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Model of a composite right-handed t quark: An alternative to the tt condensate model
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As an alternative to the composite Higgs-boson model with a tt condensate, a solvable model is built
in which a right-handed t quark is a composite of left-handed quarks and elementary Higgs particles.
This model leads us to virtually the same numerical prediction on low-energy parameters; e.g., the t-
quark mass and the Higgs-boson mass as the composite Higgs-boson model, when the renormalization-
group analysis is performed according to the prescription of Bardeen, Hill, and Lindner.

I. INTRODUCTION

The possibility of the Higgs doublet being a composite
of the third-generation quarks was proposed by Nambu
[1] and by Miransky, Tanabashi, and Yamawaki [2] in
the Nambu —Jona-Lasinio model. In this model, breaking
of electroweak and chiral symmetry is triggered by con-
densation of the t-quark field. We will therefore refer to
this model as either the composite Higgs-boson model or
the tt condensate model. The model was subsequently
reanalyzed by Bardeen, Hill, and Lindner [3] using the
renormalization-group method. Meanwhile, a closely re-
lated renormalization-group analysis was made by Marci-
ano [4] with slightly different emphasis. In the
renormalization-group analysis, the surge of the running
Yukawa coupling of the t quark at a super-high-energy
scale is taken as a signature of compositeness of the
Higgs boson and tt condensate. However, since the
renormalization-group equation takes the same form in-
dependent of particles being elementary or composite,
one may wonder how unique the numerical prediction of
the renormalization-group analysis [3] is to composite-
ness of the Higgs boson and condensation of the t-quark
field. Is there not a completely different model that leads
to the same numerical prediction'? What happens if, for
instance, the right-handed t quark t& is a composite of
the left-handed quarks and an elementary Higgs doublet?
Such a model may not look aesthetically attractive be-
cause of the unnatural fine-tuning of an elementary spin-
less boson. However, the tt condensate model [1,2], as it
stands now, shares the same unnaturalness. Therefore, it
makes sense to study different composite models, for in-
stance, a composite tz-quark model, in order to have a
better understanding of the tt condensate model and the
implication of its numerical analysis. It is not that we
favor a composite tz-quark mode1 over the tt condensate
model. Rather, we wish to understand how well, as a
matter of principle, the numerical prediction of the
renormalization-group analysis [3] holds as a prediction
unique to the composite Higgs-boson model and what al-
ternative composite models can possibly give the same or
a similar prediction on low-energy parameters.

In this paper we present and discuss a model of a com-
posite right-handed t quark, which, if we follow the argu-

ment of Bardeen, Hill, and Lindner, leads us to the same
renormalization-group equation and therefore to the
same numerical prediction on the t-quark and Higgs-
boson masses as that of the tt condensate model. Some
aspect of our model is admittedly less attractive than the
tt condenstate model, but there is no way to distinguish
between the two models with low-energy phenomena. In
Sec. II we first describe how to incorporate key in-
gredients into our model. Then we build our model step
by step into the final form. In Sec. III, after fermion
mass eigenstates are determined, the one-loop renormal-
ization is computed in the leading Nz order, where
XF=2 in the real world. In Sec. IV we compare the
renormalization-group equation of our model with that of
the standard model. When the renormalization-group
analysis is made for our model according to the prescrip-
tion of Bardeen, Hill, and Lindner, the model produces
the same numerical prediction as the tt condensate mod-
el. Several remarks are made in Sec. V, in particular, on
some amusing conceptual similarity with particle demo-
cracy of the 1960s.

II. COMPOSITE MODEL OF tg

A. Particle spectrum

Our model consists of elementary left-handed quarks
tbt = ( tL, bL, . . . ) and an elementary Higgs multiplet
4& = (P&, tbz, . . . ) which transform under SU(3)c
X SU(N~) XU(1) as

pt =(3,NF, Y/2) and @=(1,NF, Q, —Y/2), (2.1)

We present here a solvable model of composite tz. For
the sake of keeping a close parallel with the tt condensate
model, the model incorporates only the third-generation
quarks as fermions, but with a large number of Aavors,
N~( ~ ao ); i.e., the symmetry of the Lagrangian is
SU(3)c XSU(N+) XU(l). The large-NF limit is chosen to
justify the chain-diagram approximation in solving for a
bound state in an explicit form. For simplicity, we con-
sider the model in which, among quarks, only the t quark
acquires mass after SU(NF)XU(1) symmetry breaking.
Let us start with the particle content of the model.
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gL =(3, 1,Q, ), (2.3)

provided the bound-state mass not be tuned exactly to
zero [5]. Since the standard model does not have a light
fermion with the quantum numbers of gL, we must re-
move this gt state from our model in order to simulate
the standard model. The simplest trick is to introduce an
elementary right-handed singlet "quark"

rid, =(3,1,Q, ), (2.4)

and to let gt and i)z form a supermassive Dirac fermion
of mass O(A), where A represents a compositeness scale.
Then, as we will see below, the right-handed t quark
turns out to be mostly the composite @PL state with a
tiny mixture [=O(m, /A )] of ilia. Therefore, the low-

energy particle spectrum of our model becomes identical
to that of the standard model.

where Y/2 is the U(l) charge of l(L and Q, is the electric
charge of the t quark. The gauge bosons of
SU(3)c X SU(NF ) X U(1) are later added to the model. In
our model a right-handed t quark

t„=(3,1,Q, ) (2.2)

is formed as an SU(NF)-singlet bound state of (C&QL ).
Unless it is generated as a Goldstone fermion of broken
supersymmetry, a composite fermion appears in both
handednesses, in general. In our case the composite Critrt

state is a Dirac fermion with its left-handed partner

FIG. 1. Forming composite gL„with ilrL and N through
infinite iteration of the 4ilrt loops. NF fiavors go around each
@ilrL loop.

kL @ eL and kR (~+ wL (2.5)

to the leading NF order, where the flavor index a is
summed over from 1 to NF. The singular interaction

like to call attention to the recent extension of the tt con-
densate model to incorporate supersymmetry [7—10]. In
those models the fine-tuning problem is solved, but the
fIavor-changing neutral interaction may become more a
serious issue. In building our model, we adopt the fine-
tuning aspect of the tt condensate model. Namely, our
model Lagrangian introduces an unrenormalizable bind-
ing force that allows us to fine-tune a composite quark
mass.

Let us introduce our model step by step. We want our
model Lagrangian to be explicitly solvable in the leading
NF expansion. The right-handed t quark is a composite
state of Cr and fL, which we denote as gz for a while.
Considering the matching of handedness, we expect the
composite fields gL and gtr to be as

B. Binding force L;„,= i(g, /M )[QL,—N '(8C&b)g~~]+H. c. (2.6)

In the standard model there is no binding force strong
enough to form a tight bound state of quarks at the elec-
troweak energy scale. As the precision of the experimen-
tal test for the standard model has increased steadily, the
room to accommodate a new strong binding force has
been narrowed down. For instance, the p parameter of
the 8'and Z masses has become so accurate as to be po-
tentially in convict with some of the technicolor-type
models, aside from the long-standing problem of fiavor-
changing neutral interaction. The original tt condensate
model introduces in an ad hoc manner a new singular in-
teraction among four quarks as the origin of the binding
force and raises the compositeness scale to superhigh en-
ergies. This strategy has one bad and one good feature
among others: A bad feature is the unnaturalness of
fine-tuning in the Higgs-boson mass, i.e., the old issue of
the hierarchy problem; a good feature is that, being
strong only at a super-high-energy scale, the new strong
interaction has practically no effect on the low-energy
phenomena of our interest in the foreseeable future.
When more than one generation of quarks is introduced
in the tt condensate model, a new fundamental interac-
tion is likely to contain flavor-changing neutral forces.
After a composite Higgs doublet is formed, the residual
four-quark interaction is of the order j. /A in strength
and therefore evades the stringent experimental con-
straints on the Aavor-changing neutral interaction. The
problem appears more serious when more than one com-
posite Higgs doublet is formed [6]. In passing, we would

provides one of the simplest binding forces that lead to a
bound state gL t, through the diagram depicted in Fig. l.
The mass parameter M in Eq. (2.6) is defined to be the
scale of compositeness of our model. This interaction is
of the current-current form and may be generated as an
effective Lagrangian through exchange of superheavy
vector bosons. Here, however, we do not explore for its
origin, but simply postulate it in an ad hoc manner. To
the leading or der in Nz, L;„, of Eq. (2.6) can be
transformed into an equivalent form by introducing auxi-
liary composite fields gL and g~ with their Dirac mass
term. Suppressing the Aavor indices, we can write the
equivalent Lagrangian

L;„,= M[gL +(f/M—)QL @t][gtt +i(f'/M )(84)QL ]

+i(ff'/M )[ttrt N (8+)lier j+H. c.

= —
MKL, 4 fWt. @'4 &(f'/M)4, (—~+ WL+H—c

(2.7)

FIG. 2. Self-mass of g'r R through virtual dissociation into ilrl

and N.
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where g, = f—f '. Hereafter, we will continue to suppress
flavor indices for notational simplicity. Prior to genera-
tion of the kinetic-energy terms through loop diagrams,
this Lagrangian means that the gr ~ fields are indeed of
the form of Eq. (2.5) according to BL;„,/Bgz r =0. The
constant f corresponds to the bare Yukawa coupling at
the cutoff scale A. We will choose A at 0 (M) and call it
also the compositeness scale. For the g mass, the bare
Dirac mass M is O(A), but the self-mass 6m& due to the
virtual process /~~fr (Fig. 2) renormalizes M into
M+6m&, which we will later fine-tune to a value much

smaller than A, e.g. , the electroweak scale. It is irnpor-
tant that the binding force i(g, /M )gr @ (j8@)gr or its
breakup i (f'/M)gi (84)gr is singular enough to provide
a large self-mass 5m& comparable to M.

The Lagrangian of Eq. (2.7), as it stands, leads to the
unwanted light singlet quark gi . Since gi cannot have a
Majorana mass without breaking SU(3)c symmetry, we
must get rid of it by giving a large Dirac mass with
another quark qz of the same quantum numbers but op-
posite chirality. In order to realize this mechanism, we
modify the Lagrangian of Eq. (2.7) into

M—[(r +(f/M)fr 4 ][gg+i(f'/M )(84)fi +(f"/M)pr)~ ]+i(ff'/M2)[/~&It(r)C&)g~]

+ (ff"/M )gr 4 prh +H. c.—V(p, 4 ),
fg @—

g —[i(f'/M)g (8C )P ] f"g p—r) +H.c.—V(p, C ), (2.8)

where p is a superheavy singlet boson of mass O(A)
transforming as

p=(1, 1,0), (2.9)

which produces through the diagram of Fig. 3 a Dirac
mass

M„=sf (A /M)/(16' ) (2.11)

for M =M. With M=O(A), this Dirac mass is largeP
enough to remove the unwanted gr from the low-energy
spectrum. By contrast, gz cannot have a Dirac mass
with itjr by SU(NF ) symmetry. Therefore, Pr remains
massless until the electroweak symmetry is broken spon-
taneously.

III. LOOP CONTRIBUTIONS
IN THE LEAOING NF ORDER

The bound state g is formed by the local interaction of
Eq. (2.6) through an infinite series of the @pi chains in
Fig. 1. The mass and Yukawa coupling of g can be com-
puted by this series. Since the off-mass-shell @PAL scatter-

under SU(3)cXSU(N~)XU(1), and V(p, @) stands for
the Higgs potential of p and N. The p part of the poten-
tial V(p, @) is responsible for producing a superheavy
Dirac mass for gr

—r)R. In our model we may choose,
for instance,

V(p, @)=(M /2)p +(ir/M)(d"p)(d~)p+ V(4),
(2.10)

L =Z~gi ilgwu. +Z(~(s)@'~ +Zp

Bijou&

+Z„rbii8r)ii+Zq ~B"4 —m~(giigr. +(i.gii )

M„(rjRPL+K—L QR ) Zi f( 4@ KR+kR@4L)
—V(p 4)+ . (3.1)

where suppressed are terms of dimension five and above.

A. Quark mass eigenstates and low-energy Lagrangian

We first examine the mass spectrum. We can compute
the @PAL scattering with the Lagrangian of Eq. (2.8) to
find the renormalized g mass as a pole in the C&gr scatter-
ing amplitude. Alternatively, we may compute the self-
energy diagram of Fig. 2 to obtain the equivalent result
prior to the wave-function renormalization of gi s ..

ing has four invariant amplitudes, however, the series is
not a trivial geometric series, unlike the one for the tz pi
scattering in the tt condensate model. Working with the
original Lagrangian Eq. (2.6) is therefore a little cumber-
some. We will study our model with the equivalent La-
grangian Eq. (2.8) instead.

With the effective Lagrangian of Eq. (2.8), we can iden-
tify light-fermion states and compute their renormalized
parameters in the leading XF order. To avoid unneces-
sary complications, we first consider the case where
( 4 ) =0 is a stable minimum of the Higgs potential
V(N). For the time being, the gauge interactions are
turned off. After loop corrections are made, the effective
Lagrangian for Pr, gR, gr, r)~, and 4 can be put into

m&=M[1 —(NFff'A /16' M )+ . . ], (3.2)
K
M pf

L,'I
'lR

FICx. 3. Large Dirac mass between gi and qR.

where we have kept only the most singular term with
respect to the cutoff A. We will hereafter suppress non-
leading terms in A. By tuning the coupling
NFff '( = NFg, ), we force the—Dirac mass m& to be very
small, i.e., many orders of magnitude smaller than A, say,
the electroweak scale v =(&26F )
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~m&~ =O(u) &(M=O(A) . (3.3)

The Dirac mass M between gL and q~ is generated by
the diagram of Fig. 3, and its magnitude is given by Eq.
(2.11):

Zg = 1+(f /32m ) ln( A /p )

+(Sf' /64mM )(A p—)+
Z~= 1+(3f /8' ) ln(A Ip, )

M„=~f (A /M)I(16' ) =O(A) . (3.4) (3f—' /8' M )(A p)—+. . . (3.11)

A precise value of M„ is not important here. All we need
is that M„ is naturally O(A) when M and M are
O(A). The mass eigenstates can then be read off from the
mass matrix for the renormalized fields (gt t,

I, ~ /V Z(L (~, il~ ~'tip /V Z„, (('I, ~QL /V Z~ ):

0 m~ 0 0 gR

m( 0 M„p
(44L1iilL) P M P P

71 IR

0 0 0 0

tIt =g~ cosa —g~ sina,

where

(3.6)

where the masses have been res caled accordingly:
m&~V Z&LZ&~m& and M„~V Z&LZ„M„. The
state is obviously massless, which is a consequence of
SU(N~) symmetry. The other massless eigenstate is the
combination

Zi =1—(f /16m. ) ln(A /p )

+(f' /16' M )(A p)+—
where the minus sign in front of the third term of Z+ is a
peculiarity due to the derivative coupling of @. Since
M=0(A), only the running of the second terms logarith-
mic in A is important in the renormalization-group equa-
tion of our interest. However, none of the terms in Z&,
Z~, and Z„are proportional to NF. By contrast, ZR is
given by

Zti =(N~f /32~ ) ln(A Ip )+ (3.12)

where finite contributions are suppressed. The 1 is miss-
ing in Eq. (3.12) because the kinetic-energy term of t~ is
generated only by loops apart from a negligibly small gR
component. The renormalized Yukawa coupling f„at
the scale p is then obtained through f„(p)=f Zr(p) /[Z&(p)z+(p)Z@(p)]. Expanding in NF
with NFf and NFf' kept fixed and keeping only the
leading NF terms, we find the renormalized coupling of
the form

tana=m&/M =O(v/A) &(1 . (3.7)

Since a is vanishingly small, tR is made almost entirely of
the composite state C&gt . The remainder is a supermas-
sive Dirac fermion made of gt and gz cosa+ gt, sina,
with the mass term

f„(p) =f /Zz(p)[1+O(1/N~)] .

By use of Eq. (3.12),

f„(p) =32rr I[N~ 1n(A/p, ) ],

(3.13)

(3.14)
—(M„+m~)' (L (g~ cosa+/+ sina)+H. c. (3.8)

I.=Z,q, t aq, +z, t, t at, +z ~a~+~'

Zrf (WL c'4—+4 ~'0L ) —~«'»
where Zz =Z&~ up to O(U /A).

(3.9)

B. Renormalization and running coupling

Therefore, ignoring O(m&/M„), we may express the
low-energy e6'ective Lagrangian as

in the leading N~ order. As p~A, f„(p)2~oo, which
signals compositeness at the scale A according to Bar-
deen, Hill, and Lindner [3] and Marciano [4]. It may be
tempting to compare f„(p, ) of our model with the corre-
sponding Yukawa coupling in the tt condensate model:

f„(p)~=16m /[Nc ln(A/p) ] (tt condensate model) .

(3.15)

We are now able to compute the running mass and Yu-
kawa coupling in the leading NF order. The running
mass at scale p is easily obtained from Eq. (3.2):

(mp) = (m0)+ [M —m, (0)]p IA (3.10)

The renormalized Yukawa coupling is obtained from the
Z factors defined in Eq. (3.9). The factors Z& and Z@
correspond to the reciprocals of the wave-function renor-
malization constants for the elementary QL and N fields,
respectively. Zz is also the reciprocal of the vertex re-
normalization constant. It is straightforward to compute
them with the Lagrangian of Eq. (2.8):

If one compares Eqs. (3.14) and (3.15) by substituting
NF =2 and Nc =3, one would find that the t-quark mass
of our model is &3 time larger than that of the tt conden-
sate model. If this argument were valid, our model
would not be equivalent to the tt condensate model at low
energies and would be clearly ruled out by the experimen-
tal constraint on the t-quark mass. However, Bardeen,
Hill, and Lindner [3] argued that such a numerical esti-
mate does not provide accurate values for low-energy pa-
rameters and that a correct numerical prediction must be
made by the renormalization-group analysis. We will
study the implication of our running coupling [Eq.
(3.14)], along the line of the argument due to Bardeen,
Hill, and Lindner.
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IV. RENORMAI. IZATION-GROUP EQUATION B. Comparison
with the complete renormalization-group equation

A. Uniqueness of numerical prediction The one-loop renormalization-group equation for the
Yukawa coupling f is obtained from Eq. (3.14):

16~ pdf „(p)Idp = (N+ /2)f„(p) (4.1)
Before starting the renormalization-group analysis, we

would like to point out an ambiguity involved in the Yu-
kawa couplings (3.14) and (3.15). It was demonstrated by
an example [11] that the coupling (3.15) can be modified
if four-fermion interactions of higher dimension are add-
ed to the minimal tt condensate model [1—3] and there-
fore that the numerical prediction of Bardeen, Hill, and
Lindner is not completely unique even for a fixed value of
A. Recently, Hasenfratz et al. [12] made a thorough and
systematic analysis on this ambiguity of higher-
dimensional interactions and derived a relation of
correspondence between the tt condensate and standard
models. According to [12], if one adds appropriate
higher-dimensional interactions to the minimal tt conden-
sate model, one can reproduce as an efFective low-energy
theory the standard model having any values of the pa-
rameters in the Higgs-fermion sector. Therefore, in prin-
ciple, the most general tt condensate model does not have
real predictive power on low-energy parameters.

However, if ln(A/m, ) is much larger than unity, say,
by an order of magnitude or more, and if dimensionless
coupling constants of higher-dimensional interactions are
of order 1 or less, then this ambiguity in choice of in-
teractions does not lead to large numerical uncertainty in
the values of low-energy parameters [13]. In
renormalization-group language, the numerical uncer-
tainty at large energy scales shrinks, thanks to its attrac-
tion to an infrared fixed point, as the renormalization-
group equation evolves from 0 ( A ) to low energies.
Though the numerical prediction of Bardeen, Hill, and
Lindner is, strictly speaking, not unique, it is the most
natural and almast unique when the logarithmic running
distance of renormalization group is very long. It may be
said that the prediction is saued by the infrared fixed point
[14].

The same is true for our composite tz model. If we
add binding interactions of higher dimension to our
minimal Lagrangian (2.8), we can modify our Yukawa
coupling (3.14). However, what is important to the
renormalization-group program of Bardeen, Hill, and
Lindner is the fact that the running Yukawa couplings
(3.14) and (3.15) take large values ( ))1) as energy rises to
0 ( A ). Even with higher-dimensional interactions
present, the Yukawa coupling (3.14) remains correct to
leading order in lnA at energies below 0(A). Then, let-
ting the renormalization-group equation evolve from
large boundary values at 0(A) down to the electroweak
scale, we can obtain the most natura( values, if not truly
unique values, of the low-energy parameters. We will ar-
gue below that the minimal tt condensate model is
equivalent to the minimal composite tz model. Our ar-
gument is applicable, within this uncertainty, to the non-
minimal composite t~ and tt condensate models as well,
provided higher-dimensional interactions are not abnor-
mally large.

This equation is valid in the leading NF order before the
gauge interactions are turned on. In comparison, the
complete one-loop renormalization-group equation for
the Yukawa coupling of the standard model with
SU(Nc) XSU(NF) XU(1) symmetry reads

16~ pdf„(p)ldp=(Nc+NF I2+ —,
' )f„(p)

I 3[(Nc I)/Nc]A (p)

+3[(N~ —1 ) /2NF jg~ (p )

+ 3( &'/4+ Qt')g
& (p )']f„(p) .

(4.2)

Our renormalization group eq-uation (4.1) is to be inter
preted as the NF~~ limit of the complete equation (4.2)
with Nc kept fixed and the gauge couplings turned oQ
If we introduce the gauge interactions in our model, our
renormalization-group equation should turn into the
complete equation. The one-loop-renormalized Yukawa
couplings f„(p) of Eqs. (3.14) and (3.15) rise to infinity as
the scale p approaches the compositeness scale A. This
rise is taken as a signature of compositeness of a particle
involved in the Yukawa coupling f, i.e., the Higgs dou-
blet in the case of the tt condensate model. Bardeen, Hill,
and Lindner argued that this reasoning should apply to
the solution of the complete renormalization-group equa-
tion as well and, therefore, that a correct numerical pre-
diction of the tt condensate model on the low-energy pa-
rameters should be obtained by analyzing Eq. (4.2) with
the real values for Nc ( =3) and N~ ( =2). If we follow
this argument, we would also work with the solution of
Eq. (4.2) for our model, starting with a large value of the
Yukawa coupling at a high-energy scale p= A and letting
f„(p) evolve down to low energies. Then the numerical
prediction of our model for f„(p) must be identical to
that of the tt condensate model in the region p « A.

For the self-coupling X of the Higgs bosons, the com-
posite tie model does not give A.„(A)= ~, since the Higgs
bosons are elementary. In principle, the initial value
A,,(A) is arbitrary in contrast with the tt condensate mod-
el, and so the ratio of the Higgs-boson mass to the t-
quark mass cannot be determined uniquely. However,
when the running distance from A to v is long enough,
the ratio ).„(p )If„(p), which is attracted to its infrared
fixed point, comes very close to it over a wide range of
choice of the initial value A,„(A)/f„(A) . (See, for in-

stance, the numerical calculation in Hill, Leung, and Rao
[15]). Unless A, is abnormally smaller or larger than f at
the high-energy scale, the ratio A.„(u)/f„(u) at the elec-
troweak scale is insensitive to its initial value. We might
be tempted to invoke some naturalness argument for
1„(A)/f„(A) —1. It also should be recalled that when
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we move to the real world and solve the complete one-
loop renormalization-group equation with Wc=3 and
NF =2, 'tlie 1'lliiiliiig coupling A,„(p) blows up when f„(p)
does. With this caveat it is very likely that the Higgs-
boson mass determined by A,„(v) is virtually the same as
in the tt condensate Inodel.

The renormalized Yukawa couplings of our model and
the tt condensate model [Eqs. (3.14) and (3.15)] are
diferent, slncc thc two models RI'c solved 1Il di8cI'cnt
large-S expansions, one in large-NF expansion and the
other in large-Xc expansion. The renormalization-group
equation for the Yukawa coupling of the tt condensate
model follows from Eq. (3.15).

16m 2pdf„(p)/dp=Nc f„(p) (4.3)

for large Nc. The renormalization-group equations (4.1)
and (4.3) are the Nz~ 00 and Nc ~ Oo limits, respective-
ly, of the complete equation (4.2) when the gauge cou-
plings are turned OK

C. Case of spontaneously broken symmetry

16m2pd ln(f„/A, „)ldp=4Ncf„(f„/&„,'), ——(4.4)

We have so far discussed the symmetric phase of our
model. For our model to be an electroweak model, the
SU(Nz) XU(1) symmetry must be broken spontaneously
by a vacuum condensate of the elementary Higgs field
~(@)~=v/+2. It is trivial to extend our analysis to a
broken-symmetx'y model. The only modification we
should make is to incorporate self-consistently the t-
quark mass and mass splitting of the Higgs doublet in the
preceding calculation of one-loop diagrams. Since the
symmetry is broken by the operator of dimension less
than four, the renormalization-group equations, not only
for f„(p) but also for all other couplings, are identical to
those of the syxnmetric model, as far as we stay in the re-
g10D pP)v. S1Dcc thc flnc-tunlIlg of thc composite t-
quark mass implies A &&v, alxnost the entire running of
f„(p) occurs in the region v «p «A. Then the
1cnormallzatlon-groUp analysis foI 8 broken-symmetry
model leads us to the same numerical prediction on low-
energy parameters as that for the symmetric model.
Therefore, we conclude that our composite tz-quark
model is indistinguishable from the tt condensate model
at low energies ( ((A).

Befoxe closing, we add one minor observation that is
quantitatively incorrect, but instructive. After spontane-
ous symmetry breaking, the tt condensate ~odel without
the renormalization-group analysis [1,2] predicts
mH =2m, for the physical-Higgs-boson and t-quark
masses. This naive prediction actually I'esults from an in-
fx'81 cd fixe po1Ilt of thc Xc~ 00 11IIllt of thc
renormalization-group equation for f„(p, ) /A, „(p). Here
A,„(p) is the renormalized N coupling of
I.;„,= —

—,'A, ~N 4~, to which the physical-Higgs-boson
mass mH is related through mII=A, „(v)v . With the
gauge couplings turned ofF, the renoxmalization-group
equation for f„(p)/A, „(p) of the tt condensate model
reads

for X&~~. As the couplings evolve from p=A down
to p=v, the ratio f„(p)/A, „(p) moves toward the fixed
po1Ilt —.If thc cvolv1Ilg distaIlcc 1s long enough, 1Il othcx'

words, if only leading 1QA terms are kept in diagrammat-
ic calculation, this ratio of the couplings is indeed equal
to —,

' at the low-energy scale v, which means

m,2/m~~ =f„(v ) /2A, „(v ) =—,', (4.5)

foI' A=(x). I.ct Us apply this RI'guIIlcIlt to ouI' model.
The XF~ 00 limit of the renormalization-group equation
1S

16m. pd ln(f„/A, , )/dp=N~A, „(f„/&„—2) . (4.6)

If the infrared fixed value f„/A, „=2 is reached in our
model, 1t woUld pl cdlct

m, /mH=1, (4.7)

We have presented one solvable model of a composite
right-handed t quark. Without having supersymmetry to
generate a Goldstone fermion, we must remove a left-
handed singlet of composite quark (gL ) by introducing an
extra right-handed elementary quark (q„). This may be
considered as small ugliness of oux model. However, the
right-handed t quark of our model is a composite only
with a negligible mixture of the elementary quark (qz ).
The extra quark, mostly consisting of gz, is superheavy
and has Qo CSect at low energies. It is relevant to remark
here that the elementary right-handed quark gz with the
same SU(2) XU(l) quantum numbers as tz is actually
needed to cancel the electroweak gauge anoxnaly.

Probably, one can build many other models that lead
to the same low-energy physics as the tt condensate mod-
el and the composite tz model. For instance, it is quite
tempting to build a model in which PL is a composite of
elementary tz and 4. The only drawback for this type of
model would be lack of a 1/N expansion to solve it ex-
plicitly. Otherwise, such a model can be easily built, fol-
lowing after our composite t~ model. Then a sharp rise
of the running Yukawa coupling f„(p) toward p=A
should really be an indication of the fact that any one of
PL, tit, and @ is a composite of the others. Although the
original scenario of the tt condensate and composite N
may be the most attractive, low-energy physics, in partic-
ular the t-quark mass, cannot distinguish among three
possibilities; N is composite, t„ is composite, or itL is
composite. To be precise, the composite tR and compos-
ite QL models have room to accommodate a Higgs-boson
mass diferent from th8t of thc tt condcnsatc model.
However, even the Higgs-boson mass is likely to come

1nstcad of —. Namely, thc physical-Higgs-boson Rnd t-

quark masses would be equal in the leading lnA approxi-
matloIl. Howcvc1, Rs wc have emphasized above, this
naive prediction has little quantitative significance and
must be replaced by the analysis of the complete
renormalization-group equation. Then thex'e is no way to
distinguish between the two models by low-energy phys-
1CS.

V. CONCLUDING REMARKS
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out to be virtually the same in all three cases if the run-
ning distance of the renormalization group is long
enough.

It is amusing to compare our conclusion with the idea
of nuclear or particle democracy advocated by Chew [16]
in the 1960s. In particle democracy the compositeness
scale and mass scale of constituent particles are compara-
ble in magnitude. It asserted that there should be no way
to tell which particles are elementary or composite. In
fact, such a question is not even meaningful to ask in par-
ticle democracy. According to the line of argument
presented here following Bardeen, Hill, and Lindner,
elementariness or compositeness can never be answered
for models with a high compositeness scale unless one has
some means to probe the physics at a superhigh compos-

iteness scale. This statement is not only very intuitive,
but may be even trivial to many of us, when phrased in
this way. In fact, Marciano alluded to this observation in
his paper on renormalization-group analysis [4]. In this
paper we have demonstrated this intuitive proposition in
a solvable model.
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