) gives the number density of loops having
length between / and ! +dI and a is a constant. This is a
scale-invariant distribution of loops [11]. At a certain
critical density, the network will undergo a phase transi-
tion in which the infinite strings will suddenly disappear
and only loops will remain. At low densities, the statisti-
cal mechanics arguments predict a loop distribution

e—b[

dn(l)=a dl, (3)
where a,b, and ¢ =3 are constants.

We shall find that the qualitative features of the statist-
ical arguments will apply in our case. Indeed, the distri-
bution in Eq. (2) has already been seen [3] and a (relative-
ly slow) transition in the properties of the network will
also be evident in our results. However, our results give
¢ =2 instead of £ at low densities and we find that, on de-
creasing the string density by reducing the probability of
string formation, not only does the infinite string density
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decrease but the loop density also increases. This is not
what the statistical arguments predict for a box of strings
in equilibrium.

There is another approach to the problem that allows
us to anticipate, from a “microscopic” point of view, the
changes in the network as we reduce the probability of
string formation. For this, consider a simulation of string
formation on a cubic lattice (Fig. 2). The probability of a
string passing through face 1 of the cell is p; and depends
only on the values of the field on the plaquette of face 1.
Hence, the probability of a string passing through the op-
posite face, face 2, is completely independent of what is
happening on face 1 and is also p,;. Therefore, the proba-
bility that the string bends after entering the cell through
face 1is 1 —p,. Now, if we reduce p,, the bending proba-
bility increases and the chances of the string closing up to
form a loop also increases. This tells us that by reducing
the probability of string formation, or equivalently, by
decreasing the string density, we can decrease the infinite
string density and increase the loop density.

A simple argument allows us to anticipate the changes
in the distribution of monopoles as we reduce their prob-
ability of formation. Once again, consider a cubic lattice.
Suppose that the probability for a monopole to form in
one of the cells is p,, <<1. Now consider a 3 X3 X3 sub-
lattice. The probability of having one or more monopole
charge in this sub-lattice is at most 3°p,, (to lowest order
in p,, ) and only depends on the VEV of the Higgs field on
the surface of the sublattice. Therefore the probability of
having zero charge in the sublattice is greater than
1—27p,, and is independent of whether or not there is a
monopole present in the central cell of the sublattice. As
P, gets smaller, the probability of having zero charge in-
creases. Hence, given a monopole at the center of the
sublattice, it is quite certain that there will also be an-
timonopole within the sublattice. This means that, in the
limit p,, —O0, an antimonopole will always neighbor a
monopole and the average distance between the neigh-
boring monopole and antimonopole will be one lattice

Face 2
A \ o
v

C
B ‘\ Face 1

FIG. 2. A cell of a cubic lattice. The presence of a string
through face 1 ( ABCD) of the cell makes no difference as to
whether a string passes through face 2 ( A’'B'C’D’) since the cri-
terion for string formation only depends on the vertices and
edges of each face.
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spacing in a simulation. Therefore we expect that a
reduction of p,, will bring monopoles and antimonopoles
closer. But, at the same time, since the number density of
monopoles is expected to behave like 1/p,,, a reduction
in p, will increase the monopole-monopole distance.
Therefore a decrease in p,, increases the monopole-
antimonopole positional correlation but decreases the
monopole-monopole positional correlation.

We shall verify this prediction in the case of monopoles
in two dimensions by performing a simulation.

IV. STRING SIMULATION

To simulate the formation of strings, we shall use a
very simple algorithm that allows for a continuous varia-
tion of the probability of string formation. On the links
of the cells of a cubic lattice, we shall assign +1 with
probability 1—p and —1 with probability p. If we
now take a plaquette and find the product of these link
phases, it can be either +1 with probabilty
(1—p)*+6pX1—p)?+p* or —1 with probabilty
4p(1—p)[(1—p)?+p?]. We shall say that a string passes
through the plaquette if the product is —1. It can be
verified that this algorithm satisfies the requirement that
strings do not have ends and can only occur as loops on a
periodic lattice. Furthermore, these strings do not have a
direction associated with them and come under the
category of Z, strings [5,6].

When p =0.5 the probability of string formation p; is
also 0.5. As p gets smaller, p; gets smaller too. Hence,
we control the probability of string formation by control-
ling the parameter p. In the simulations we have used a
lattice with periodic boundaries. To decide which string
is infinite and which is not, we have used the criterion
that if the length of the loop is larger 2L 2, where L is the
lattice size, it should be classified as an infinite string [10].
We have checked that the density in infinite strings ob-
tained is not very sensitive to the exact definition we use.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 3. A plot of the string density p vs string probability p,.
The best-fit line gives p=3p, as may be expected for a three-
dimensional cubic lattice.
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FIG. 4. A plot of the string density in loops p; vs the total
string density p. For p <p.~0.88 there are no infinite strings
and the graph is just p=p;. For p>p. the density in loops de-
creases sharply while the density in infinite strings increases.

Only when we get very close to the transition density
does it becomes difficult to define an infinite string in a
stable manner.

All the simulations were done on a 70 lattice and the
data were accumulated over six runs (10 in the case of
p=0.02). When the distribution of loops became sparse,
that is, the number of loops of a certain size became less
than about 5, the data were truncated. For the smallest
few values of p, the number of different loop sizes is not
large and we retained all the data.

In Fig. 3 we show the relation between the probability
of string formation p,; and the density of strings p. The
line in Fig. 3 is best fitted by p=3p,. The factor of 3 fol-
lows because each cubic cell can have at most three string
lengths, that is, six half lengths, associated with it. In

0.3

0.2

0.1

0.0 . ; o

FIG. 5. A plot of the parameter b in Eq. (3) vs the density in
strings.
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FIG. 6. A plot of the parameter ¢ in Eq. (3) vs the density in
strings. For p <p,. the value of ¢ is consistent with 2.0 while for
large p, the value is 2.5.

what follows, we will study the properties of the network
as a function of p since the density of strings is a physical
property of the network.

In Fig. 4 we plot the density in loops p;=p—p, Vs p.
The transition in the network properties occurs at the
density p, ~0.88, or at p; ~0.29 and p ~0.10. Below p,
there are no infinite strings and all the string is in loops.
Note that p; is not constant for densities above p.. This
may be understood by saying that as the density of
strings is lowered, the infinite strings ‘“‘break up” into
small loops. In this way, a decrease in the infinite string
density is accompanied by an increase in the loop density.
This is in contrast with the result in Refs. [8,10] where a

FIG. 7. The square plaquette in physical space and the circu-
lar coset space. The coset space is approximated by three points
labeled O, 1, and 2. To each of the vertices 4, B, C, and D, a
point on the coset space has to be assigned randomly.
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network of strings in dynamic equilibrium is studied. In
such a system, the infinite string density decreases with a
decrease in the total string density but the loop density
remains constant. In other words, the infinite strings
disappear without breaking up into loops.

The loop distribution obtained for any value of p is well
fitted by the functional form of Eq. (3). The parameters
a,b, and ¢ can be found from the simulations. The pa-
rameter a is just an overall normalization and depends on
the total string density and we shall ignore it. The pa-
rameter b is zero above the critical density p, and grows
as we get to lower densities. A plot of b vs p is shown in
Fig. 5. In Fig. 6, we show the plot of ¢ vs p: the figure
shows a remarkable change from a value consistent with
2.0 to a value of 2.5 as we increase p through the transi-
tion density. In a system of strings at equilibrium, statist-
ical arguments tell us that the value of ¢ would remain at
2.5 whether the strings were at high or low densities [8].

We have performed the string simulations with two
other algorithms with similar results. One of the algo-
rithms is a slight modification of the U(1) string algo-
rithm of Ref. [3]. This simulation is also interesting be-
cause U(1) strings have an associated direction whereas
the strings discussed in the preceding paragraphs do not
have an associated direction. As we shall be using the
U(1) algorithm to simulate the formation of two-
dimensional monopoles, we now describe it.

The plaquette in physical space is taken to be a square
while the coset space is a circle which is discretized and
taken to be a triangle (see Fig. 7). We assign one of the
phases 0, 1, and 2 to each of the vertices 4,B,C, and D.
If on traversing the plaquette ABCD A we find that we
wind around the triangle in coset space, we say that a
string must pass through the plaquette ABCD. This is
just the old algorithm of Ref. [3]. The modification we
make to this algorithm is that we assign the phases 0, 1,
and 2 to the vertices of the plaquettes not with equal
probabilities but with different probabilities. We varied
the probability of assigning the phase 2 to any vertex. As
every phase must necessarily occur at the vertices of a
plaquette to get a string, a change in the probability of
phase 2 also changes the probability of getting a string
and hence the density of strings. It should be noted that
this algorithm simulates the formation of U(l) strings
when there is an explicit violation of the U(1) symmetry
present in the Lagrangian.

V. MONOPOLES IN TWO DIMENSIONS

The U(1) string simulation immediately allows us to
study the formation of monopoles in two dimensions. All
that we need to do is to take a slice of the U(1) string
simulation. This will give us points on the plane which
correspond to monopoles or antimonopoles depending on
whether the point is at the intersection of a string (wind-
ing number +1 in the coset space) with the plane or at
the intersection of an antistring (winding number —1)
with the plane. We then find the average separation (d)
between neighboring monopoles and the average distance
(d) between neighboring monopoles and antimonopoles.
A plot of d and d versus the number density n of mono-
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poles is shown in Fig. 8. It is apparent that the
monopole-monopole distances grows with decreasing
density (d~0.55n"1/2) while the monopole-
antimonopole distance decreases (slightly) with decreas-
ing density. This confirms the qualitative arguments of
Sec. III.

It should be pointed out that the distance between
monopoles and antimonopoles is always about one corre-
lation distance, even when the number density of mono-
poles is high. So we can always imagine the monopoles
and antimonopoles as occurring in pairs with a separa-
tion of about the correlation distance. When the number
density is large, a given pair is close to other pairs and so
the pairing is not “clean.” As we decrease the formation
probability, the number density of monopoles decreases.
This is accompanied by a slight decrease in the distance
between the members of a pair and a relatively large in-
crease in the distance between pairs. In this way, the
pairing becomes clean and the correlation between mono-
poles and antimonopoles grows.

We show a picture of monopoles in two dimensions in
Fig. 9. The positional correlation of monopoles and an-
timonopoles is obvious. We also notice a few clusters
consisting of two pairs. This is because, in the U(1) algo-
rithm that we have used, while it is extremely likely for
an antimonopole to be in the cell neighboring a mono-
pole, it is also likely for a second monopole to be in the
cell neighboring both the first monopole cell and the an-
timonopole cell—that is, in the cell diagonally across
from the first monopole cell. The presence of this
“second-order” correlation between monopoles results in
a few of the monopole neighbors being separated by a dis-
tance of V2 and is seen in Fig. 9 as a cluster of four de-
fects.

In(d), In(d)

in(n)

FIG. 8. A logarithmic plot of the average distance between
neighboring monopoles d (squares on the plot) and the average
distance between neighboring monopoles and antimonopoles d
(filled circles) vs the monopole number density n. A decrease in
the defect density results in an increase in d (d =~0.55n ~1/2) and
a slight decrease in d. Also note that d ~1 at all densities, that
is, the monopoles and antimonopoles are always separated by
distances of about one correlation length.
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FIG. 9. A picture of the two-dimensional monopole distribu-
tion on a 70? lattice when the defect density is ~0.02. The posi-
tional correlation between monopoles (+) and antimonopoles
(0) is clear.

We have not done a monopole simulation in three di-
mensions since we believe that these results give ample
indication of what to expect. Furthermore, it would only
be useful to do the three-dimensional simulation once we
have a physical situation that prescribes a definite algo-
rithm for the formation of monopoles with a variable
probability of formation. As mentioned at the end of Sec.
IV, the simulation leading to Fig. 9 corresponds to the
situation where there is an explicit violation of symmetry
in the Lagrangian. For example, in the case of cosmolog-
ical monopoles, this could occur due to the presence of a
primordial magnetic field.

VI. SUMMARY

We have studied the formation of strings and mono-
poles from a more general point of view where their prob-
ability of formation can vary. The network of strings un-
dergoes a transition as we go from high string density to
low string density. We have found the loop distribution
in both regimes. While the loop distribution in the high-
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density regime is the same as that obtained by existing
statistical arguments for a box of strings in dynamical
equilibrium, the distribution at low densities is different.
Another new feature is the simultaneous decrease in
infinite-string density and increase in loop density as we
lower the string density in the high-density regime. An
interpretation of this phenomenon is that as the string
density is lowered, the infinite strings ‘“‘break up” into
many small loops. In this way, not only do the infinite
strings go away but the loop density also increases. This
is to be contrasted with the statistical arguments that tell
us that as the string density is decreased, the infinite
strings just go away without “breaking up” into loops. In
this way, a decrease in infinite-string density is not ac-
companied by an increase in loop density. These features
emphasize the fact that a string network at formation is
very different from a string network in dynamical equilib-
rium.

For monopoles, we found that the monopoles and an-
timonopoles get highly correlated as we decrease their
number density. Such a correlation would, in fact, be ob-
served for any defect occurring at low densities. This has
been confirmed in the case of textures by numerical simu-
lations done in Ref. [12].

We also find that monopole formation in two dimen-
sions can be viewed as the formation of monopole-
antimonopole pairs whose separation is always about one
correlation length. At high number densities, these pairs
are close to each other and the pairing is not clean. At
lower densities, however, the distance between pairs be-
comes large and it is easy to identify the antimonopole
corresponding to any given monopole. This would have
some consequences for the cosmological evolution of
monopoles since such a correlation would significantly
enhance the annihilation of monopole pairs. A more ex-
tensive study of this question is presently under way.
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