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Electroweak corrections in the nonminimal technicolor mode&
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The electroweak radiative corrections induced by a one-family technicolor model are examined using
the dispersion relation technique proposed by Peskin and Takeuchi. Large uncertainties in b r remain
because its value is sensitive to the masses of the technipions and technirho.

Technicolor schemes for breaking electroweak symme-
try [1,2] remain attractive despite the absence of fully
realistic models. Direct searches for technicolored parti-
cles are under way at existing high-energy hadron collid-
ers and the extent of these searches will be increased
enormously at the CERN Large Hadron Collider (LHC)
and the Superconducting Super Collider (SSC) in Texas.
Indirect searches are possible by looking for deviations
from the predictions of the standard model in the funda-
mental quantities such as the W-Z mass difference. The
inAuence of technicolor on electroweak corrections was
investigated as early as 1983 by Renken and Peskin [3],
and subsequently by Lynn, Peskin, and Stuart [4]. Im-
proved measurements of the W and Z masses have
renewed interest in these effects and they have been rein-
vestigated by Golden and Randall [5], by Peskin and
Takeuchi [6], and by Holdom and Terning [7]. These au-
thors draw generally negative conclusions because they
predict that the "one-family" model of technicolor [8]
would change the W-Z mass difference by about 500
MeV relative to the prediction of the standard model.
The good agreement at the level of about 300 MeV with
the predicted value is some circumstantial evidence
against the model. We find, however, that the mass shift
is subject to large uncertainties.

The one-family model is comprised of four weak iso-
doublets of technifermions, three techniquark doublets
( U, D ) carrying SU(3)„&„and one technilepton doublet
(N, E) that is colorless. The technifermions all carry
technicolor, which we indicate by SU(NTc). The eight
technifermions give a theory that is invariant under glo-
bal SU(8) X SU( 8 ), except for gauge interactions and
masses. The spontaneous symmetry breaking that occurs
when the technifermion condensate forms breaks the glo-
bal symmetry to the diagonal SU(8). This generates 63
Goldstone bosons, three of which are absorbed by the W
and Z. The analogue F of the usual pion-decay constant
f =93 MeV is related to v=2 'r"GF 'r =246 GeV,
which in the conventional model is the vacuum expecta-
tion value of the Higgs field, and Nd, the number of tech-
nidoublets in the model, by

F2
d 7T

For the one-family model, Xd =4 so F =123 GeV.
The relation between m ~ and mz is given in terms of

hr, which is determined by radiative corrections:
1/2

1 + 1
4vrot(1+ Ar )m~ ——1+ 1—

2mz GF
mz . (2)

A shift 5hr produces a change in the W mass with the Z
mass fixed of

bm~= —17 GeV 5hr . (3)

The value of Ar is determined by the vacuum-
polarization functions of the W Z, and photon. If we as-
sume that isospin is not broken (as it would be if there
were large mass splittings inside isodoublets), and if the
masses of the W and Z are dropped, the expression for hr
may be written [6]

b, r = —
2 [ImII&&(s) —ImII&z(s)] .g ds

2' S
(4)

(6)

where m. , is the triplet of "pions" made from quarks or
leptons of the ith doublet.

Traditional current-algebra and vector-dominance
techniques provide a framework in which we can esti-
mate the contributions to Eq. (4). These principles are
not sufficient to determine the result and we shall there-
fore investigate several alternative assumptions about the
dynamics.

Among the technivector particles is one that we call
the pTc and whose composition is

1
Pl r XPI

d

The sum extends over i =1, . . . , Xd, that is, over the
techniquark and technilepton doublets, and p„' is the p-
like meson made from technifermions of the ith doublet.
Analogous to the technirho, we define a pure-isospin
technipion multiplet:
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The axial-vector and vector currents are

V„=QQ;7t, —Q;,

A„=&Q) „1~2Q;

so

2m
ImII t,~(s) =

f,Tc

'2
ImII (s)

(s —m Tc ) + [ImII (s) ]

(13)

The isospin associated with V„ is the sum of the isospins
from each generation.

We assume a strong form of vector dominance where-
by the couplings of the vector current are determined by
the couplings of the technirho. The coupling of the vec-
tor current to the technirho itself is designated
m Tc /f Tc. The coupling of the technirho to technipion
pairs at zero-momentum transfer is taken to be g Tc.pTC'
This coupling is the same for all technipion pairs since
the technirho couples to the technipions according to
their isospin, which is in all cases equal to one. Thus the
coupling of the vector current to the pairs is, at q =0,
g Tc/f rc, so vector-dominance requires g Tc=f~Tc.

The partial width of the technirho into a single
technipion-technipion channel is

This expression is heuristic. In particular, we should re-
gard mpTC to be a function of s.

The behavior of the vector contribution to Ar near
threshold is obtained directly from Eq. (13) by noting
that there ImH «m Tc so

1ImIIt, t, (s) = ImII (s)fprc
(14)

st 1—
48m

' 3/2
4m ~TC

(15)

where we used the vector-dominance relationf Tc=g rc. Were we to use this value from a threshold
4m Tc to a cutoff A, ignoring the threshold suppression
and the contribution from the axial-vector current, we
would have, from Eq. (4),

g pTC pTCm

48~
4m Tc

2

2m

3/2

( ~r )nonresonant
96m 4m Tc

where we have implicitly assumed that gpTc varies little
between q =0 and q =m pTc Since there are 1Vd techni-
pion triplets (ignoring the losses to the W and Z ),

m
2 pTC pTC

48~
4m Tc

2

2m pTC

3/2

(10)

dg pTC
2 2

ImII (s) = — 1—
48~

3/2
4m „Tc

On the other hand, we express the vector-current spec-
tral function as

assuming, for simplicity, degeneracy of all the techni-
pions. The imaginary part of the technirho-technirho
vacuum polarization is, analogously,

the result of Golden and Randall I5].
The value of Ar derived from these formulas is uncer-

tain because of ambiguities in the parameters. The for-
mula of Golden and Randall depends on the threshold
specified by m Tc and the cutoff A. If we take
A=4rrv /QNd = 1.5 TeV and Nd =4, (Ar )„,„„„„,„,=0.030, giving a shift of —520 MeV, while taking
A=4~v /Nd =0.75 TeV gives (br )„,„„„„,„,=0.020.
These results and those from other approximations are
summarized in Table I.

This calculation is open to certain criticisms. Ignoring
the threshold factor (1 —4m rc/s) increases the re-
sulting shift significantly. Furthermore, this approach ig-
nores the dominant dynamics, that of the technirho.
Even if one declines to introduce a technirho explicitly, it
is inconsistent to assume that the amplitude determined
by chiral symmetry persists away from threshold. This
can be expressed in terms of the Omnes function

2m pTC
11vv(s) = fpTc s —m pTc i ImII (s)— (12) F(s) =exp P f ds'—s , 5(s')

s'(s' —s )

TABLE I. Values of Ar resulting from the technicolor corrections in a variety of models. The factor
4 results from subtracting 4 of the vector contribution to represent the axial contribution in Eq. (4).

Model

Nonresonant, A = 1.5 TeV, m Tc =91 GeV
Nonresonant, A =0.75 TeV, m Tc =91 GeV
Narrow resonance, m pTc 1 TeV
Resonance, mpTc 1 TeV, m Tc=100 GeV
Resonance, mpTc=1 TeV, m Tc=200 GeV

0.030
0.020

0.026 X —=0.019
0.030 X 4

=0.022
0.020X —=0.015
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4 2 )3/2
a Born e I =

~Sin1=1 1=1
3vru 2&s

(18)

Unitarizing this amplitude necessarily introduces ambi-
guity. The choice

tang, , =a Born (19)

gives a phase shift that goes asymptotically to m/2, a
pathological behavior. From Eq. (17) we see that the
form factor behavior asymptotically is

which gives the energy dependence of the form factor re-
quired by a given phase shift, 5(s). Of course we do not
know the technipi-technipi phase shift in the technirho
channel, so we cannot evaluate this reliably. The tree-
level calculation from a chiral Lagrangian gives, for the
p-wave channel for Nd =4,

of the p is not determined. For the vector contribution to
Ar we have

2 2

IpTC

'2
1 TeV

(26)

The value of f rc is given by the KSRF relation
as fpTc=mprc/(2U ), but still the value of mpTC is
unspecified. Analysis of the leading planar diagrams in a
1/NTC exPansion gives the scaling rule IpTc /U
or I /Nrc [11]. Combining this with the relation

U =NdF implies that at fixed F, m Tc /U
or- I/NrcNd. If this relation is true even for QCD with

NTC replaced by 3, then

m Tc/v =(3/NTC)(1/Nd )(m /f ),

I (s~ ~ ) ~s (20) mpTc (3 I NTc ) (4/Nd )' X 1 TeV

v
2

(~r )resonant 2f,Tc
(22)

Before proceeding further, we invoke the
Kawarabayashi-Suzuki-Riazud din-Fayyazud din (KSRF)
relation [9,10], which follows from current algebra and
vector dominance. In the usual QCD context it reads

mf2 P22. (23)

Our vector and axial-vector currents, Eqs. (7) and (8),
obey the usual current-algebra commutation relations.
Our PCAC (partial conservation of axial-vector current)
statement is

An ordinary resonance, for which 5( oo )=sr, will give a
form factor falling as 1/$, while the peculiar one resulting
from Eq. (19) will fall as s '~ . In any event, the rising,
positive phase shift in the p-wave channel will inevitably
produce a form factor that rises above unity near thresh-
old and then falls far above threshold, whether or not a
resonance is introduced explicitly. The important form-
factor efFects and the threshold factor make estimates
based on Eq. (16) unreliable.

The simplest way to introduce the technirho is to treat
it as a narrow resonance and assume it saturates the con-
tribution we have from Eq. (13). Then we find

Imll vv(s) = ~ — 5(s —m Tc ), (21)
pTC

and a contribution to Ar:

The narrow resonance approximation difTers from the
nonresonant approximation by receiving its dominant
contribution from a difTerent region, and by having a
difTerent dependence on Nd. With the hypothesized

mprc ~ 1/Nd, we have (b,r)„„,„,„ter Nd, rather than Nd,
as in Eq. (16).

The full expression for ImII&~ is obtained from Eqs.
(11)and (13) with the result

sNd
ImII vv(s) =—

48~
(27)

where

s1—
2n pTC

'2
(1—4m Tc /s )

2 2
2'

+ Nd&f pTc

48~m Tc

4m Tc
2

1—
3 ~

1 ~ds 2ImII „$—ImII, „S = v
7T 0 $

(29)

(28)

If the full expression given in Eq. (28) is used and the
result integrated numerically, we find for Nd =4 a vector
contribution Arresonant =0.030 if we use mac 100 GeV.
If instead we use m Tc =200 GeV we find

Ar„„„,„t=0.020. Of course we do not really know what
to choose for I Tc. The integrand from the vector spec-
tral function is shown in Fig. 1.

Rather than attempt to model the axial-vector-current
spectral function, we rely on the Weinberg sum rules [12]
and the KSRF relation. The Weinberg sum rules in this
context are

r.')A=(/NdF m Tetr (24) f ds[lmII vv(s) —ImII~„(s)]=0 .
0

(30)

but on the other hand the connection between F and U is
precisely NdF =U, so we see that the appropriate form
of the KSRF relation is

Assuming these are saturated by a single technirho and
techni-a1 with

7?Z pTCf,Tc =
2v

(25)

As in the instance of the usual KSRF relation, the mass

1—Imll vv(s) gv5(s —m v)

1—ImII „„(s)=g~ 5(s —m „),
(31)

(32)
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FIG. 1. The vector portion of the integrand in the expression

for hr. The quantity plotted is —g ImH&z(s)/(2ms), so the
contribution to Eq. (4) is obtained by integrating with the
differential 2d ln&s. For the values m Tc =100 and 200 GeV
the results of Eqs. (27) and (28) are shown as solid curves. The
dashed curve shows the result from the nonresonant approxima-
tion, Eq. (15), without any threshold suppression, cut off at
A=1.5 GeV.

a decrease in the mass of the technirho will increase the
contribution to Ar.

There is a reason for expecting that the technirho may
have a mass less than that predicted by the standard scal-
ing arguments. In the one-family technicolor model, the
forces in certain channels are enhanced by the large mul-
tiplicity of pions [13]. Among these channels are the
singlet, in which there may be a scalar bound state, and
the antisymmetric adjoint. The latter representation con-
tains the technirho. The increased attractive force could
well decrease the technirho mass. If we take m Ye=750
GeV and m„Tc=100 and 200 GeV, we find for Ar the
values 0.034 and 0.027, respectively. This demonstrates
how sensitive the result is to the values of both the pa-
rameters ppzpTc and I

The strong force in the technirho channel due to the
chirally invariant technipion interaction might lead to
two separate resonances in this channel, one primarily a
bound state of technipions, the other a bound state of
technifermions. In the narrow-resonance approximation
there are six parameters gv1, gv2, gz, m v1, m v2, and I~.
The Weinberg sum rules generalize to

2 2 = 2
gV1+gV2 gA (38)

we have

gv=gw ~ (33)

2 2
gV1 gV22+ 2Pl V1 foal V2

2
2

2Pl g
(39)

2

2vl v

2

U
2

2
m& while the KSRF relation becomes34)

The correspondence with the previous notation is

gz =m Tc!f Tc. Thus the KSRF relation reads

2 2
gV1 g V22+ 2

=2U
PlV1 mV2

(40)

2= 2 2gv=2U rn Tc

from which follows

Ol =2%i (36)

From this it follows that
2

2

mg
(41)

Consequently, the contribution of the axia1 spectral func-
tion is —

—,
' times the contribution from the vector spec-

tral function. Taking this into account we find

2 2 2
3 g v 0 019 1 TeV
4 I'Tc ~pTC

(37)

The factor —,
' is to be included also for the calculations in

which the width of the technirho is retained. Table I
shows that the resonance models give Ar in the range
0.015S—0.022 in the one family (Xd=4) model. This
would produce a shift in the 8' mass of —250 MeV to
—375 MeV, which is not contradicted by the data.

We see that using the conventional scaling for the tech-
nirho mass m Tc =m I v /( f QXd ) ]= 1 TeV gives a
smaller predicted shift of the 8'mass than does the non-
resonant approximation, Eq. (10), which is not in con-
tradiction with the data. On the other hand, it is clear
from the narrow resonance approximation, Eq. (26), that

just as in the case with a single resonance.
The Weinberg sum rules and the KSRF relation reduce

the number of free parameters to three. One way to
reduce this number is to require that unlike the
technirho's mass, the techni-a1's mass scales naively, so
m„= 1400 GeV. It is easy to show then that the minimal
value of Ar is obtained if the lower resonance decouples,
gv, =0. This just reduces the problem to that with a sin-

gle narrow vector resonance, with the previous result

2
U

2

hr = =0.019,
2m&

(42)

where the numerical value follows from our choice for
Pl g.

In summary, while the dispersion relation approach of
Peskin and Takeuchi overs a convenient means of es-
timating the e1ectroweak radiative corrections induced by
the technicolor sector, the uncertainties inherent in the
strong dynamics make it impossible to make a reliable
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calculation of the shift in Ar since its value depends criti-
cally on the masses of the technipion and technirho, nei-
ther of which can be estimated with accuracy. The best
that can be said at present is that the contribution to Ar
is probably at least 0.015.
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