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When do neutrinos really oscillate? Quantum mechanics of neutrino oscillations
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The quantum mechanics of neutrino oscillations is reexamined by studying the propagation of a flavor

neutrino described by a superposition of mass-eigenstate wave packets, without making the usual relatiu-

istic assumption. The space-dependent oscillation probability is derived by averaging over the propaga-
tion time. The time average leads to interesting factors in the oscillation probability, from which the
coherence length and the bound for the size of the wave packets are derived. The coherence length is the
distance beyond which neutrinos cease to oscillate, although a flavor change may still take place. It is

also shown that if one of the mass eigenstates is nonrelativistic, it may dominate the constant Aavor-

changing probability.

I. INTRODUCTION

If neutrinos are massive particles and mixed, a flavor
neutrino is created by a weak-interaction process as a
coherent superposition of mass eigenstates. The neutrino
oscillations are due to the interference among the
different mass eigenstates that propagate with different
phase velocities. In the standard treatment of neutrino
oscillations [1,2] the following assumptions are made. (a)
A neutrino propagates with a definite momentum which
is common for all the constituent mass eigenstates. (b)
The different mass eigenstates have different energies;
these energies are well defined and are given by the
energy-momentum dispersion relations; the neutrino
wave function is given by a superposition of plane waves,
each one corresponding to a mass eigenstate. (c) The
neutrino is relativistic; i.e., its momentum is much larger
than all the mass eigenvalues.

The standard approach is very useful because of its
simplicity and for its physical insight, but it is not satis-
factory for a complete understanding of the physics in-
volved in the neutrino oscillations, in particular when
neutrinos are nonrelativistic, which may be the case in
some oscillation experiments because of very poor experi-
mental upper limits on the neutrino masses, especially for
v„and v . Since neutrino oscillation appears to be the
most promising phenomenon to probe basic properties of
neutrinos, such as masses and mixing angles, a complete
understanding of the physics involved is necessary in or-
der to infer any meaningful conclusion from oscillation
experiments. A complete treatment of neutrino oscilla-
tions must address the following additional issues. (i) A
necessary condition for neutrino oscillations to occur is
that the neutrino source and detector are localized within

a region much smaller than the oscillation length; then
the neutrino momentum has at least the corresponding
spread given by the uncertainty principle [3]. (ii) The
energy-momentum conservation in the process in which
the neutrino is created implies that the different mass-
eigenstate components have different momenta as well as
different energies [4]. (iii) The different mass eigenstates
must be produced and detected coherently [5]; this is pos-
sible only if the other particles associated with the pro-
duction and detection processes have energy-momentum
spreads larger than the energy-momentum differences of
the mass eigenstates. (iv) The wave function of a propa-
gating neutrino must be a superposition of the wave func-
tions of the mass eigenstates with proper coefficients
given by the amplitudes of the processes in which mass-
eigenstate neutrinos are produced.

The localization of the neutrino source and the spread
of the neutrino momentum imply that the propagating
Aavor neutrino is described not by a superposition of
plane waves, but by a superposition of localized wave
packets. Therefore, a wave-packet treatment is necessary
for a correct quantum-mechanical description of neutrino
oscillations. In Ref. [3] neutrino oscillations have been
extensively discussed by using wave packets and the stan-
dard assumptions (a), (b), and (c) mentioned above,
confirming the results obtained in the standard treatment
without wave packets.

In this paper we will discuss the quantum mechanics of
neutrino oscillations by studying the propagation of a
liavor neutrino described by a superposition of tvave pack
ets, each corresponding to a mass eigenstate, by imple-
menting the additional issues mentioned above. This is a
first step towards a complete understanding of neutrino
oscillations. Since we do not calculate the amplitudes of
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the interaction process in which the neutrino is produced
and detected, the wave packets for the mass eigenstates
will be assumed to have a Gaussian form with size o.

and the coefficients of their superposition will be assumed
to be given by the elements of the mixing matrix Q which
connects the weak and mass-eigenstate bases of the neu-
trino fields. This simple quantum-mechanical approach
is sufficient for understanding the oscillations of relativis-
tic neutrinos. In fact, for relativistic neutrinos, the am-
plitudes of the production and detection processes can be
approximated to lowest order by the amplitude for mass-
less neutrinos. Hence, as usual, the observable cross sec-
tion can be factorized as a product of the oscillation
probability and the massless cross section. The oscilla-
tion probability depends only on the elements of the mix-
ing matrix VE and on the space-time-dependent quantum-
mechanical interference between the mass eigenstates
occurring as a consequence of the neutrino propagation.
The same is not true for nonrelativistic neutrinos, since in
this case the production and detection amplitudes depend
on the mass eigenvalues and the oscillation probability
cannot be factored out.

One of the predictions of the wave-packet treatment is
the existence of a coherence length for neutrino oscilla-
tions: since the mass-eigenstate wave packets propagate
with different velocities, they overlap and interfere only
for a finite distance. The coherence length has never been
derived in the literature, although its existence and order
of magnitude for relativistic neutrinos has been suggested
from physical arguments [6]. In this paper we derive the
coherence length by averaging over time the space-time-
dependent oscillation probability. The average over time
is appropriate because, in practical experiments, the
propagation time between the neutrino source and the
detector is not measured, whereas the distance is known.
From the time average, it can also be seen naturally that
in order for the mass eigenstates to interfere coherently,
the size o. of the wave packets must be smaller than the
oscillation length L,'&', as required by (i) (throughout this
paper the Greek indices a, P refer to flavor neutrinos,
whereas the Latin indices a, b refer to the mass eigen-
states). As argued in Ref. [3], the size o „ofthe the wave
packets is given by the dimension of the region within
which the production process is effectively localized. For
example, for solar neutrinos o 5 10 cm [6] and for su-
pernova neutrinos cr„—10 ' cm [7].

In our approach, the average values of the energy and
momentum of each mass-eigenstate wave packet are
different and they are given by energy-momentum conser-
vation in the production process. Hence in this paper we
address issues (i) and (ii) above in a natural way. Issue

(iii) is addressed by assuming that the momentum spread
o. —1/o. of the neutrino wave packets is of the same or-
der as the spread of the wave packets of the other parti-
cles associated with the production and detection pro-
cesses. Since L,'b'-I/(~&E, &

—&Eb&~), the condition
L,'b' &&o.„ implies that the energy difference

~
& E, &

—
& Eb & ~

is much smaller than the momentum
spread o~, as required by (iii). A complete implementa-
tion of the issues (iii) and (iv) in the framework of quan-
tum field theory, including the effect of the production
and detection processes and a rigorous treatment of the
nonrelativistic case, will be discussed elsewhere [8].

II. NEUTRINO OSCILI.ATIONS

g, (p ) =(v'2mo~ )' exp

g, (x, t)= (v'2vro, )
'~ exp i(&P, &x —&E, &t)

where the energy &E, & and the group velocity U, are
given by

&p. &

&E, &=+&@.&'+m.', U. =
& a~

(2)

and the widths o. and o. are related by o. o
Let us consider a neutrino created at coordinates

x =0, t =0 by a weak process as a flavor neutrino v . The
quantum-mechanical probability to find the neutrino in
the Aavor state v& detected at a distance x =X and time
t = T is given by (here we assume ~v & =g, 6', ~v, &)

In order to construct the wave packets for the mass
eigenstates, we make the following assumptions: the
problem is one dimensional; i.e., we neglect the momen-
tum spread orthogonal to the direction of propagation x;
the mass-eigenstate wave packets have a Gaussian form
with the same width o. in momentum space; the Gauss-
ian mass-eigenstate wave packets in momentum space are
sharply peaked around the mean value momenta &p, &

determined by the kinematics of the production process
(energy-momentum conservation).

The normalized mass-eigenstate wave packets in
momentum and coordinate spaces, respectively, are given
by

P p(X, T)= g Vlp, g, (X, T)Vl*, g Vl&, O'*, N& Vl „exp [i ( & p, &
—

&p„& )X—i ( & E, &
—

& E„&)T ]
+2mo. .g

(X—v, T)
X exp 4'

(X UbT)—
4o.

(3)
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In practical experiments, the distance X from the neu-
trino source is known, whereas the time of propagation T
is not measured. Hence the probability at the distance X
is given by the time average of the probability given in
Eq. (3). In the standard treatment for relativistic neutri-
nos, the time average is accomplished by taking T=X.
In our approach, this corresponds to approximating the
time integration by taking the dominant contribution in

the stationary point of the exponent, which is given by

U +Ub

Ug +Vb
(4)

However, without making any approximation, we can
easily perform the time integration by completing the
squares in the exponent. The final result is given by

fn, ,

P tt(X) =

1/2

Ug +Ub
np, e*,np„n exp l (&p', ) —(p &) —(&E, ) —(E ))

(v, —v„)' ((E, ) —(Eb ) )'

v~ + vb 40 ~ v~ + vb 4o'~ ( v~ + vb )

X-

U~+Ub
exp —i((E, ) —(Eb ) ) 2 z

U~+Ub

&P. &
—(Pb )

This gives the neutrino oscillation as a function of the
distance X from the neutrino source. The oscillation
lengths are given by

L = 2v a bU +U

u.'+ u,'
&P. &

—&Pb)

(E, ) —(E )

The quantity in large parentheses becomes unity for ex-
tremely relativistic neutrinos, leading to the usual well-
known result.

(2) Damping factor

exp
X' (V. —V»'

40x Ua+Ub

This measures the coherence of the contributions of the
wave packets of the different mass eigen states. The
coherence length for

ahab

is given by
2 2 1/2

(7)L coh Ua +Ub

(v, —ub)

to be compared with the usual (intuitive) expression
L;b"-o„/~u, —

vb~ 16]. The two expressions coincide

Given a neutrino created in the flavor state v at x =0
and detected at the distance x=X from the neutrino
source, Eq. (5) gives the quantum-mechanical probability
to find it int he Aavor state v&. The probability given in
Eq. (5) contains a double sum over the contributions of
the mass eigenstates. In addition to the elements of the
mixing matrix B', each term of the sum contains factors
(1) and (2) (see below), which can also be obtained by the
approximation given in Eq. (4), and factors (3) and (4) (see
below) which are due to the time integration.

(1) Phase factor

only for extremely relativistic neutrinos. Neutrino oscil-
lations occur if the coherence length is much larger than
the size o of the wave packets. This is the case if
u, —

ub ~
&&1, i.e., if the two mass eigenstates v, and vb

are almost degenerate.
(3) Exponential factor

exp
((E.&

—&E, &)'

4o. (u, +vb)

1/2

U +Ub

The first is a normalization factor that has been put by
hand. The second factor is due to the time integration
and takes into account the fact that the time-averaged
probability to find a mass-eigenstate neutrino at the dis-
tance X is inversely proportional to its velocity. This fac-
tor is practically unity for relativistic neutrinos, but devi-
ates from unity if a mass eigenstate is nonrelativistic,
with velocity ~u, ~

&&1.
From Eq. (6), one can see that the oscillation length

L,'b' can be macroscopic if the mass eigenstates v, and vb
are almost degenerate, regardless of whether or not they
are relativistic. We consider this case and investigate
when the mass eigenstates v, and vb contribute coherent-
ly to the oscillation probability given in Eq. (5), without
making the usual relativistic assumption. We define

This is due to the time integration and guarantees energy
conservation within the uncertainly given by the width
0. of the neutrino wave packets. This factor does not de-
pend on the distance X and its presence means that, if
((E, ) —(Eb ) ) ~ oz+v, +vb, the time integration
suppresses the interference of the different mass eigen-
states.

(4) Other factors
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2+ 2
2 — 2 2 —2

Learn, b
=—m, —mb, m, b

=—

(P. &+ (Pb )
(p.b ) = ', & E.b &

=V'—&p.b &'+ m '.b .

To lowest order in Am, b one has

&P. &' &—Pb &'=k.b~m.'b (9)

The di6'erent mass eigenstates contribute coherently to
the oscillation probability if the energy-conservation fac-
tor (3) mentioned above can be approximated by unity,
i.e., for b,m, b —o~ (p,b ) /(1+/, b ). This condition can be
written as L,b'~ o.„, i.e., the neutrino source must be lo-
calized within a region much smaller than the oscillation
length, as required by (i). The maximum number of oscil-
lations is given by

Pl mg +Plb
2 2 2

1+ " +
m 4m„

(10)

and one can see that the value of g,b is of order of unity.
To lowest order in hm, b the oscillation and the coher-
ence lengths are given by

2&p.b &

L "=2m
id.m,',

& p.b &'(E.b &'

"
~((P,b ) —g, bm, b)hm, b~

where g, b is a dimensionless quantity that depends on the
production process and can be calculated from energy-
momentum conservation. For example, for the pion de-
cay m~p+v, one obtains, in the rest frame of the pion,

L coll

N OSc L OSC
ab

&p., &«., &'

&, (&P.b &' ibm—
'b)~

(12)

However, in practical experiments, the maximum num-
ber of observable oscillations is smaller than the theoreti-
cal value given in Eq. (12), since the probability must be
further averaged over the dimensions of the source and
the detector, and over the energy spectrum of the source
and the energy resolution of the detector [9,10]. It is to
be emphasized here again that the results given in Eqs.
(11) and (12) are valid for nonrelativistic as well as rela-
tivistic neutrinos.

If the mass eigenstates are relativistic, to lowest order
in the relativistic approximation, g, b ~g, where g is in-
dependent from the mass eigenvalues, and (p, b ) ~ (po ),
where (po) is the mean value momentum in the limitI,=O. The time-averaged oscillation probability given
in Eq. (5) becomes

2 2m &lbP tt(X)= g Rtt, Vl*, Vl&bR bexp i, —, X exp
X
8o.„

m f71b
2 2 2

2&po&'

(m, mb)——(1+/)
32o,'&p, &' (13)

Apart from the last energy conservation term, the oscilla-
tion probability given in Eq. (13) is the same as that ob-
tained from the approximation given in Eq. (4), i.e., by
taking T=X as commonly done. However, due to the
wave-packet treatment, the exponent in Eq. (13) is
diferent from the usual one which contains only the
phase proportional to X. In particular, the term propor-
tional to X, which measures the coherence of the mass
eigenstates, gives the coherence length.

So far, we have neglected the spreading of the wave
packets during their propagation, which becomes
significant for a propagation time longer than the spread-
ing times T,' '-cr„(E, ) /m, . For nonrelativistic neutri-
nos, U, T,'~' can be shorter than the coherence length
given in Eq. (11) and the spreading cannot be neglected.
By taking the spreading into account, the mass-eigenstate
wave packets in coordinate space are given by

s.
P, (x, t ) = &2vro„l +i t.

2G~

—1/2

(x U,t)—
Xexp i((p. )x —(E.)t)—

4g „+2is,t

(14)

where s, =m, /(E, ) . In this case the time average of
the space-time-dependent oscillation probability cannot
be calculated exactly. However, one can approximate the
time integration by taking the dominant contribution in
the stationary point of the exponent of the space-time-
dependent probability. The oscillation length is found to
be the same as that given in Eq. (11), whereas the corre-
sponding coherence length is given by

&P.b )'(E.„)'
Q((p, b ) —g,bm, b) (hm, b) —32crq(m, b ) (p,b )

(15)
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The coherence length given in Eq. (15) is longer than that
given in Eq. (11) because the spreading of the mass-
eigenstate wave packets increases their overlap. One can
see that the spreading effect is negligible for

bm.'b»tr, m .'b(p. b &II(p,b & g, bm, bl .

This condition is satisfied by relativistic neutrinos for
reasonable values of the parameters involved (the separa-
tion between the mass-eigenstate wave packets increases
faster than their spreading [11]). For nonrelativistic neu-
trinos, it is possible that

b,m, b 5 cr m, b (p, b & / (p, b &
—g, b m, b ~,

so that the spreading may be important. In this case, the
coherence length becomes infinite, because the spreading
of the wave packets increases faster than their separation.

Finally, let us consider a Aavor neutrino for which the
mass eigenstates are far from degenerate and at least one
mass eigenstate is nonrelativistic. If v, is one of the non-
relativistic mass eigenstates, (u, —ub) —u, +ub and the
corresponding coherence length becomes very short
L,'b -o. . In this case, the neutrino oscillations due to
the interference between the mass eigenstates v, and v&

do not take place and one can measure only a constant
jlauor changing -probability If all .the mass eigenstates
(except possibly one) are nonrelativistic, the neutrino os-
cillations do not occur and the constant flavor-changing
probability is given by

&. p-— g " g l&p. l'I&..l'Iu.
l

a' a a
(16)

This probability is different from the usual constant
flavor-changing probability for relativistic neutrinos,

(17)

I'
q
—/'M~['— (18)

instead of the usual probability given in Eq. (17). Notice
that the probability given in Eq. (18) does not depend on

since the former contains the factors u, ~

'. For nonre-
lativistic mass eigenstates, the factor

~ u, ~
gives a

significant correction to the probability and may not be
negligible. For example, let us consider the two-
generation case in which v, is relativistic and v2 is ex-
tremely nonrelativistic. From Eq. (16), if the order of
magnitude of all the elements of the mixing matrix V/ is
about the same, the constant flavor-changing probability
is given by

the initial neutrino Aavor since the contribution of the
nonrelativistic mass eigenstate is dominant (as long as the
elements of the mixing matrix are of the same order of
magnitude).

III. CONCLUSIONS

We have calculated the quantum-mechanical probabili-
ty P &(X) to find a neutrino fiavor v& at the distance X
from a source of neutrinos with initial Aavor v by study-
ing the neutrino propagation as a superposition of mass-
eigenstate wave packets. We have also derived the coher-
ence length for nonrelativistic as well as relativistic neu-
trinos. The coherence length can be quite short, depend-
ing on the neutrino mass difference and on whether or
not the mass eigenstates are relativistic. Beyond the
coherence length oscillations are suppressed and one can
observe only a constant Aavor-changing probability.

In our calculation, we have not considered the correc-
tions to the mixing of the neutrino states due to the pro-
duction and detection processes. For relativistic neutri-
nos, the effects of the production and detection processes
are irrelevant, because they can be approximated by the
massless interaction amplitudes and can be factorized
outside the sum over the contributions of the mass eigen-
states. However, for nonrelativistic neutrinos, this can-
not be done and one expects a significant correction from
the production and detection amplitudes of the nonrela-
tivistic mass eigenstates. Therefore, the probability given
in Eq. (16) cannot be directly applied to experiment, but
its being different from the usual probability given in Eq.
(17) should serve as a warning signal that the case of non-
relativistic neutrinos must be handled with special care.
We have also shown that, if one of the mass eigenstates is
nonrelativistic, it may dominate the constant Aavor-
changing probability. For a complete treatment of the
nonrelativistic case, which requires a detailed study of
the production and detection interaction processes, the
simple quantum-mechanical treatment presented here
must be extended by use of the quantum field theory of
weak interactions. This will be discussed elsewhere [8].
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