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We evaluate the ~g scattering amplitude at next-to-leading order in chiral perturbation theory. We
discuss the conventional approach of the pseudoscalar Goldstone bosons (m, K,g) only and an extension
including explicit resonance fields. The contributions of these resonances saturate the low-energy con-
stants at order E . We present predictions for the scattering lengths and phase shifts of the low partial
waves.

Green's functions of quark currents can be analyzed at
low energies in the framework of chiral perturbation
theory (CHPT) as dictated by chiral symmetry and its
spontaneous breakdown. It is most economical to make
use of an efFective Lagrangian involving the pseudoscalar
Goldstone bosons [1] eventually accompanied by explicit
resonance degrees of freedom [2,3]. In the first version
(conventional CHPT), one evaluates physical observables
for a given loop order which is equivalent to a systematic
expansion in external momenta and quark masses. In
most cases, the one-loop approximation suffices (i.e., tak-
ing terms up to and including order E ). Whenever reso-
nances can contribute to a process under consideration,
the one-loop approximation encounters a barrier. This
naturally leads one to include the low-lying resonance
multiplets. Chiral symmetry dictates the form of the in-
teraction vertices between the Goldstone pseudoscalars
and the resonances at leading order (E ). At order E, it
can be demonstrated that the momentum-independent
parts of the resonance propagators generate polynomial
terms whose coefficients (low-energy constants) are very
close to the empirically determined values of these con-
stants for the conventional approach (working at the res-
onance scale, @=M ) [2]. Taking into account the full
resonance propagators, one includes some terms of order
E and higher. In Ref. [4] it has been shown that with
the inclusion of the resonances the chiral predictions for
neer [5—7] and nK [8] scattering are in fact improved. In
the following, we will be concerned with the elastic ~g
scattering amplitude in chiral SU(3)I X SU(3)z. We will

consider the conventional CHPT at next-to-leading order
as well as the enlarged efFective Lagrangian with explicit
resonance degrees of freedom. In the absence of any
phase-shift analysis in the ~g system, we will predict the
scattering lengths and phase shifts of the low partial
waves in what follows. Even if it will take a long time be-
fore accurate phases might be available, we believe that
our results are useful for the model builders.

In the presence of external sources of scalar, pseudo-
scalar, vector, and axial-vector type (s,p, v, a), the QCD
generating functional at next-to-leading order takes the
form

Z [ U, s,p, v, a ] =Zp+ Z4 +Z4 +Z4 +Zg

Here, U =exp[i@/Fo] embodies the eight pseudoscalar
Goldstone bosons with Fo the pion decay constant in the
chiral limit. The subscripts 2 and 4, respectively, refer to
the leading (tree-level) and next-to-leading (one-loop) or-
der. It is common (but not necessary) to split the one-
loop contribution into terms of tadpole type (Z4), the
unitarity corrections (Z& ) and the polynomial terms of
order E (Z4). Z4 is the Wess-Zumino action which
accounts for the chiral anomalies. The local action relat-
ed to Zz is accompanied by a set of a priori undetermined
low-energy constants. They have to be determined from
phenomenology [1,9]. The external scalar source s (x) in-
cludes the quark mass matrix, s (x ) —JK
=diag(m„, md, m, ). Considering elastic (on-shell)
scattering, one can omit the external sources and expand
the generating functional to fourth order in the physical
meson fields pt (P =tr, K, rl) [10]. In this approach, one
has to keep track of the wave-function renormalization of
the external legs which is given by the physical meson de-
cay constant Fz. In what follows, we will refer to the
generating functional (1) as conventional CHPT at next-
to-leading order. It is given in explicit form in Ref. [1].

As has been demonstrated in Ref. [2], to order E there
is a strict correspondence between Z[U, s,p, v, a] and the
generating functional ZR [ U, R,s,p, v, a]:

Zti [U, R,s,p, v, a]= Z[U, s,p, v, a]—Z&[U, s,p, v, a]

+Z"'[U, R, s,p, v, a] .

Here, R stands for resonance nonets (octets) of scalar (S),
non-Goldstone pseudoscalar (P), vector (V), and axial-
vector (A) type. To leading order (E ), the interaction
Lagrangian of the resonances with the Goldstones is Axed

by chiral symmetry [2]. In fact, the resonance exchange
contributes at order E (and higher) to the effective ac-
tion. The pertinent observation made in Ref. [2] was that
at the typical resonance scale (say @=M ) resonance ex-
change generates a polynomial piece of order E with
low-energy constants that agree to a high degree of accu-
racy with the phenomenologically determined ones in the
conventional approach (resonance saturation). This
means that there is a strict one-to-one correspondence be-
tween the generating functionals (1) and (2) at order E .

One can then go further and take seriously the
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momentum-dependent part of the resonance propagator
which starts out at order E . This was done in Ref. [4]
and it was shown that the chiral predictions for the chan-
nels in which various resonances contribute are
significantly improved. The prime examples are the P-
wave phase shifts 5I(s) and 6I~ (s) for nrr and vrK scatter-
ing, respectively, which are dominated by p and K* ex-
change. In what follows, we will present results using the
conventional approach at next-to-leading order (1) and
also the effective action (2) including the resonances for
the mq system. While the latter has the advantages dis-
cussed before, in the conventional approach there is a
cleaner way of organizing contributions according to
their chiral power E '"+" (with n the number of loops)
and estimating the error bars of the chiral prediction.

The ~g scattering amplitude takes a simple form in
terms of one Lorentz-invariant amplitude depending on
the Mandelstam variables since the g has isospin zero:

T' (s, t, u)=o' T „(s,t, u) .

The amplitude T „(s,t, u) is furthermore crossing sym-
I

Q3 md m„tan2e= m= —(m„+md) .I fpz
(4)

Its numerical value is e=8X10 [12]. By simple G-
parity arguments, one can show that the induced
isospin-breaking amplitude is of 0 (c ) and therefore
(strongly) suppressed. We have checked this also by a
direct calculation of the O(e) contribution to the vr rt
scattering process.

Considering now the specific process n (p&)+g(p2)
+sr (p—3)+g(p&) we calculate from the effective action

(1)

metric, T„„(s,t, u)= T „(u, t, s), since the g is its own an-
tiparticle. Let us briefly comment on the eAect of ~ q
mixing. The physical pion and eta are not eigenstates of
the generators A, 3 and k8, respectively, but there is mix-
ing, i.e., A, o

=A,3cose+ A, 8sine and A,„=A,8cose —
A, 3sine.

The mixing angle e can be expressed in terms of the
quark masses [1]:

+oT „(s,t, u)= (1 —3p 2@~—
—,
'—p„)(M„) +8(L",+ ,'L3)(t 2—M )(t—2M„)—

7l

+4(Lq+ ,'L3)[(s ——M —M„) +(u —M —M„) ]+8L4[(t —2M )(M„) +(t —2M„)(M ) ]
'L" (M —+—M )(M ) +8L "(M ) [(M ) +5(M ) ]+32L "(M ) [(M ) —(M ) ]

(M )+ 64Ls(M )"+— [J"„(s)+J„"„(u)]+3J~x (s)[s ——M —M„+—,'(M ) ]

(M )+—3Jxx(u)[u —M —M„+—', (M ) ] + J" (t)[t —2M +—', (M„) ]
+—'J" (t)(M ) [(M ) ——'(M ) ]+ 'J~~(t)[ —2M —+2(M ) ]

X[3t —6M2+4(M„) ——', (M ) ] (5)

Here, Mo denotes the meson masses at leading order E . The loop functions J&& and quantities t p (F Q =~ & 1) a e
explicitly given in Ref. [1]. Notice the appearance of the low-energy constant L7, which does not apPear in either m'tr or
mK scattering. ~s a nontrivial check one can demonstrate that the amplitude (4) does not depend on the scale Parame-
ter p (of dimensional regularization) entering in the functions JJ& and pt as well as in the low-energy constants L,'. For
the values of these constants, we take the central values of Refs. [1] and [10]. For the g decay constant, we use the
chiral prediction F =1.3F [1]. lf one uses instead the effective action including the resonances, one has to substitute
in Eq. (4) the polynomial Piece proportional to the L, (/ =1, . 8) by the resonance exchange contribution

T"„'(s,t, u)= [cd(t 2M )+2c (M ) ][c—d(t —2M„)+2c (Mz) ]F+~2 Ms, t—
2

(Mo p[(M' )'+(M'„)']+, [c„(s—M' —M'„)+2c (M' )']'

[c,(u —M'„ —M'„)+2c (M'. )']'+ , (M')'[(M')' —(M'„)']
3(M,' —u)

[cd(t —2M~ )+2c (M ) ]{cd(t 2M„)+2c [2—(M„)
3(M5 —t )

(6)
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Only scalar exchange and qadi mixing (with i)i the fiavor-
singlet non-Goldstone pseudoscalar) contribute to the ~rt
scattering amplitude. The parameters cd, cd, c,c, and
d have been determined in Ref. [2]. We use these to-
gether with M&=M& =983 MeV. To check the stability

of our results, we will also vary the scalar mass in the
chiral limit. Possible contributions from higher-lying
tensor mesons will not be discussed (we only consider cms
energies &s ~1 GeV). With Eqs. (5) and (6), the chiral
expansion of the erg scattering amplitude at next-to-
leading order (and beyond for the resonance case) is com-
pletely determined. At leading order (E ), one can iden-
tify Fo =F =F„and M =M and recover the current-
algebra (CA) amplitude of order E:

M
T"'(s, t, u)= (7)

3F2

To leading order, the ~g scattering amplitude is a con-
stant which vanishes in the chiral limit M =0 [11].

The pertinent kinematical relations for calculating
partial-wave amplitudes and phase shifts in the mg sys-
tem are particularly simple since no isospin projection is
involved. The total isospin (in the s channel) is always
I=1. For a given relative angular momentum l the
partial-wave amplitude reads

+1
ti(s) = dz Pi(z)T „(s,t, u ),

327T —1

(8)

with

t = —2q (1 —z),

q =Q[s —(M +M„) ][s —(M„—M )~]/(2v's ),
u =2(M +M„)—s —t,

and

z =cosO

related to the scattering angle in the center-of-mass sys-
tem. The corresponding phase shifts follow from

5/(s) =arctan Re t/(s)2q
s

(9)

In principle, for the conventional approach (to one-loop
order) one could expand the arctan in Eq. (9) and get a
simpler form for 5/(s) which differs only at order E from
the one given. To properly unitarize the resonance ex-
change contributions, however, it is mandatory to use the
full form, Eq. (9), for calculating the phase shifts (for a
detailed discussion, see Ref. [4]). As q ~0
(&s ~M +M„), we define the scattering lengths by

Reti(s)= q [a/+O(q )] .t &s z/ t
2

(10)

Notice that the a& are normalized such that they have di

mension [mass ] '. Results will be given in appropri-
ate powers of the inverse charged pion mass. One might
be worried about the inAuence of inelasticities, here, the
coupling to the KK channel in the S wave. In CHPT,
this is a three-loop effect. Therefore, to the order we are
working, we cannot consistently include it.

In Table I, we give the results for the scattering lengths

TABLE I. Scattering lengths. We give the current-algebra
(CA) results in comparison with the one-loop CHPT predictions
(CHPT) and the Lagrangian including explicit resonance fields
(Res.). The low-energy constants and the resonance parameters
are taken from Ref. [1] and Ref. [2] for the CHPT and Res.
cases, respectively.

ao
a&

a2

CA

6.0x10-'
0
0

CHPT

7.2x10-'
—5.2X 10
—2.1x10-'

Res.

4.9 x10-'
—1.5 x10-'
+1.3X 10

which approach the respective scattering lengths as
Vs ~M +M„. These are shown in Fig. 2 for the con-
ventional case. For the resonance case, the energy depen-
dence is the same, but the absolute values are different.
For the D wave, one might think of coupling explicit ten-
sor mesons, but this goes beyond the scope of the present
paper. For the average mass of these tensor mesons
(MT ——1500 MeV), one does not expect a significant

in the S, P, and D waves, for the lowest order (current
algebra), the next-to-leading order (CHPT) using the
low-energy constants given in [1] and the resonance case
using the parameters pinned down in Ref. [2]. All
scattering lengths turn out to be rather sensitive to the
low-energy constants. Of particular interest is the depen-
dence on L 7 since this constant does not appear in the ~~
or mK scattering amplitudes. For the one-loop CHPT re-
sult, we find ao =9.0X 10 to 5.4X 10 for
L 7

= —5.5 X 10 to —2. 5 X 10 (these are the error
bars on L 7 given in Ref. [1]). If one keeps the low-energy
constants on their central values and varies the scaIar
mass M&=M& between 850 and 1100 MeV, the S-wave

1

scattering length ao changes from 7.3 X 10 to
4. 1X10 . This strong dependence is due to the fact
that the position of the scalar resonance is only 300 MeV
above the threshold. One should therefore not attach any
deep physical significance to these strong variations. The
P- and D-wave scattering lengths are much less affected
by changes in the scalar mass. It is obvious from the res-
onance contribution (6) to the scattering amplitude
T „(s,t, u) that there is scalar exchange in the t channel
which carries isospin zero. This resonance would have to
be identified with the fo(975), but we have not treated
mass splittings within the SU(3) resonance multiplets.
These corrections are of order E (and higher) and have
not been investigated yet.

In Fig. 1, we show the S-wave phase shift 5o(s). For
the conventional case, it is a slowly increasing function as
v's increases, whereas for the resonance Lagrangian the
explicit ao(983) exchange is of course visible. Up to
&s =1 GeV, the phase 5o(s) is similar to a Breit-Wigner
form with the parameters dictated by the mass and width
of the ao(983) resonance. This is different to the calcula-
tion of Weinstein and Isgur [13] based on the KJ/.
molecule model for the scalars. For the P and D waves,
we prefer to work with the functions

1
K/(s) =, , tan5/(s),
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FIG. 2. The P- and D-wave K functions for the conventional
one-loop CHPT.

800 900
gs [MeV]

FIG. 1. S-wave phase shift 5o(s) for &s ~ 1 GeV. The lower
solid line gives the result for the one-loop CHPT and the upper
solid line the one for the chiral Lagrangian with explicit reso-
nance fields.

change of Kz(s) for +s ~ 1 GeV.
In this paper, we have considered elastic ~g scattering.

It is a very interesting dynamical process involving
mesons of unequal masses and strange-quark —antiquark
pairs (similar to the case of a%scattering). At. present,
no phase-shift analysis based on the existing data in the
erg system exists. We therefore predict the scattering
lengths and low-energy behavior (&s ~ 1 GeV) of the S,
P, and D waves. We have demonstrated that isospin
violation stemming from the quark mass difFerence

md —m„ is absent to linear order and can therefore be

neglected. In the I=1 S wave, the presence of the
ao(983) resonance strongly tnQuences the elastic phase
shift down to threshold, +s =M +M„=-690 MeV. The
calculation presented here has been done in the same
framework as the determination of the low-energy
Green's functions of QCD for ~m and m'K scattering with
no free (adjustable) parameters. The experimental
confirmation of these ~g threshold parameters would
provide an interesting and necessary check on our under-
standing of the low-energy structure of QCD which is
governed by the implications of chiral symmetry viola-
tion. Considering the present status of the data in the ~g
system, we believe that our investigation is of use for the
model builders to implement the pertinent constraints set
by chiral symmetry.
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